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The Price equation shows that evolutionary change can be written in terms
of two fundamental variables: the fitness of parents (or ancestors) and the
phenotypes of their offspring (descendants). Its power lies in the fact that
it requires no simplifying assumptions other than a closed population, but
realizing the full potential of Price’s result requires that we flesh out the
mathematical representation of both fitness and offspring phenotype.
Specifically, both need to be treated as stochastic variables that are
themselves functions of parental phenotype. Here, I show how new math-
ematical tools allow us to do this without introducing any simplifying
assumptions. Combining this representation of fitness and phenotype with
the stochastic Price equation reveals fundamental rules underlying multi-
variate evolution and the evolution of inheritance. Finally, I show how the
change in the entire phenotype distribution of a population, not simply
the mean phenotype, can be written as a single compact equation from
which the Price equation and related results can be derived as special cases.

This article is part of the theme issue ‘Fifty years of the Price equation’.
1. Introduction
Model building in biology, as in other fields, usually starts with identification of
the process that one wishes to model, then simplifying assumptions are intro-
duced that isolate the process of interest and facilitate mathematical analysis.
Different simplifying assumptions are used for different problems. For example,
models of selection often assume very large, or fixed, population size; models of
drift often assume no selection is acting; models that combine selection and
drift often assume that both processes are weak, in the sense that neither
causes allele frequency to change by more than a small amount in a generation.

The Price equation [1] is notable because, though Price clearly had a
process—selection—in mind, he introduced no simplifying assumptions. The
only assumptions required are basically essential properties of the things—
populations of organisms—under study. It is assumed that phenotypes can
be represented with real numbers, that individuals reproduce, and that
there is a population of said organisms that is closed, meaning that there is
no immigration.

Aside from the no immigration condition, these assumptions seem so
obvious that we usually do not bother to list them. I will refer to assumptions
like these, which are widely held to be exactly true (i.e. not approximations)
as scientific axioms [2]. A goal of the axiomatic method in mathematics is
to start out with a minimal set of necessary axioms and then derive further
results from these. The analogue in science would be to start out with a minimal
set of scientific axioms and ask how far we can get deriving new results
from these before we have to introduce simplifying assumptions. The Price
equation (for closed populations) is one result arrived at in this way; I will
argue that many others can be found, especially if we introduce a few new
mathematical methods.

In the notation used in this paper (table 1), the deterministic Price equation
can be written compactly as

Df ¼ [[fo, V]]þ d, (1:1)
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Table 1. Symbols and notation.

X average value of X across its frequency distributionbA or E(A) expected value of random variable A

[[X; Y ]] frequency covariance of X and Y

hhA; Bii probability covariance of random variables A and B
a
b

� �� �
simple regression of a on b

w absolute fitness (number of descendants after one

generation)

Ω relative fitness (V ¼ w=w), conditional on w = 0

ϕ phenotype of an individual

ϕo average phenotype of an individual’s offspring

δ ϕo− ϕ

Pj simple biorthogonal polynomial in trait ϕj
Pj

† conditional biorthogonal polynomial in trait ϕj
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where ϕ represents (parental) phenotype; ϕo represents the
mean phenotype of an individual’s descendants; Ω is relative
fitness, defined as individual fitness divided by mean popu-
lation fitness; and δ is the difference between an individual’s
mean offspring phenotype and their own phenotype (i.e.
δ = ϕo− ϕ). A bar over a term denotes the mean across the
population, and double square brackets ([[, ]]) denotes
the covariance across the entire population (table 1). The
notion of ‘descendants’ used here is very broad; it includes
not only offspring but the individual itself at a future time.
(Note that if we are combining sexually produced offspring
with asexual offspring or the individual itself, we weight
each sexually produced offspring by 1/2 when calculating
an individual’s fitness, so as not to count them twice when
calculating w. Note that this counting scheme is unnecessary
if all reproduction is sexual, or if it is all asexual, since then all
offspring are counted the same. Note also that the amount of
genetic (or other) information passed to offspring is not rel-
evant to the weighting of descendants in defining fitness;
that information goes into the definition of transmission
(i.e. defining ϕo).)

Equation (1.1) should hold for any closed population, but
that is not the same as saying that it addresses all of our ques-
tions about evolution. Some of the major issues in evolution
that are not obviously amenable to analysis using equation
(1.1) are

Stochasticity: As written, equation (1.1) is deterministic;
treating offspring phenotype and relative fitness as deter-
minate values. Strictly, this is valid only if we look at the
system in hindsight, after reproduction has taken place.
Looking forward in time, the exact values of both fitness
and offspring phenotype cannot be predicted with cer-
tainty prior to reproduction. This means that we should
treat them as random variables, having distributions of
possible values.

Multiple traits with complex transmission: The Price
equation includes the effects of both selection and trans-
mission (inheritance), but it is difficult to tease apart
their contributions. This is a particular problem when we
wish to study the joint evolution of several traits. Simply
applying the Price equation separately to each trait does
not allow us to see how correlations—as well as more com-
plex relationships—between traits influences their joint
evolution.

Sequences: In principle, a DNA (or RNA, or protein)
sequence is a phenotype, so the Price equation should
apply. In practice, however, it is difficult to describe a
nucleotide using a single numerical value. Nucleotides
(or amino acids in a protein) are more appropriately
described using vectors, so we will need to adapt our
Price-based equations to apply to vector-valued
phenotypes.

The closure problem: The Price equation takes a mixed
second moment of a population—the covariance between
(offspring) phenotype and relative fitness—and gives us
only the change in the mean of one of those variables.
This means that some information is lost each generation,
so we cannot iterate the equation across multiple future
generations.
A common approach to dealing with issues like these is to
introduce simplifying assumptions. Sometimes this elimin-
ates the problem altogether. For example, the closure
problem disappears if we assume that phenotypes are
always normally distributed. This is because the normal dis-
tribution is characterized completely by the mean and
variance, so we would need to only calculate those two
values in the next generation. (Assuming a binomial distri-
bution—requiring that the trait is controlled by one locus,
and that individuals mate randomly and exhibit Mendelian
transmission—makes things even simpler.)

Even when we do not completely evade the problem, we
often introduce assumptions that make the math easier. For
example, introducing stochasticity is made easier by holding
population size fixed—meaning that mean population fitness
is not a random variable—even as we allow some uncertainty
in individual fitness.

These are simplifying assumptions because nobody thinks
that they are always—or even often—true. Phenotypes are
often not normally distributed (in a strict sense they never
are, since the normal distribution is continuous and has
non-zero values from −∞ to ∞), individuals often mate
non-randomly, and all populations vary in size over time.

While all theories must start with some assumptions, they
need not be simplifying assumptions. Rather, we can begin
with only a set of premises that we believe to be true. The
goal of this paper is to show how we can address each of
the problems listed above while making only the following
assumptions:
— populations are finite;
— we can define ancestor–descendant relationships;
— phenotypes can be quantified with finite valued numbers

or tensors;
— for any individual, there is a probability distribution of

possible numbers of descendants that they may leave; and
— for each potential descendant, there is a probability distri-

bution of possible phenotypic values.
In the following sections, I will discuss how some new
mathematical approaches can allow us to address each of
these issues.
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Figure 1. Distinction between frequency and probability operations. (a) The joint distribution of expected fitness and expected offspring phenotype for a hypothe-
tical population. Each individual corresponds to a distinct point. (b) The complete distributions of offspring phenotype and fitness for the population. Each individual
now corresponds to a distinct joint distribution.
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2. Stochastic fitness and inheritance
The covariance in equation (1.1) is calculated over all individ-
uals in a population. If we are treating the change in mean
phenotype (Df) as a determinate value, then we are tacitly
assuming that each individual has a single value of ϕo and
of Ω. In this case, ϕo and Ω are not strictly random
variables—since they are not the result of any random pro-
cess. Of course, if we were calculating the covariance of
values in a random sample from a larger population, which
is what statisticians are most often concerned with, then
these terms would be random variables, inheriting their
randomness from the sampling process. The Price equation,
however, is concerned with the entire population, not a
sample from it. We are thus (in the case of equation (1.1))
dealing with a covariance between determinate values.

This distinction becomes important when we want to
introduce true stochasticity into our analysis. Now, ϕo and
Ω for a particular individual become true random vari-
ables—meaning that we can not assign determinate values
to them, but rather must treat them as having probability dis-
tributions of possible values. As random variables, they can
covary; but this covariance is different from the covariance
in equation (1.1).

Figure 1 illustrates this distinction. Figure 1a plots
expected fitness against expected offspring phenotype for a
hypothetical population. Since these are expected values,
they are not random variables—each individual has a
single determinate value for each variable. The covariance
between these values is calculated across the frequency distri-
bution of the population, so we will call it a frequency
covariance (denoted [[, ]]). The covariance term in the Price
equation (equation (1.1)) is of this kind.

In figure 1b, we plot fitness and offspring phenotype
directly (not their expected values). Since, in reality, these
cannot be known with certainty prior to reproduction, each
individual has a joint distribution of ϕo and Ω. For each indi-
vidual organism, there is now a covariance between ϕo and Ω
(represented by density in figure 1b). Since these covariances
are each calculated over a probability distribution of possible
future values, we refer to them as probability covariances
(denoted 〈〈, 〉〉). There is no biological reason for these prob-
ability covariances to bear any resemblance to the frequency
covariance between expected values in figure 1a.
Though frequency and probability operations are distinct,
there are rules for combining them. Two such rules that are
particularly useful are

bx ¼ bx
and d[[x, y]]� [[bx, by]] ¼ hhx, yii � hhx, yii:

9=; (2:1)

When ϕo and Ω become random variables, the change in
mean phenotype (Df) also becomes a random variable,
having a distribution of possible values. If we calculate the
expected value of change in mean phenotype, using equation
(2.1), we get the stochastic Price equation [3]

cDf ¼ [[cfo, bV]]þ hhfo, Vii þ bd: (2:2)

The first term on the right-hand side of equation (2.2),
[[cfo, bV]], is the same as the covariance in equation (1.1),
except that it involves the expected values of ϕo and Ω.
This would capture the covariance between the points in
figure 1a. The second term, hhfo, Vii, is the frequency average
(i.e. the average across all individuals in the population) of
the probability covariances between ϕo and Ω for each indi-
vidual. This is like the average of the covariances for the
different probability distributions in figure 1b.

Allowing fitness to be a random variable does more than
simply introduce uncertainty into the equation, it leads to the
appearance of new evolutionary processes that are invisible
to the deterministic case. One of these new processes is cap-
tured by the mean probability covariance between offspring
phenotype and relative fitness (hhfo, Vii), on which we will
elaborate in the next section.

There is another, less obvious, way in which equation
(2.2) is much more complex than equation (1.1). The term Ω
in the frequency covariance in equation (1.1) is the relative fit-
ness of an individual, which is just individual fitness divided
by mean population fitness. In the deterministic case, this is
just a number. The corresponding term in equation (2.2), bV,
looks similar but exhibits much more complex behaviour.
This is because both individual fitness (w) and mean popu-
lation fitness (w) are now random variables, so bV is the
expected value of a ratio of random variables that are corre-
lated with one another. This value is a function of the
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Figure 2. Data from Ryan [6] for offspring versus midparent tarsus length in
hybrid buntings. The straight line is the best-fit linear function, the curve is
the best-fit quadratic function. (Online version in colour.)
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entire distribution of possible fitness values, not just the
mean.

Some of the consequences of bV being a function of the
entire probability distribution of fitness values are discussed
in Rice [3], and these results are extended to include
migration in Rice & Papadopoulos [2]. Some of the main
conclusions of those papers are:

Populations are pulled towards phenotypes that minimize
the set of even moments of w.

Populations are pulled towards phenotypes that maximize
the odd moments of w.

The selection differential—the change due only to selection—
increases when the variance in w increases, as it is expected
to as population size declines.

When migration is included, the impact of immigration on
evolution of the population is greatest when the variance
in immigration rate is zero (i.e. when the same number
of immigrants arrives each generation). As immigration
rates become less predictable, it has a smaller effect on
evolution.

3. Selection and transmission with multiple
traits

By highlighting the importance of the relationship between
offspring phenotype and relative fitness, equations (1.1) and
(2.2) remind us that transmission plays as important a role
in evolution as does selection. Unfortunately, these equations,
as written, make it difficult to tease apart the contributions of
transmission and selection. In fact, both selection and trans-
mission are wrapped up in both the first and second term
on the right-hand side of equation (2.2).

We thus seek results that are as universal as equation (2.2)
but more clearly illuminate different biological processes
involving both transmission and selection. To achieve this
goal, we need to be able to write both offspring phenotype
(ϕo) and relative fitness (Ω) as functions of parental pheno-
type (ϕ). The problem here is not just to capture the
distribution of variation in a population, which has been
approached by using deviations from the normal distribution
[4] or using cumulant methods [5], but to construct a space
within which we can model selection and transmission.

One approach would be to simply fit a nonlinear function
to ϕo and Ω. Unfortunately, this will not suffice if our goal is
to write a universal equation composed of terms with mean-
ingful biological interpretations. This is because all of the
coefficients in a simple polynomial regression are functions
of the degree of polynomial that we choose to fit.

To see this, consider the data for offspring and midparent
phenotype shown in figure 2 (data from Ryan [6]). Fitting
first- and second-order polynomials to this data yields the
following functions:

1st order: fo ¼ 4:775þ 0:824f

and 2nd order: fo ¼ �417:1þ 31:685f� 0:5636f2

)
(3:1)

In the first-order function in equations (3.1), the coeffi-
cient of ϕ, 0.824, is the heritability of this trait among these
individuals. In the second-order approximation, there is
also a first-order term, but the coefficient corresponding to
it is now 31.685—clearly different from the first-order case
and no longer bearing any resemblance to heritability. If we
find the best-fit third-order function, the coefficient of ϕ will
change yet again, and the coefficient of ϕ2 will be different
as well. The reason for this is that, as we fit higher and
higher order polynomials, effects are being partitioned accord-
ing to different powers of ϕ, and these are not independent of
one another (e.g. ϕ3 is correlated with ϕ).

Because the order of polynomial that we choose to fit to
the population is arbitrary, the coefficients have no consistent
biological meaning. The way around this problem is to con-
struct a set of orthogonal polynomials in ϕ [7–9]. This is a
set of polynomials of increasing order that are constructed
so that the first-order polynomial has a mean of zero, and
higher order polynomials are constructed to be orthogonal
to all lower order polynomials, as well as having means
of zero.

Orthogonal polynomials are defined with respect to a
‘weight function’ that determines the region over which the
functions are required to be orthogonal. For instance, the
Legandre polynomials sometimes used in evolutionary
theory to study function valued traits [10–12] use as a
weight function a uniform distribution between −1 and 1.
The key to solving our problem is to use the population
distribution itself as the weight function [8]. (A similar
approach, going only to second order, was mentioned in
the appendix to Lande & Arnold [13].)

For the data shown in figure 2, the first- and second-order
orthogonal polynomials (constructed using only the midparent
phenotype values) are

P[1] ¼ f� 27:1237

and P[2] ¼ f2 � 54:754fþ 748:509:

9=; (3:2)

Projecting offspring phenotype onto these functions
yields a description of transmission in which the coefficients
at a given order do not change as we add higher order terms
to our analysis. Thus, the coefficient of P[1] is the same, and
the same as the heritability of this trait, in both first- and
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orthogonal bases. (Online version in colour.)
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second-order projections in equation (3.3).

1st order: fo ¼ 27:133þ 0:824P[1]

and 2nd order: fo ¼ 27:133þ 0:824P[1] � 0:5636P[2]:

9=;
(3:3)

Note that the first-order polynomial differs from the
(mid)parent phenotype only by the subtraction of a constant,
which does not change covariances or variances. As a result,
the regression of offspring on P[1] is the same as the
regression of offspring and ϕ—the heritability. The second-
order coefficient is the regression of ϕo on the second-order
orthogonal polynomial. This captures the quadratic relation-
ship between offspring and parents, independent of the
linear relationship (which regression on ϕ2 would not, since
ϕ2 and ϕ are likely correlated in the population.

The example above is for a single trait. When we are con-
sidering multiple traits, there are multiple polynomials of
each order. In this case, we construct a pair of biorthogonal
bases [8,14]. This is a pair of bases with the property that
each polynomial in one basis is orthogonal to all but one
polynomial in the other basis (the definition of biorthogonal-
ity) and all polynomials of one order are orthogonal to all in
other orders.

Figure 3 illustrates the first-order biorthogonal bases for
two traits. For the first order, the ‘simple’ basis, (P1, P2), is
just the trait values with their means subtracted out (so
the population mean is zero). The ‘conditional’ basis,
(P1

†, P
2
†), designated by subscript dots, is biorthogonal to

the simple basis. This means that P2
† is orthogonal to P1

and P1
† is orthogonal to P2. Projecting a variable onto the

first-order simple polynomial Pj is the same as taking the
simple regression on trait ϕj. Projecting onto the conditional
polynomial, Pj

†, is the same as taking the partial regression
on ϕj. Higher order polynomials are orthogonal to all those
of lower order, so projections on them are independent of
projections on lower order polynomials. The full method
for constructing a biorthogonal basis for a population is
given in Rice [8].
The reason that we use biorthogonal bases is that we need
to calculate covariances (such as between offspring pheno-
type and relative fitness) and this can be done by projecting
one variable (e.g. ϕo) into the simple basis and the other
(e.g. Ω) into the conditional basis [8]. Doing this, and then
taking the inner product, yields our equation for multivariate
evolution

dDfi ¼
X
j

[[cfo
i, P

j]] [[
bV
P

j
†
]]þ

X
j

X
k�j

[[cfo
i, P

jk]] [[
bV
P

jk
†
]]

þ
X
j

X
k�j

X
l�k

[[cfo
i, P

jkl]] [[
bV
P

jkl
†
]]þ � � �

þ
X
j

[[fo
i , P

j]], [[V
P

j
†
]]

D ED E
þ
X
j

X
k�j

[[fo
i , P

jk]], [[V
P

jk
†
]]

D ED E
þ � � � þb[[fo, V]]f:

(3:4)

The last term in equation (3.4),b[[fo, V]]f, is the covariance
within groups of individuals that have exactly the same phe-
notypic values for all traits (since, for these, the polynomials
pass through the mean values of ϕo and Ω for those identical
individuals). If any of the traits are continuous, then this term
will generally be zero.

Equation (3.4) can be written more compactly, and its
structure clarified, by introducing a summation convention.
We can write P() to indicate summation over all orders (1st,
2nd, etc. up to N−m, for m traits in a population of size N)
and over all combinations (with repetition) of traits within
an order. (For two traits, we are thus summing over ϕ1, ϕ2,
f2
1, f

2
2, ϕ1ϕ2,….). Equation (3.4) now becomes

dDfi ¼ [[cfo
i, P

()]] [[
bV
P()

†
]]þ [[fo

i , P
()]], [[V

P()
†
]]

D ED E
þb[[fo, V]]f þ bd: (3:5)

The above equation is equivalent to equation (2.2), but it
disentangles transmission and selection. The [[fo

i , P
()]] terms

capture transmission; the first-order ones—[[fo
i , P

j]]—being
additive genetic covariances between traits ϕi and ϕj
([[fo

i , P
i]] being the additive genetic variance in ϕi). The [[V

P()
†
]]
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terms capture the partial regressions of relative fitness on
different combinations of traits. These capture selection, as
well as directional stochastic effects.

Because ϕo and Ω are random variables, so are [[fo
i , P

()]]
and [[VP† ]]—meaning that there can be a probability covariance
between transmission and selection. These are captured by
the hh[[fo

i , P
()]], [[V

P()
†
]]ii terms, which would be invisible to a

deterministic model.
Equations (3.4) and (3.5) show that selection and trans-

mission terms of the same order always go together. This is
a result of doing our calculations in the space of orthogonal
polynomials, and involves no simplifying assumptions
about how fitness and transmission are related to one
another. One interesting result of this fact is that a particular
selection term is relevant to change in mean phenotype only
if the corresponding transmission term (of the same order) is
non-zero. Thus, for example, third-order selection does not
influence cDf unless there is also third-order transmission.
(Note, though, that the stochastic terms may still be non-zero
even when the expected value of selection or transmission
is zero.)

There is good reason to expect that transmission and
selection will covary in some natural systems. Heritability,
or additive genetic variance, are often different in different
environments [15–20]. If the different environments impose
different selection regimes, then a population that encounters
both environments will experience a covariance between
transmission and selection. In such a case, selection in the
environment with higher heritability will lead to a larger
magnitude of change than will selection in the low heritability
environment.

Figure 4 shows a case with two traits; one (ϕs) experiences
different selection in the two different habitats. The other (ϕh)
is a habitat preference trait that influences the probability that
an individual experiences one or the other habitat. If ϕh = 0
the individual has a preference for habitat 0, and if ϕh = 1
they have a preference for habitat 1. ϕh = 1/2 corresponds to
no preference (for details, see [8]).
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Figure 4a shows the expected fitness function for these
two traits. There are peaks at [ϕs = 0, ϕh = 0] (being adapted
to habitat 0 and preferring habitat 0), and at [ϕs = 1, ϕh = 1]
(being adapted to habitat 1 and preferring habitat 1).

Using equation (3.5) for these two traits, we can calculate
the expected change in each trait from any starting point.
Doing this for a set of values yields a vector field that
shows the direction and magnitude of evolution at each
point. Figure 4b shows this vector field for the case in
which heritability is the same (0.3) in both environments. In
this case, the population evolves uphill on the landscape—
following the fitness gradient—as would be predicted by
quantitative genetics models. (I use heritability in the
example, instead of additive genetic variance, because it is
easier to intuitively evaluate. Because the phenotypic var-
iance is held constant, there is a linear relationship between
heritability and additive genetic variance in these examples.)

Things change when the heritabilities are different in the
two environments. Figure 4c shows the case in which the her-
itability in environment 0 is 0.2, while that in environment 1
is 0.4 (the fitness function is still that shown in 4a). In this
case, the population does not follow the fitness gradient,
and in fact may be pulled across a fitness valley. In figure
4d, the difference in heritability is greater; 0.1 in environment
0 and 0.5 in environment 1. Here, the population evolves
towards [ϕs = 1, ϕh = 1] from every starting point in this
region, even though the fitness landscape is still the same.
All of these heritability values, including the most extreme
ones (0.1 and 0.5) are well within the range commonly seen
in natural populations [19,21].

This example illustrates one way in which heritability can
evolve—as individuals end up preferring environments in
which heritability is relatively high. Note that there is no
direct selection on heritability in this case. Rather, the trait
ϕs tends to adapt to the environment with higher heritability.
This, in turn, produces selection on the habitat preference
trait (ϕh) to evolve towards preference for that environment
because individuals have higher fitness there. Heritability
evolves as a secondary consequence.

(Note that the orthogonal polynomial methods discussed
here are different from statistical methods of hypothesis test-
ing such as analysis of variance. Here, we are not trying to
compare means or variances, nor are we trying to define
test statistics for anything. Rather, our goal is to construct a
space, with a corresponding coordinate system, within
which we can do all of our calculations—plotting functions,
integrating them, finding inner products, etc.—without
making any simplifying assumptions about the distribution
of variation in the population.)
4. Phenotypes that are sequences
Building meaningful theories requires that we represent bio-
logical entities in such a way that mathematical operations
on our representations yield biologically meaningful results.
We have, so far, been able to represent phenotypic values
as real numbers, but this approach runs into problems
when the traits of interest are sequences.

Consider the sequence of nucleotides in a DNA molecule
(the same reasoning will apply to RNA as well as to the
sequence of amino acids in a protein). Ideally, we would
like to treat each site in the sequence as a distinct trait, then
construct a basis using biorthogonal polynomials of these
traits so that we can project some value of interest, such as
offspring phenotype, into it; allowing us to represent that
trait as a function of the sequence.

One approach to quantifying nucleotides, used some-
times in computational biology, is to represent each possible
nucleotide as a number. Using binary numbers, we would
have something like this

A C G T
00 01 10 11 (4:1)

Here, we note an important difference between
computational and mathematical biology. For purely
computational problems, the numerical value assigned to a
nucleotide is just a name, which could be interpreted in var-
ious different ways by an algorithm. By contrast, if we want
to do analytical theory, then our representations of nucleo-
tides must obey the rules of mathematics, and applying
these rules must yield the correct biological result. Applying
simple arithmetic to the numerical values given in (4.1)
quickly shows that they do not pass this test.

For example: we often need to calculate the mean value of
a phenotype, but under the scheme given in (4.1) the mean of
an A and a G is a C (since the mean, in binary, of 00 and 10 is
01), and the sum of a C and a G is a T.

(A, G) ¼ C
and C + G ¼ T.

�
(4:2)

These results are clearly biologically (and chemically) mean-
ingless; the sum of two nucleotides is not a different
nucleotide.

The way around this is to represent monomers as vectors
that are orthogonal to one another. For simplicity, we will
consider a DNA sequence; so the vectors are four dimen-
sional. The approach can be modified for use with amino
acid sequences by simply making the vectors bigger. We
represent the DNA nucleotides as

A C G T
1

0

0

0

26664
37775

0

1

0

0

26664
37775

0

0

1

0

26664
37775

0

0

0

1

26664
37775: (4:3)

Using this representation, the mean of a set of nucleotides is
not another nucleotide, but rather a different vector that rep-
resents the combination of nucleotides in the sample

(A, G) ¼

1
2

0
1
2

0

26664
37775: (4:4)

Beyond simply avoiding the nonsense results in (4.2), this
representation yields more information than would a set of
numbers. If we take the mean of a set of numerical (scalar)
values, we lose information about the original distribution.
For example, saying that the mean height of a group of
people is 50 1000 is consistent both with everyone being 50

1000, and with nobody being that height. By contrast, the
mean of a set of orthogonal vectors gives us the distribution
of those vectors. So, for example, the vector in equation (4.4)
tells us that, in this sample, 12 of the nucleotides are ‘A’ and 1

2
are ‘G’.
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Unfortunately, standard theory of orthogonal poly-
nomials considers only scalar-valued polynomials. We can
extend it to apply to the case of nucleotides, however, with
a slight modification. (Note that we are not talking about a
vector of polynomials, which would simply be a variant of
the multivariate case described above, but polynomials
in which the variable is a vector, and higher powers
of it are higher rank tensors. Such polynomials have
non-commutative coefficients, and while some cases of non-
commutative polynomials have been studied, I am not
aware of any that include the cases that we encounter in
representing sequences.)

(a) Vector-based orthogonal polynomials
I will illustrate the approach with an example of four individ-
uals, each with a two base sequence (the two bases that we
are considering need not be adjacent to one another)

individual
sequence

1 2 3 4
AC CG CC GA

����
We designate the ith monomer as μi. The first-order pheno-
type vectors for the four individual sequences above look
like this

individual : 1 2 3 4

m1 m2 m1 m2 m1 m2 m1 m2

1

0

0

0

26664
37775

0

1

0

0

26664
37775

0BBB@
1CCCA

0

1

0

0

26664
37775

0

0

1

0

26664
37775

0BBB@
1CCCA

0

1

0

0

26664
37775

0

1

0

0

26664
37775

0BBB@
1CCCA

0

0

1

0

26664
37775

1

0

0

0

26664
37775

0BBB@
1CCCA:

(4:5)

As with the scaler case, we construct the first order simple
basis by subtracting the mean from each value. We use M1

and M2 to denote the first-order simple basis for monomers
in a sequence (these are the vector-based analogues of P1

and P2).
The second-order phenotypes are matrices, giving the

combination of nucleotides at two different sites. For the
example in (4.5), these are

individual: 1 2 3 4

m12 m12 m12 m12

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

26664
37775

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

26664
37775

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

26664
37775

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

26664
37775
(4:6)

Note that for the case of two sites, there is only one
second-order phenotype that matters, μ12, as opposed to
three in the case of two scalar traits (f2

1, ϕ1ϕ2, and f2
2). This

is because all the terms in the μ vectors are 0 or 1, both of
which remain unchanged when we square them. For the
same reason, there are no third or higher order terms if we
are considering only two sites (there will, of course, be
third-order terms, and more than one second-order term, if
we consider three sites).

The second-order orthogonal polynomials, M12 in this
example, are constructed to be orthogonal to the first-order
polynomials, and to have a mean of zero.

As with the scalar-based polynomials in the previous sec-
tion, our goal is to represent other variables by projecting
them into the set of M polynomials. Regression of a trait on
a vector is done separately for each term in the vector; and
this presents a problem because, though the vectors are
orthogonal to one another, the terms within each vector are
correlated with one another.

The solution to this problem is to pre-multiply each M

term by a tensor defined as the outer product of the corre-
sponding phenotype with itself. With this modification, we
can write any variable of interest as a function of the set of
monomers in the sequence. For the case of only two mono-
mers (nucleotides, amino acids, etc.), the projection of ϕo

looks like this.

fo ¼ fo þ [[f
o

M1 ]] � (m1 � m1 �M1)þ [[f
o

M2
†
]] � (m2 � m2 �M2

†)

þ [[f
o

M12 ]] � (m12 � m12 �M12): (4:7)

Though the individual terms in equation (4.7) are more
complicated than those in the scalar polynomial case, the
fact that any particular monomer is either present or
absent, rather than a continuous variable, means that there
are far fewer terms in the series than there would be for a con-
tinuous scalar phenotype. Using this approach, we can apply
results like equation (3.5) to sequence-based traits.
5. Beyond the mean: following the entire
population

The Price equation requires information about the first and
second moments of variation in one generation to calculate
the mean in the next generation (figure 5a). This poses a pro-
blem if we want to extend our prediction to the generation
after that, since we would need the variance in the next gen-
eration, which we did not calculate. We could, of course,
calculate the variance in generation 1 using higher moments
of the distribution in generation 0, but this would involve a
separate calculation—and would only get us to the mean in
generation 2 (figure 5b).

The loss of information each generation means that the
Price equation approach does not give us a single
equation—or even a closed set of equations—that can be iter-
ated forward in time indefinitely. This is the closure problem
in evolutionary theory.

Some authors, including me [3], have taken this to be an
inescapable consequence of the complexity of phenotypes,
which can be avoided only by introducing simplifying
assumptions [3,22]. In fact, there is a way around it that
will allow us to write a complete description of evolutionary
change with no loss of information each generation.
(a) A solution: the population transform
We need to capture the entire phenotype distribution of a
population in a single mathematical unit, and then describe
how the probability distribution of these frequency distri-
butions changes over time. Figure 6 shows schematically
what we want to achieve.

The state of a population is captured by a frequency dis-
tribution. We can capture this distribution, for a particular
group of individuals, using the number of individuals and
the moment generating function

ne ff: (5:1)
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Figure 5. Loss of information with each iteration of the Price equation. (Online version in colour.)
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Figure 6. The challenge: construct the probability distribution of future populations (represented by frequency distributions), given the current population distri-
bution and patterns of fitness and transmission. (Online version in colour.)
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Here, n is the number of individuals and f is a transform vari-
able. The bar indicates frequency mean. Thus, for a group of
three individuals, one with phenotype ϕ = 1.5 and two
with phenotype ϕ = 4, equation (5.1) would be: (3 · ((1/
3)e1.5f + (2/3)e4f )).

The fact that all populations are finite, and the stipulation
that the phenotype, ϕ, is finite, ensure that all moments exist;
meaning that the moment generating function in equation
(5.1) is a compact way to capture the population distribution.

The next step is to capture the probability distribution of
possible populations. This is accomplished by defining a
characteristic function of the moment generating function,
which I will refer to as the population transform.

The population transform : Ef,n ¼beipne ff
: (5:2)

Here, p is the probability transform variable, and i ¼ ffiffiffiffiffiffiffi�1
p

.
The hat denotes the expected value over all possible pheno-
type distributions, so equation (5.2) can be expanded to
yield a set of terms, each of which corresponds to a different
possible distribution of phenotypes, multiplied by the
probability of that particular distribution arising (figure 8).

The reason for adding all of these layers is that we now
have a compact way to write the distribution of distributions
that we can follow from one generation to the next. We will
see below that this is easier than one might expect.

(Equation (5.2) is analogous to a Fourier transform of a
Laplace transform. Note that the transform variables f and
p do not correspond to any biological process. They serve
to keep the different distributions and phenotypes distinct.
We will see below that they also allow us to derive special
cases, including the Price equation, from our main result.)

Equation (5.2) can uniquely describe any probability dis-
tribution of frequency distributions—whether for an entire
population or for any subset of individuals. For example,
the possible fitness values for an individual j (wj) and the
possible phenotypes of any descendants that it leaves (fo

j )



p = 0.25

p = 0.75

p = 0.25

p = 0.5
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0
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2

3
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p = 0.5

p = 0.25

1 2f 1 2f

Figure 7. Example distributions of fitness and offspring phenotype for
two different individuals, one with phenotype ϕ = 1 and the other with
phenotype ϕ = 2. (Online version in colour.)
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are jointly captured by:

Individual j0s descendants : Efo
j ,wj ¼
b
eipwje

ffo
j
: (5:3)

The distribution of possible mated pairs is also a prob-
ability distribution of frequency distributions (each of size
2). To distinguish the sexes in each pair, we define two fre-
quency transform variables, ff and fm for females and males,
respectively. The transform of the distribution is then:

Distribution of possible mated pairs :

Efm ,f f ,2 ¼
beip2e ffffþfmfm

: (5:4)

Finally, the transform of the entire distribution of possible
population states in the next generation is given by:

Future populations : Ef0 ,N 0 ¼beipNe ffo

: (5:5)

Here, N is a random variable denoting population size.
By including population size as well as the distribution of
phenotypes, we are following both population dynamics
and evolution.

The reason for writing everything in terms of the popu-
lation transform is that it allows us to write a surprisingly
simple equation for the transform of the entire population
in the next generation as a function of the transforms of all
individuals in the current generation

Ef0 ,N0 ¼
YN
j¼1

Efo
j ,wj þA: (5:6)

The product term on the right-hand side of equation (5.6)
combines the independent contributions of each individual
(or mated pair) to each phenotypic value in the next gener-
ation. The A term has the same general form as equation
(5.2), but captures non-independence between the contri-
butions of different individuals. (So, for instance, if the
probability of individual j producing an offspring with phe-
notypic value ϕ* is influenced by whether or not individual
k also does so, then this would enter into the terms in A
that contain ϕ*.)

Equation (5.6) works because, in the absence of migration,
the next generation is the convolution of the contributions of
individuals in the current generation. This just means that
we calculate the number of individuals with phenotypic
value ϕ* in the next generation as the sum of contributions
of each individual in the current population to ϕ*. Certain
transforms, including the Laplace transform (used in equation
(5.1)) and the Fourier transform (used in equation (5.2)),
greatly facilitate calculation of convolutions. Specifically, the
Convolution Theorem [23] states that, for these transforms,
the transform of the convolution of two distributions is
simply the product of the transforms of the distributions.

As to why we choose the particular transforms used here:
we can always capture the frequency distribution in a popu-
lation with equation (5.1) because the fact that populations
and phenotypes are finite (axioms 1 and 3) insures that all
moments exist, along with the moment generating function
(mgf). When we are considering all possible future popu-
lations, however, it is not clear that the mgf will be defined
(for example, it is not defined for the log-normal distri-
bution). This is why we use the characteristic function in
equation (5.2), since it is defined even when the mgf is not.
As an example: consider a population of two individuals,
with phenotypic values 1 and 2, respectively, and the fitness
and offspring phenotype distributions shown in figure 7.
For simplicity, we will assume that the phenotypes of each
individual’s offspring are independent, so A ¼ 0.

The individual fitness/offspring transforms (equation
(5.3)) for these two individuals are

Efo
1,w1 ¼

1
4
eip�0 þ 3

4
1
4
eip�e

0�f þ 1
2
eipe

1�f þ 1
4
eipe

2�f
� �

and Efo
2,w2 ¼

1
4
eip�0 þ 1

2
1
4
eipe

1�f þ 1
2
eipe

2�f þ 1
4
eipe

3�f
� �

þ 1
4

1
4
eipe

1�f þ 1
2
eipe

2�f þ 1
4
eipe

3�f
� �2

:

9>>>>>>>>>=>>>>>>>>>;
(5:7)

(Note that e0 = 1, so the first term in both of equations (5.7)
could be written simply as 1

4.)
Using equation (5.6), we can find Ef0 ,N 0 . Figure 8 shows

how this gives the complete probability distribution of poss-
ible future populations. Each term in Ef0 ,N0 corresponds to a
different possible population in the next generation.

The distributions above the first six terms in figure 8 show
how to interpret each term in the expansion. The coefficients
of f in the secondary exponent (e.g. 3 in the term 1

256 e
ip(2e3f ))

give the phenotypic value of individual descendants. The
coefficient of a secondary exponent itself (e.g. 2 in the term
1

256 e
ip(2e3f )) gives the number of individuals with that phenoty-

pic value (here, two individuals each with ϕ = 3). Finally, the
coefficient of the entire term (e.g. 1

256 in the term 1
256 e

ip(2e3f ))
gives the probability of that particular future population.
Thus, the term 1

256 e
ip(2e3f ) tells us that there is a probability

of 1
256 that there will be two descendants each with a pheno-

typic value of 3. Similarly, the term 1
1024 e

ip(e0þ2e3f ) means that
there is a probability of 1

1024 that the population of descen-
dants will contain one individual with phenotypic value 0
and two individuals with phenotypic value 3.

The first term in figure 8 corresponds to the case in which
there are no descendants (it could be written 1

16 e
ip�0). It thus

tells us that the probability of extinction in this case is 1
16.

Equation (5.6) is in some ways analogous to the Schrödin-
ger equation from physics, in that it describes how the
distribution of possible states of a system changes over
time. Here, however, the ‘state’ of a population is itself a fre-
quency distribution. As with the Schrödinger equation,
analytically solving equation (5.6) for anything larger than
a tiny population will become prohibitively difficult. It is
still of value, though, both as a conceptual foundation and
as a tool for deriving other results.
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From a conceptual standpoint, equation (5.6) shows that
the closure problem in evolutionary theory is not an inevitable
consequence of biological complexity. It is possible to follow
all possible future states of a population with no loss of infor-
mation each generation. (Of course, accurately iterating the
equation forward would require either knowing what the fit-
ness distributions will be, or including all phenotypes that
influence fitness.) The solution is complicated—but it exists.

This formulation also brings extinction—an important evol-
utionary process that is often ignored except inmodels designed
specifically to study it—into the samemathematical framework
that describes change in allele frequency or mean phenotype.

From a practical standpoint, it may be possible to use
equation (5.6) to solve for important special cases, such as
when the phenotype is binary. Furthermore, as discussed
below, a variant of equation (5.6) can be used to derive a
variety of simpler results—including the Price equation.

(b) Deriving the Price equation and related results
If equation (5.6) reallyencompasses all possible evolutionaryout-
comes, then we should be able to derive the stochastic Price
equation from it, as the expected change in themean of the popu-
lation. To do this, note that with a slight modification, the
populationtransform,E, becomesamomentgenerating function.

As figure 8 shows, equation (5.6) gives the numbers—as
opposed to the frequencies—of individuals with each pheno-
typic value in each possible future population. In order to get
a moment generating function for the future population, we
need to divide each individual’s absolute fitness, w, by the
total number of descendants, which is just Nw. We thus
just need to substitute ΩN−1 for w in equation (5.6)—turning
the distributions in figure 8 into frequency distributions.
The result is a moment generating function for the future
population distribution

Gf0 ¼
YN
j¼1

Efo
j ,VjN�1 : (5:8)
We can find the nth probability moment of the mth fre-
quency moment in the next generation by differentiating
equation (5.8) n times with respect to ip and m times with
respect to f, then setting both p and f equal to zero.

(i) Expected change in the mean (Price)
For example, if we want to know the expected mean pheno-
type in the next generation (bf0

), we differentiate equation
(5.8) once with respect to f (to get the frequency mean) and
once with respect to ip (to get the expected value) and then
set f and p equal to zero. Doing this yields

b
f
0 ¼ @2Gf0

@p@f

����
p¼f¼0

¼ d
foV: (5:9)

The expected change in mean phenotype is then just

cDf ¼ d
foV� f: (5:10)

Applying the rules for manipulating frequency and prob-
ability operations (equations (2.1)) to equation (5.10) quickly
yields the stochastic Price equation (equation (2.2)), or the
original Price equation if we just remove the hats.

(ii) Change in the covariance
The example above considers only one phenotypic trait, but a
slight extension allows us to consider multiple traits. For two
traits, the transform for an individual’s possible offspring
distributions would be

Efo
1,f

o
2,wj ¼
b
eipwje

f1f
o
1
þf2f

o
2 : (5:11)

Each trait has a separate frequency transform variable, f, since
we can consider the frequency of each trait separately from
the others. There is still only one probability transform
variable (p) though.

To find the expected covariance after selection, we use the
bivariate transform in equation (5.11), substituting ΩjN

−1 for



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190353

12
wj. Differentiating with respect to f1, f2 and ip, then setting
each of these equal to zero

@3Gf0
1,f

0
2

@p@f1@f2

�����
p¼f1¼f2¼0

¼bfo
1f

o
2V: (5:12)

Equation (5.12) gives the expected value of f1f2 after
selection. Subtracting the product of the expected values
of f

0
1 and f

0
2 (from equation (5.9)) we find the expected

covariance in the next generation.
Both selection and transmission contribute to change in

covariation between traits, and they interact in complex
ways. Here, we will focus just on the effects of selection. Set-
ting fo

i ¼ fi, we find the change in covariance between ϕ1
and ϕ2, due only to the action of selection, to be

b
D[[f1, f2]] ¼ [[f1f2, bV]]� [[f1, bV]][[f2, bV]]

� hh[[f1, V]], [[f2, V]]ii: (5:13)

The first term on the right-hand side of equation (5.13)
suggests that, as one would expect, selection on the product
of two traits, all else held equal, will increase the covariance
between them. The second term, however, shows that inde-
pendent selection for two different traits to each increase
(or to each decrease) contributes to a negative covariance
between them. Conversely, if one trait is selected to increase
while the other is selected to decrease, then this selection
will tend to create a positive covariance between them. The
third term shows that if the traits tend to be both positively
or negatively selected at the same times, then this also con-
tributes to a negative covariance.

This is a generalization of the fact, associated with the Hill-
Robertson effect [24], that selection for alleles at two different
loci leads to a negative gametic disequilibrium between them
(gametic—or ‘linkage’—disequilibrium can be interpreted as
a covariance between the presence of alleles at different loci
[25]). It is also consistent with the observation from quantitative
genetics that selection to increase two traits that are positively
correlated tends to reduce the correlation between them [26].
6. Conclusion
The Price equation showed that it is possible to build axio-
matic theories—useful mathematical theories based only on
assumptions that we think are actually true—in evolutionary
biology. We have seen that with some new mathematical
tools, this generality can be extended, without introducing
simplifying assumptions, to a range of evolutionary problems
that are not, at first glance, amenable to the Price equation.
We have also seen that the Price equation itself is not the
only—or even the most general—axiomatic result possible.

Note that while I have emphasized the idea of axiomatic
theories, simplifying assumptions have nonetheless played
an important role in our discussion. For example, the results
in figure 4 assumed that transmission is linear within each
environment, to highlight the effects of there being different
heritabilities in different environments. Similarly, equation
(5.13) assumed that ϕo = ϕ, to highlight the effects of selection
alone on changing covariation between traits.

The difference between this approach and conventional
model building is that instead of starting out with simplifying
assumptions, and letting these determine the mathematics
that we will use and the results that we can see, we start
with only assumptions that we think are exactly true (scienti-
fic axioms) and derive our main results from these. These
general results, when expanded, are likely to be complicated
(cf. equation (3.4)), but are made up of terms that have clear
biological meaning. Introducing simplifying assumptions at
this stage allows us to zoom in on particular terms of interest,
such as hh[[fo, P1]], [[V

P1
†
]]ii. One advantage of this is that it

makes it easy to relax or change our assumptions, and to
see what we are excluding. If we wanted to see what the
example in figure 4 would look like if transmission were non-
linear, we need only look at the second-order terms in
equation (3.4). Axiomatic theories, inspired by Price [1],
thus serve not only as unifying principles, but also as
formulae for building new special case models.
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