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Microbial physiological processes are intimately involved in nutrient cycling.
However, it remains unclear to what extent microbial diversity or commu-
nity composition is important for determining the rates of ecosystem-scale
functions. There are many examples of positive correlations between
microbial diversity and ecosystem function, but how microbial communities
‘map’ onto ecosystem functions remain unresolved. This uncertainty limits
our ability to predict and manage crucial microbially mediated processes
such as nutrient losses and greenhouse gas emissions. To overcome this
challenge, we propose integrating traditional biodiversity–ecosystem
function research with ideas from genotype–phenotype mapping in organ-
isms. We identify two insights from genotype–phenotype mapping that
could be useful for microbial biodiversity–ecosystem function studies:
the concept of searching ‘agnostically’ for markers of ecosystem function
and controlling for population stratification to identify microorganisms
uniquely associated with ecosystem function. We illustrate the potential
for these approaches to elucidate microbial biodiversity–ecosystem
function relationships by analysing a subset of published data measuring
methane oxidation rates from tropical soils. We assert that combining the
approaches of traditional biodiversity–ecosystem function research with
ideas from genotype–phenotype mapping will generate novel hypotheses
about how complex microbial communities drive ecosystem function and
help scientists predict and manage changes to ecosystem functions resulting
from human activities.

This article is part of the theme issue ‘Conceptual challenges in microbial
community ecology’.
1. Introduction
Ecology is broadly focused on understanding biodiversity and how that biodiver-
sity shapes the ecosystems that humans depend on. Many ecosystem processes
essential to all of life are mediated by microorganisms and therefore understand-
ing the relationship between microbial biodiversity and ecosystem function is
important [1,2]. Certain ecosystem functions are correlated with microbial diver-
sity, indicating that we should be able to determine what aspects of microbial
biodiversity influence ecosystem function. However, attempts to describe that
mapping have borne little fruit [3,4]. We argue that to overcome this challenge
we should look to other successful attempts at mapping biological variation
onto higher order processes. In particular, population genetics and the process
of genotype–phenotypemapping provide a numberof potentially useful insights.
For example, genotype–phenotype mapping often makes few assumptions about
the nature of the map, i.e. it is ‘agnostic.’ In addition, population geneticists have
developed rigorous methods for reducing potentially confounding relationships
such as geographic structuring of populations. Finally, the ultimate goal of
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genotype–phenotype mapping is to identify the unique
contribution of genotype to phenotype separately from other
drivers of phenotypic variation such as the environment.
Inspired by this, we suggest a reframe of the question, ‘is
microbial biodiversity related to ecosystem function?’ to,
‘what is the unique contribution of the microbiome to
ecosystem function independent of the environment?’

(a) There is evidence that microbial biodiversity matters
for ecosystem function

There is increasing evidence for microbial biodiversity–
ecosystem function relationships. For example, there are
positive correlations between microbial diversity and ecosys-
tem multifunctionality for a variety of ecosystems and most
major lineages of microorganisms [5–7]. Adding microbial
diversity or abundance to ecosystem models can in some
cases improve model accuracy [4]. Contrived communities
that vary in richness and communities created through sequen-
tial dilution or varying filter size to generate differences in
diversity can also exhibit differences in ecosystem function
[8–11]. Finally, reciprocal transplant and common garden
experiments that manipulate the connection between com-
munity composition and environment reveal differences in
ecosystem function for communities of distinct origins
[12–14]. Given these relationships, many investigators have
now moved on to the challenge of identifying the aspects of
microbial biodiversity (e.g. specific taxa, genes, functional
groups, etc.) that influence a given ecosystem function;
however, this has proven especially challenging.

(b) The mapping between microbial biodiversity and
ecosystem function has been elusive

Most studies that attempt to identify the aspects of microbial
biodiversity that influence a given ecosystem function focus
on ‘functional’ gene or transcript abundance. In this case,
qPCR or shotgun metagenomic sequencing is used to estimate
the abundance of a gene or transcript that is a putative marker
for a microbial process (and thus a marker for the functional
group that performs that process). For example, the gene
mcrA, which encodes a subunit of the enzyme that performs
the final step in methanogenesis, is commonly used as a
marker formethanogenesis and for the methanogen functional
group. Other examples include pmoA and methanotrophy,
nifH and nitrification, and nosZ and denitrification. It is often
hypothesized that the abundance of thesemarkers is predictive
of the rate of the associated processes (for example, it is hy-
pothesized that the abundance of mcrA is related to the rate
of methanogenesis).

Some ecosystem functions in certain ecosystems can be pre-
dicted from the abundance or transcriptional activity of genetic
markers for those functions. For example, soil methane pro-
duction and consumption can under some circumstances be
predicted from the genetic markers mcrA and pmoA [15–17].
However, for most ecosystem functions, the abundance of a
functional gene or transcript is rarely positively correlated
with the rate of the corresponding process [3]. The cases
where there is a positive correlation tend to be restricted to
agricultural ecosystems and certain functions within the nitro-
gen cycle [3]. In general, including aspects of microbial
biodiversity (e.g. functional gene abundance or diversity)
improves models of ecosystem function less than one-third of
the time and increases variance explained by an average of
only eight percentage points over environmental variables [4].
2. Genotype–phenotype mapping as a source of
inspiration

In the approaches described above, microbial ecologists
often use microbiome data to infer taxonomic composition,
essentially creating species lists from data such as 16S rRNA
marker genes or shotgun metagenomes. Interpreting micro-
biome data in this way has allowed us to use approaches
from biodiversity–ecosystem function research (which are
often focused on taxonomic or functional groups), but it has
generally not been useful for creating more detailed descrip-
tions of the relationship between microbial biodiversity and
ecosystem function. But this approach is not the only way we
could determine the relationship between a complex set of
highly variable data and an aggregate function.

This kind of ‘many-to-one’ mapping is analogous to the
challenge of identifying the genetic basis of complex traits in
organismal populations. In such ‘genotype–phenotype’ map-
ping studies, a population exhibits variation in a phenotype
(e.g. height or disease state) as well as variation in potentially
thousands of single-nucleotide polymorphisms (SNPs). To
identify the genetic basis for a trait, investigators sample
from this population and correlate phenotype with genotype.
While some phenotypes (e.g. the propensity for diseases
such as Parkinson’s) are controlled by a single locus [18,19],
most traits depend on a large number of genes that control vari-
ation in phenotype [20,21]. In addition, there is often no a priori
expectation about which regions of the genome control that
trait so we must search for genetic markers throughout
the genome. If a marker is significantly correlated with the
phenotype of interest, this either indicates it is inside a gene
with a direct or indirect effect on phenotype or that it is in link-
age disequilibrium (i.e. non-random association between two
alleles) with a causal gene.

There are a number of parallels between this challenge faced
by organismal biologists and that facing microbial community
ecologists. They both involve large numbers of statistical com-
parisons. Both are attempting to identify causal relationships
that are potentially confounded by complex patterns of covaria-
tion. There is often no strong expectation about which entities
(i.e. which genomic regions or which microbial genes or
lineages) are most likely to be causally related to phenotype or
function, and thus ‘agnostic’ approaches are needed. For some
ecosystem functions, it is possible that a single taxon could sub-
stantially influence its rate. For example, methane flux from
permafrost in Sweden may be controlled by a single taxon
[17]. But for most ecosystem functions, there could be many
taxa of small effect that contribute to the rate of ecosystem func-
tion. Finally, both ultimately require manipulation (of genes or
taxa) to establish causation.

(a) The importance of a taxonomically ‘agnostic’
approach

Most microbial biodiversity–ecosystem function research up to
this point has used an approach analogous to that used by
plant ecologists studying biodiversity–ecosystem function
relationships. This approach is to measure or manipulate the
diversity of a taxonomic group (e.g. plants) and look for an
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associationwith the function performed by that group (e.g. pri-
mary productivity). We can think of plants as a ‘functional
group,’ i.e. a group of taxa united by their ability to perform
a particular ecosystem function. For microbes, estimating
functional group abundance can be much more challenging.
From a small number of cultured isolates, we have a provi-
sional understanding of which microbes might be involved
in some ecosystem functions. By sequencing the genomes of
these isolates, we have identified genetic markers for certain
functions, which we call ‘functional genes.’ But most microbial
taxa remain uncultured and we do not know the function of
most microbial taxa detected in environmental samples
[22,23]. In addition, there have been recent discoveries of
functions in unexpected taxonomic groups, for example
methanogenesis by fungi and cyanobacteria, a function
previously considered restricted to archaea [24,25].

As stated earlier, these functional markers are not corre-
lated with their corresponding ecosystem function in most
ecosystems and for most processes. In addition, they provide
little explanatory power to the models of ecosystem function.
Because of this, it might be prudent to look more agnostically
at microbial communities to identify taxa, groups of taxa or
genes that are important for predicting the rates of ecosystem
functions rather than assuming that the genetic markers
we have provisionally identified for a given function rep-
resent the most likely taxa or genes involved. This agnostic
approach is analogous to the approach of many genotype–
phenotype mapping studies (e.g. genome-wide association
studies), which often look for associations between a
phenotype and loci anywhere in the genome.

Beyond finding new physiologies in unexpected lineages,
there are other reasons for looking agnostically. In the case of
microbial functions, it may be that the organism that performs
a function is not the limiting factor for the rate of that function.
For example, the rate of soil-to-atmosphere methane flux could
be limited bymethanogens or methanotrophs or the balance of
the two. However, it could also be limited by the bacteria that
produce the fermentative byproducts that methanogens use as
substrates. Or there could be indirect limitation by organisms
that liberate nitrogen or phosphorus into mineral forms. In
other words, the influence of microbial communities on the
rate of ecosystem function could represent a complexmetabolic
network much like the regulation of gene expression in organ-
isms that partially determines their phenotype. These broader
patterns of biodiversity–ecosystem function relationships
would be invisible to any study that solely focuses on
the most relevant functional group without considering the
possible influence of other taxa.
(b) Controlling for population stratification
It is widely accepted that organisms, including microorgan-
isms, exhibit population stratification due to geographic and
environmental separation [26,27]. This can lead to spurious
associations between phenotypes and genetic markers that
are at high frequency in isolated sub-populations. Association
studies generally control for population stratification by
accounting for shared ancestry among organisms in a popu-
lation when modelling the connection between genotype and
phenotype. Typically, microbial biodiversity–ecosystem func-
tion studies do not account for population stratification
(i.e. community similarity among ecosystems), although there
are some exceptions [28–30]. Community similarity (the
community analogue of shared ancestry among organisms) is
not as tightly linked to geography or environment as is
shared ancestry. Therefore, it could be useful to account for
these separately in microbial studies, particularly if we are
interested in quantifying the effect of microbial communities
on ecosystem function independent of these other factors.

Genome-wide association studies correct for stratification
using a variety of methods. Generally, they ignore the under-
lying environmental and spatial distance between samples
and instead use shared ancestry as a proxy for local selection
and assortative mating. A common approach is to perform a
regression of phenotype and shared ancestry (computed as the
first one or more principal components of a genotype matrix)
and then use the residuals from this model as the values
for phenotype in a subsequent regression using the genotypes
directly [31]. This principal component correction is designed
to test the effect of individual genes after removing the effect
of shared ancestry among individuals. Another approach,
employed in our example, is variance component modelling
(or mixed modelling, hierarchical modelling, etc.), where geno-
typic similarity is included as a covariate in the model to
control for stratification while testing the genotype–phenotype
connection [32].

If we control for covariates such as community similarity,
geographic distance or environmental similarity, it changes
the nature of our question. For example, if we test the corre-
lation between the relative abundance of a taxon and the rate
of methane flux, we are asking ‘is this taxon correlated with
methane flux?’ If we find a significant result, that may be
because variation in the abundance of that organism directly
or indirectly contributes to methane flux. However, it might
also be that that organism lives only in ecosystems that
happen to have a high rate of methane flux. In this scenario,
we are unable to distinguish between these possibilities. How-
ever, if we add environmental variables or environmental
similarity as a covariate in our model, we can ask, ‘Is this
taxon uniquely associatedwith function in away that it is inde-
pendent of the environment?’ By ‘uniquely associated’, we
mean those taxa associated with the function irrespective of
environmental conditions, local community structure or spatial
proximity. This slight reframing of the question could be
especially rewarding for microbial biodiversity–ecosystem
function research, particularly as it relates to incorporating
microbial community data into ecosystem models. Finally, it
is interesting in its own right to understand whether microbial
communities are selectedby the underlying environmental con-
ditions to produce a particular rate of ecosystem function or
whether community variation has functional consequences
independent of the environment.
3. An example: high-affinity methane oxidation
To illustrate the ideas outlined above,we reanalysed a subset of
previously published data from a paper that has demonstrated
one successful approach for applying genotype–phenotype
mapping to microbial communities [28]. In our reanalysis, we
do not intend to challenge the conclusions of that paper, but
instead we want to demonstrate how to perform this type of
study for microbial ecologists unfamiliar with association
studies. A full description of the study design, samples and
data generation can be found in that article. Briefly, these
data were gathered from intact soil cores taken from diverse



Table 1. Estimates for the linear relationship between methane oxidation
rate and two measures of microbial community structure: pmoA functional
gene abundance and ASV richness.

term estimate s.e. t-statistic p-value

pmoA copy

number

0.019 0.011 1.705 0.096

richness 0.001 0.001 0.694 0.491
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Figure 1. Methane oxidation rate is not correlated with functional gene abundance or ASV richness. Correlations between methane oxidation rate and (a) abun-
dance of the functional gene pmoA (n= 42), and (b) ASV richness (n= 44). Lines represent the ordinary least squares regression lines with standard errors. (Online
version in colour.)
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ecosystems of the Congo Basin in Gabon, Africa. Cores were
incubated in the laboratory under different concentrations of
methane to identify the rates of specific methane cycling path-
ways. In this example, we analyse data from just one of these
pathways, high-affinity methane oxidation (the oxidation of
atmospheric concentrations of methane), which we will refer
to simply as ‘methane oxidation’. In addition, we only include
amplicon sequences from the DNA-inferred community and
not the RNA-inferred community, both of which are presented
in the original paper [28]. The data we analysed include
methane oxidation rates, amplicon sequence variants (ASVs)
generated using the ‘DADA2’ pipeline and inferred from
unique 16S rRNA gene sequences [33], pmoA abundance esti-
mates (via qPCR), and four environmental covariates (soil
moisture, bulk density, carbon and nitrogen).

Analyses were conducted in the ‘R’ statistical environment
using the ‘phyloseq’ package [34,35]. The relative abundances
ofASVswere corrected using the variance stabilizing transform-
ation from ‘DESeq2’ [36,37]. We first tested the correlation
between ecosystem function and typical measures of microbial
community structure: functional gene abundance and commu-
nity richness, which were estimated using the ‘breakaway’
package [38]. We then tested covariation between community
structure (estimated as Bray–Curtis distance using ‘vegan’),
environmental variation (Euclidean distance) and geographic
distance (Euclidean distance) using Mantel tests [39,40]. Finally,
we identified taxa that were significantly associated with func-
tion independent of the environment by fitting variance
component models using ‘varComp’ to test the relationship
between relative abundance of eachASVandmethaneoxidation
rate [32,41]. To illustrate how including different covariates
(environmental, geographicandcommunity) can result indiffer-
ent conclusions about which taxa are associated with function,
we fitted this model with and without random effects variance
components for environmental similarity, geographic site ID
and Bray–Curtis similarity. Significant taxa were determined
by controlling the false discovery rate at q-value<0.05 [42].
Figures were created using ‘ggplot2’ [43]. All raw data and
scripts required to recreate this analysis are available in the
electronic supplementary material.
(a) Results and discussion
Microbial biodiversity–ecosystem function studies typically
test functional group abundance or community richness as it
relates to ecosystem function. In our case, methane oxidation
rate was not significantly correlated with pmoA gene abun-
dance or 16S rRNA gene-based taxonomic richness (table 1
and figure 1). To demonstrate that the covariance structure
of the data might alter our conclusions about which taxa
regulate ecosystem function, we tested collinearity between
each pair of distance matrices for community, environment
and geography. We found a moderate and significant
correlation between community composition and environ-
mental variation, geography and community composition,
and geography and environmental variation (table 2 and
figure 2). To visualize this population stratification, principal
coordinate plots show that beta diversity of samples separated
by site ID and by ecosystem type (wetland or upland; figure 2),
which indicates substantial spatial and environmental struc-
turing of microbial populations. This suggests that the
presence or abundance of certain taxa will be elevated in
specific ecosystems. In this case, high-affinity methane oxi-
dation is typically greater in upland ecosystems than in
wetland ecosystems and so any taxa differentially abundant
in uplands will tend to be correlated with methane oxidation
regardless of their involvement in that process. It is neces-
sary to control for this stratification to rigorously identify
associations between taxa and function.



Table 2. Mantel tests for each pair of dissimilarity matrices. Community distance matrix was based on Bray–Curtis distance while both environment and
geography distance matrices were based on Euclidean distance. p-values were determined by permutation test with 999 permutations.

terms Mantel statistics (r) 95% upper quantile of permutations p-value

community∼ geography 0.353 0.056 0.001

community∼ environment 0.474 0.109 0.001

geography∼ environment 0.241 0.055 0.001
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To demonstrate this approach, we tested the effect of the
relative abundance of each ASV on methane oxidation rate
while controlling for different sets of covariates including
environment, geography and community. After controlling
the false discovery rate, 460 uniqueASVswere identified as sig-
nificantly correlated with function when no covariates were
included in the model. We found the different numbers of
taxa significantly associated with methane oxidation depend-
ing on which covariates were included in the model (table 3).
Each of these sets of taxa represents different versions of the
biodiversity–ecosystem function mapping question. For
example, by attempting to control for environmental variation
statistically, we can identify taxawhose traits may contribute to
variation in function that is independent of environmental con-
ditions. Similarly, by controlling for geographic distance
among samples, we can reduce the likelihood that the taxa
we identify are only related to function because of an associ-
ation with unmeasured environmental variation that is
spatially structured or because of differences in dispersal his-
tory among sites. In the model that controlled for all three
covariates (community, environment and geography), only
six ASVs were significantly correlated with methane oxidation
rate (figure 3). These taxa could be useful indicators ofmethane
oxidation rate across space and different ecosystems. Research-
ers could elaborate on these findings using targeted cultivation
and manipulative experiments to further understand their
contribution to methane oxidation.

Notably, these six taxa fall into three genera and one class
with cultured representatives that are not known to consume
methane [44–47]. These taxa could be related to ecosystem
function in multiple ways. The most interesting possibility is
that each of these taxa is statistically related because it is
causally connected to the function. This could be direct––for
example, an organism that consumes methane––or indirect––
for example, an organism that regulates substrates necessary
for methane oxidizers. Alternatively, a significant association
could occur for non-causal reasons. For example, any organism
that tends to be in high abundance where methane oxidation
rates are high would be correlated with methane oxidation,
even if it has no causal relationship. This could be because
such an organism is favoured under the same conditions that
favour methane oxidation. Such covariation can drive associ-
ations that are not causal, but the effects of covariation would
have been reduced by controlling for covariates in our tests.
4. Caveats and future directions
Once taxa have been identifiedwith an association test (such as
the one we outline above), there are multiple ways they could
be used for future study. One approach common in genetics,
particularly for markers of genetic disorders, is to generate a
polygenic score based on the summed effect of many genes
on a phenotype of interest, such as the probability of develop-
ing a disorder. A similar aggregate bioindicator could be
generated for ecosystems that would summarize the prob-
ability of the rate or occurrence of a particular ecosystem
function. This would be accomplished bymeasuring the abun-
dance of the taxa identified in an association study and
determining their association with the rate of an ecosystem
function. Alternatively, the identified taxa could be incorpor-
ated into a structural equation model in an attempt to better
understand the individual effects and interactions among
taxa as they contribute to the rate of ecosystem function [48].
This might give an indication of the relative importance
of different taxa as compared with other factors, such as
environmental variables, and also identify underlying latent
variables that explain variation in ecosystem function.

Ultimately, the relationships identified in any comparative
mapping study must be verified. For genotype–phenotype
studies in organisms, there are multiple ways that this verifi-
cation is accomplished. In some cases, organisms can be
artificially selected for a particular phenotype (e.g. through
experimental evolution in an environment that favours the
phenotype of interest) and the genetic changes that occur in
response to selection can be compared with those identified
via mapping studies. An analogous approach for microbial
biodiversity–ecosystem function studies would be to apply
artificial ecosystem selection (sensu [49]) on a given function
and compare the taxa (or genes) that change in response to
selection with those identified via a comparative approach
(such as the one illustrated in our example).

The most common way that loci identified in a genotype–
phenotype mapping study are verified is through manipulative
genetics. The identified loci can be knocked out or over-
expressed and the effect on phenotype compared with that
predicted from mapping studies. In the case of microbial
biodiversity studies, it may be possible to inhibit a particular
functional group through the use of specific antimicrobial or
chemical inhibitors or using phages that exhibit high host-
specificity [50,51], but this is not generally possible. In some
cases, we may be able to isolate a microorganism of interest
in pure culture and add it back to an ecosystem, transiently
increasing its abundance (roughly analogous to ‘overexpres-
sing’ a gene). A greater focus on culture-based approaches
could increase the success of these kinds of microbial enrich-
ments. Finally, synthetic communities (contrived assemblages
of microorganisms) may be the most powerful way to test
hypotheses about microbial biodiversity–ecosystem function
relationships, but currently these approaches are limited by
the small number of taxa that can be routinely cultured from
most environments (but see [10] and [52]).

There are a number of limitations to the biodiversity–
ecosystem function mapping approach we describe, some in
common with organismal mapping studies and others
unique. For example, simple linearmodels such as the variance
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Figure 2. Microbial community composition is spatially and environmentally structured. Principal coordinate plots of Bray–Curtis distance representing the first three
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component model used in this study are typical for genetics
studies, but may not be the best way to identify correlations
for microbiomes because of the unique challenges of microbial
data. Marker gene and metagenome sequences are inherently
compositional, reads are often absent from most samples (i.e.
they are zero-inflated), and differences in sequencing depth
make it difficult to compare relative abundances across
samples, challenges that are not faced by population geneti-
cists. We have addressed these challenges using a variance
stabilizing transformation, but other models that test differen-
tial abundance and differential variance which can control for
differences in sequencing depth and are robust to zero-inflation
might be more appropriate (e.g. [53]). Clustering reads at
higher taxonomic levels could circumvent zero-inflation by
providing more continuous variation in taxon abundances
across ecosystems. However, this approach introduces biases
based on the completeness of taxonomic databases, the accu-
racy of 16S-based taxonomic assignment, and the removal of
reads that lack a taxonomic assignment (although, newer
approaches to taxonomic classification might help [54]). Alter-
natively, decreasing the threshold of sequence similarity to
cluster reads without taxonomy could be analogous to aggre-
gating at higher taxonomic levels, but it is uncertain whether
these larger aggregates of taxa have any trait conservatism
related to function. Here, we chose to test ASVs at the level
of the individual read so as not to bias our results in these
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Table 3. Number of significant taxa after including each set of covariates
in a variance component model. ‘removed’ and ‘added’ columns are relative
to the no-covariate model. Significance was determined by controlling the
false discovery rate at q-values < 0.05.

term(s) removed added significant

none 0 0 460

geo 338 21 143

com 460 0 0

env 281 1 180

geo + com 458 0 2

geo + env 377 13 96

com + env 447 0 13

geo + com + env 454 0 6
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ways. Finally, we have applied this approach to ASVs inferred
from 16S rRNA gene sequences, but any unit of microbiome
data such as metagenomic reads or metatranscriptomic
mRNA reads could be tested in an association study.

Experimentally, future studies could improve on our
example by sampling a more homogeneous set of ecosystems.
Our survey includes an especially broad assortment of ecosys-
tems, including grasslands, plantations, forests, peatlands and
mineral soil wetlands among others. These ecosystems rep-
resent a range of moisture conditions that could regulate the
abundance and activity of methane oxidizers and access to
methane and oxygen, which methane oxidizers rely on.
While this captured substantial variation in methane oxidation
rates, sampling from such diverse ecosystems could result in
spurious associations between taxa and function. For example,
taxa differentially abundant in upland ecosystems that are
unrelated to methane oxidation might appear correlated
simply as a result of their presence in those ecosystems with
high oxidation rates. Future studies could try restricting their
search to a more homogeneous population of ecosystems
specific to the question at hand.
5. Conclusion
Microbial biodiversity–ecosystem function researchhas demon-
strated positive correlations between diversity and ecosystem
function. However, the abundances of microbial functional
groups (as currently defined) are often poor predictors of eco-
system function and commonly do not add substantial
explanatory power to ecosystem models. Therefore, a new per-
spective on how to determine the relationship between
microbial communities and ecosystem functions is sorely
needed. Organismal biologists have over a hundred years of
experience identifying relationships between complex sets of
highly variable data (genotypes or genome sequences) and
aggregate functions (organismal phenotypes). We assert that
combining the approaches of traditional biodiversity–ecosys-
tem function research with ideas from genotype–phenotype
mapping could provide this new perspective. This integration
couldnot onlymakeunderutilizedapproaches suchas covariate
modelling and artificial selection more available to microbial
ecologists, but also provide instructive examples of how best
to conceive of microbial biodiversity–ecosystem function ques-
tions. If this integration is successful, it is possible that in the
not-so-distant future our field will be able to robustly identify
taxa, genes, or even molecules that will allow us to accurately
predict the response of ecosystems to environmental change.
Doing so will not only generate novel hypotheses about how
complex microbial communities drive ecosystem function, but
also help scientists predict and manage changes to ecosystem
functions resulting from human activities.
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