
royalsocietypublishing.org/journal/rstb
Opinion piece
Cite this article: Gorter FA, Manhart M,
Ackermann M. 2020 Understanding the

evolution of interspecies interactions in

microbial communities. Phil. Trans. R. Soc. B

375: 20190256.
http://dx.doi.org/10.1098/rstb.2019.0256

Accepted: 22 January 2020

One contribution of 19 to a theme issue

‘Conceptual challenges in microbial community

ecology’.

Subject Areas:
ecology, evolution, microbiology, theoretical

biology

Keywords:
microbial communities, interspecific

interactions, experimental evolution,

mathematical modelling, spatial structure,

mutualism

Author for correspondence:
Florien A. Gorter

e-mail: florien.gorter@usys.ethz.ch
© 2020 The Author(s) Published by the Royal Society. All rights reserved.
Understanding the evolution of
interspecies interactions in microbial
communities

Florien A. Gorter1,3, Michael Manhart1,2,3 and Martin Ackermann1,3

1Institute of Biogeochemistry and Pollutant Dynamics, and 2Institute of Integrative Biology, Department of
Environmental Systems Science, ETH Zürich, Zürich, Switzerland
3Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag),
Dübendorf, Switzerland

FAG, 0000-0002-5992-8538; MM, 0000-0003-3791-9056; MA, 0000-0003-0087-4819

Microbial communities are complex multi-species assemblages that are
characterized by a multitude of interspecies interactions, which can range
from mutualism to competition. The overall sign and strength of interspecies
interactions have important consequences for emergent community-level
properties such as productivity and stability. It is not well understood
how interspecies interactions change over evolutionary timescales. Here,
we review the empirical evidence that evolution is an important driver of
microbial community properties and dynamics on timescales that have tra-
ditionally been regarded as purely ecological. Next, we briefly discuss
different modelling approaches to study evolution of communities, empha-
sizing the similarities and differences between evolutionary and ecological
perspectives. We then propose a simple conceptual model for the evolution
of interspecies interactions in communities. Specifically, we propose that to
understand the evolution of interspecies interactions, it is important to dis-
tinguish between direct and indirect fitness effects of a mutation. We predict
that in well-mixed environments, traits will be selected exclusively for their
direct fitness effects, while in spatially structured environments, traits may
also be selected for their indirect fitness effects. Selection of indirectly ben-
eficial traits should result in an increase in interaction strength over time,
while selection of directly beneficial traits should not have such a systematic
effect. We tested our intuitions using a simple quantitative model and found
support for our hypotheses. The next step will be to test these hypotheses
experimentally and provide input for a more refined version of the model
in turn, thus closing the scientific cycle of models and experiments.

This article is part of the theme issue ‘Conceptual challenges in microbial
community ecology’.
1. Introduction
Microorganisms play key roles in biogeochemical cycling, industry, and health
and disease of humans, animals and plants [1–5]. For example, the roughly 1030

microbial cells on our planet contain 10 times more nitrogen than all plants
combined and are responsible for half of the global production of O2 [6].
Almost all of these microorganisms reside in communities, which are assem-
blages of multiple interacting species. Despite their importance, we currently
know little about how microbial communities form and function. However,
such knowledge is crucial if we want to fundamentally understand their prop-
erties and dynamics, as well as control the processes that they mediate [7,8].

Microbial communities, like all complex systems, are more than the sum of
their parts: they are characterized by a multitude of often complex interactions
between their constituent members (figure 1). At any given time, microbes may
compete for shared resources such as metabolites and space, inhibit each other
via the secretion of antibiotics and other toxic compounds, and even kill each
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Figure 1. Microbial communities are characterized by a multitude of often complex interactions between their members. For example, three bacterial species that
can co-occur in dairy products engage in both positive and negative interactions, which are mediated by metabolic compounds and toxins [9,10]. (Online version in
colour.)
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other upon direct cell–cell contact [11,12]. Yet, not all is bleak
in the microbial world: some organisms may—accidentally
or actively—excrete enzymes or molecules that others
can use, and even commit suicide for others [13–15]. The
overall sign and strength of an interaction between two
organisms is the net result of all such processes and can be
characterized as anything from competition to parasitism to
mutualism [16,17].

Interspecific interactions have a crucial role to play in
microbial communities. That is, what makes a community a
community—rather than a random set of species—is precisely
these interactions, because they give rise to properties at the
level of the community that we cannot understand by consid-
ering each species in isolation. For example, it may not be
possible to predict from growing each species by itself what
the joint reproductive output of a collective will be, or how
robust such a collective will be to external biotic and abiotic
perturbations. Microbial communities can also perform chemi-
cal transformations that would be impossible for one
individual species to achieve [18], and some communities
even display complex behaviours such as collective motion
and electrochemical signalling, which have traditionally been
associated with higher organisms [19,20].

Over the past decades, an impressive amount of effort
has been dedicated towards obtaining an ever-more
detailed and realistic picture of a wide range of different
microbial systems. The advance of -omics technologies has
led to an incredible leap forward in terms of available data
that can be integrated to extract and analyse patterns that
inform us about the lives of microbes in their natural sur-
roundings. However, if we want to arrive at a more
fundamental understanding of the current and future proper-
ties of microbial communities, we will have to uncover
general principles of how such communities typically
change over time.

Since interactions are often mediated by whole suites of
different chemicals, interactions may significantly change in
strength and even sign over ecological timescales. For
example, bacteria may alter the pH of their environment
during growth, which may then change the sign of their
interactions with other species from positive to negative, or
vice versa [21]. Extrapolating such findings to more general
principles of community dynamics is challenging. Nonethe-
less, an increasing number of studies find that ecological
community dynamics are remarkably repeatable across
experimental and biological replicates, and may be under-
stood from a combination of metabolic properties of the
environment and species functional traits [22–24]. Less is
known about how communities change over evolutionary
timescales, even if such changes have potentially much
more far-reaching consequences because they are less likely
to reverse (because they are the result of genetic mutations).
Given that interactions are the defining feature of a commu-
nity, we propose that how interspecific interactions evolve
is most important in this respect.

Here, we review the empirical evidence that evolution is
an important driver of microbial community properties and
dynamics on timescales that have traditionally been regarded
as purely ecological. Next, we briefly discuss different model-
ling approaches to this problem, emphasizing the similarities
and differences between evolutionary and ecological pers-
pectives. We then propose a simple conceptual model for
the evolution of communities, which we explore using
simulations. Finally, we discuss experimental approaches
that may help to test our framework and thus improve our
understanding of this fascinating process.
2. Evolution of microbial communities: empirical
approaches

The question of how microbial communities evolve has
been addressed empirically by authors from several differ-
ent fields. One approach that has substantially increased in
popularity over recent years is genomic analysis of one or
more—often pathogenic—species that evolve within a
host environment, such as the gut or the cystic fibrosis
lung [25]. Some of these studies employ temporal
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metagenomics to capture the entire diversity present within
a given population, whereas others use culture-based
population genomics to obtain more reliable estimates of
the phylogenetic relationship between genetic variants
[26,27]. This group of studies has revealed that evolution in
the microbiome can be fast and highly repeatable [28], with
109–1012 new single-nucleotide polymorphisms arising on a
daily basis [27], de novo mutations competing for extended
periods of time [29], and gene gains and losses sweeping to
high frequencies within a period of just a few months [30].

Metagenomic approaches have also been used to study
evolution in microbial communities that are not host-associated.
A 9-year study of biofilm communities from acid mine
drainage allowed the authors to estimate the in situ nucleo-
tide substitution rate for a focal species and revealed
several divergence and hybridization events [31]. A similar
study performed on a freshwater lake community monitored
multiple species simultaneously and found evidence for
extensive within-population genetic heterogeneity, as well
as selective sweeps in some species but not others [32]. Hori-
zontal gene transfer also appears to be an important driver of
adaptation in natural communities, at least when they are
exposed to selective pressures such as antibiotics or heavy
metals [33,34]. Finally, metagenomic approaches have been
used in conjunction with phylogenetic tools to infer evolution-
ary rates of microbial communities as a whole over longer
timescales [35]. These studies underline the importance of
the environment for the rate of adaptation, with communities
evolving most slowly in energy-limited environments that
impede growth [36] and evolving most rapidly in extreme
environments that impose strong selection [37].

Another field that is concerned with the evolution of
microbial communities is artificial community selection.
This approach entails the repeated selection of microbial com-
munities from a larger pool based on their performance with
respect to some a priori defined community-level function,
such as productivity or enzyme production [38–40]. Given
that this approach does not usually assess genetic changes
in each of the constituent species, it is conceivable that the
observed changes are mainly due to ecological sorting
rather than evolutionary adaptation [41,42]. However, the
duration of these experiments is sufficient for evolution to
occur, and such short-term evolution can directly impact eco-
logical sorting [43]. Moreover, it has been argued that
continued species coexistence and within-species evolution
are crucial for maximally effective community selection
[44]. One important advantage of this approach over
methods that are centred on focal species is that it explicitly
tracks the dynamics of the entire community. As such, the
success or failure of this approach may provide valuable
insights into whether we can regard communities as a unit
of selection [45–48] and to what extent we can predict
changes in community-level properties over time.

A more bottom-up approach to studying the evolution of
microbial communities is laboratory evolution. This method
involves culturing replicate populations of organisms under
controlled conditions for long periods of time, while probing
the resulting phenotypic and genotypic changes [49,50].
While this method has been used mainly to look at the evol-
ution of single species, an increasing number of studies
employ simple two-species communities to ask how species
evolve in the presence of a coevolutionary partner [51].
Mostly, these experiments focus on the evolution of species
with a predefined interspecific relationship—such as host–
parasite [52], predator–prey [53] or mutualism [54,55]—and
assess how interaction traits like parasite infectivity and
host defence change over evolutionary time. At least two
studies explicitly report a change in the nature of the inter-
actions between two species: in one case, a commensal
interaction quickly evolved into exploitation [56], whereas
in the other case, ammensalism evolved into antagonism [57].

Given the increasing popularity of laboratory evolution as
a tool and the fact that natural communities often consist of a
large number of interacting species, surprisingly few studies
have extended the above approaches to communities of more
than two species (but note [58], as well as an increasing body
of work that asks how focal species evolve in the presence of
a community [59–62]). One important exception is a study in
which five species from a beech tree hole were cocultured in
the laboratory for approximately 70 generations [63]. Charac-
terization of the evolved communities revealed that species
had diverged in resource use and evolved to feed on by-pro-
ducts excreted by the other species. As a result, interspecific
interactions became more positive (in the sense that growing
species in pairs leads to a higher yield than would be pre-
dicted based on growing them individually), and
community productivity increased. The same qualitative
results were also recovered when between 1 and 12 species
from the same model community were evolved under three
different conditions [64], again demonstrating the importance
of studying the evolution of microbial communities, rather
than evolution in microbial communities.

Taken together, the above approaches provide us with a
wealth of data on the evolution of microbial communities,
which give us a first rough understanding of the nature of
this process. The emerging picture is that evolution is likely
to be an important driver of community dynamics and prop-
erties on what have traditionally been regarded as ecological
timescales [65–67]. One major scientific challenge—and
opportunity—is now to develop a framework that allows
us to predict evolutionary changes in microbial communities,
based on theoretical and mechanistic principles. Our goal
here is to contribute to the development of such a framework.
3. Evolution of microbial communities:
modelling approaches

To test our intuitions about general principles of community
evolution, one powerful approach is to use mathematical and
computational models. Such models allow us to abstract a
system to its minimal components and assess how different
features of the system interact, ideally generating testable
hypotheses that can be addressed using carefully designed
experiments [68,69]. In particular, they allow us to test a
wider range of possibilities, such as environmental con-
ditions or combinations of species, than would be
experimentally feasible.

There are many models describing aspects of the evol-
ution of microbial communities, but few of these models
consider the process in its entirety. This is not surprising
given that community evolution is a complex problem that
requires an understanding of microbiology as well as a com-
bination of modelling approaches from evolution and
ecology, two disciplines that have traditionally been poorly
integrated despite their conceptual similarities. However,
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Figure 2. Conceptual set-up of classical models in evolution and ecology. (a) Population genetics models consider different genotypes that can interconvert via
mutation (μ). Each genotype maps to some fitness (W ) value, perhaps through an intermediate phenotype (z). A mathematical model (red box) then describes
the change in frequencies of the genotypes (p and q) over long timescales, where the average speed of this process depends on the relative fitness of each type.
By contrast, ecological models consider multiple species, each of which maps to a set of growth and interaction phenotypes (r, K, α). A mathematical model (blue
box) tracks the changes in abundances of different species (n1 and n2) over shorter timescales. (b) (i) Dynamics of genotype frequencies from the evolutionary
model (pt0¼ qt0¼ 0.5, WA¼ 1.05, Wa¼ 1.00). (ii) Dynamics of species abundances from the ecological model (n1t0 ¼ n2t0 ¼ 1, r1¼ 1.25, r2¼ 1.00, K1¼ 10
000, K2¼ 10 000, α12¼ 1.00, α21¼ 1.75).
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comparing approaches from both fields and combining the
relevant elements from each of them may be a promising
strategy towards tackling this problem. To this end, we
here briefly review the main properties of some common
evolutionary and ecological models and evaluate their
usefulness for understanding the evolution of microbial com-
munities, identify their major limitations, and discuss how
to extend current modelling approaches to be able to better
predict evolution of communities.
(a) Evolutionary models
One important class of evolutionary models is population
genetics models. These models are generally focused on
tracking changes in genotype or allele frequencies over long
timescales (figure 2) [70]. Different genotypes arise via
mutations or migration and map to some measure of repro-
ductive success, or fitness [71], perhaps via an intermediate
phenotype. The genotype with the highest fitness increases
in frequency until it eventually replaces all other types or is
outcompeted by new mutations with even higher fitness
[72]. Many variations on this theme exist with added levels
of complexity, such as recombination [73], spatial structure
[74] and more complex demography [75].

By contrast, quantitative genetic models typically focus
on traits encoded by a large number of loci, which are
assumed to evolve independently owing to substantial
recombination, as is common in animals and plants [76].
Therefore, these models ignore the underlying genetics of
the phenotype and instead track the change in the mean phe-
notype (z) of the population over time. Populations are
composed of many different types that each has a different
deviation from the mean, as well as a different fitness. Selec-
tion then acts on this variation to increase population fitness.
The overall relationship between phenotype and fitness is
crucial: larger total variation in phenotype and larger selection
on that phenotype lead to faster evolutionary change [77,78].

Because evolutionary models typically consider dynamics
over long timescales, the model parameters such as fitness or
population sizes are usually some average values that inte-
grate over many underlying phenomena. For example, the
fitness may be an average fitness over many possible environ-
ments that fluctuate among each other or over many stages of
life history. As a result, it can be difficult to link these models
to explicit biological mechanisms. In particular, explicit inter-
actions between organisms and their biotic and abiotic
environment are almost always neglected in these models.
The reason is that the dynamics of these interactions are
assumed to be much faster than evolutionary dynamics and
hence can be averaged out. However, as aforementioned, it
is increasingly clear that ecological and evolutionary
dynamics often occur on similar timescales in microbes.
Therefore, an explicit treatment of ecological processes
should be necessary to more accurately describe evolution,
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(b) Ecological models
Arguably the most classic ecological model is the Lotka–
Volterra model (figure 2) [79]. This model tracks over time
the abundance of two or more different species, which are
assumed to be immutable. When the species are growing
far from their carrying capacity K, or maximum population
size at which the population has a positive growth rate, the
abundances increase exponentially and independently
between species. However, as the population sizes increase,
intraspecific and interspecific interactions reduce growth,
such that the species with the fastest maximum growth rate
may not dominate in the long run. An advantage of ecolo-
gical models is that they make explicit possible trade-offs
between life-history traits: for example, when organisms are
growing in quickly changing, resource-rich environments
far from carrying capacity (e.g. frequent migration into new
resource patches), it pays off to grow faster, but when grow-
ing in constant, resource-poor environments close to carrying
capacity (e.g. biofilms), it pays off to be more efficient or have
a more inhibiting effect on your competitor.

The Lotka–Volterra model is purely phenomenological,
i.e. it describes the dynamics of the process without making
any direct reference to the underlying mechanisms [79]. By
contrast, consumer–resource models explicitly track the
resources that are responsible for the observed dynamics
[80]. Such an added level of detail can help to understand
why we observe certain dynamics and make predictions
beyond the current observations. It is even possible for phen-
omenological and mechanistic models to generate opposite
predictions about the dynamics of the system for relatively
simple cases [81]. However, for each additional quantity
that is tracked over time, additional parameters are needed,
and in the case of microbial communities, where many
chemically mediated interactions occur simultaneously, keep-
ing track of and explicitly modelling each of these interactions
is daunting.

One approach that can potentially overcome this problem
is community-level metabolic modelling known as flux bal-
ance analysis, where the metabolic conversions performed
by each species in the community are predicted from the
species’ genomes, under the assumption that each cell maxi-
mizes its growth rate (i.e. the rate of biomass production) [82].
While simpler versions of these models assume that each of
the individual species is in steady state, more complex ver-
sions allow for variation in metabolic flux depending on
the environment, and thus the tracking of the abundance of
each individual species over time [8].

A second important extension of these models is the
incorporation of spatial structure [83]. Given that most
microbes live in spatially structured environments [84] and
chemicals can only travel limited distances [85], it is clear
that microbes do not usually interact equally with everyone
else in the population, but instead interact most strongly
with their immediate neighbours [13]. As such, growth rate
as well as interaction parameters such as K and α will vary
over space and time. This may lead to locally different
outcomes of competition, which can have important conse-
quences for the reproductive success of each type within
the population as a whole. Such local variations in population
dynamics and their global consequences are commonly
explored using individual-based simulations [86,87], where
each cell grows, dies and moves depending on its local con-
text. The advantage of such approaches is that they can
explore the emergent properties of complex systems where
many factors interact, especially for cases where analytical
solutions to the problem cannot be obtained.
(c) Integrating evolution and ecology
Considering the classes of models reviewed above, it is clear
that for a conceptual and computational model to adequately
capture the evolution of microbial communities, it will have
to incorporate elements from both evolution and ecology.
We need a model that describes which mutations get selected
and at what rate, but because interactions in communities are
complex and often changing, a single fitness value will gener-
ally fail to predict the long-term evolutionary fate of a
mutation. Also, we are dealing with multiple mutable species,
and this element is missing from traditional evolutionary
models. Some processes, such as mutation or kin selection
[88], are particular to within-species dynamics. However,
many other elements from evolution and ecology can in prin-
ciple be used interchangeably, as the distinction between
different genotypes of the same species and different species
is often arbitrary. Taken together, a model suiting our purpose
would have to allow for mutation and selection, as well as
intra- and interspecific interactions. Additionally, because
interactions are often local and mediated by chemicals, spatial
and mechanistic models may be more accurate in many
situations compared with mass-action and phenomenological
models. Finally, for a model to capture the evolutionary
dynamics of the community as a whole, it will have to allow
not only for the evolution of each of the individual species,
but also for the evolution of the interactions between them.

Some models exist already at this intersection of evolution
and ecology. One emerging discipline is eco-evolutionary
dynamics, which focuses on the interplay between the com-
position of species and the abundance of these species
[65,67,89,90]. However, the most notable category of interest
for the current problem is evolutionary game theory
[91–94], where the fitness of a phenotype depends on the
frequency of the other phenotypes in the population. These
models do precisely what we are looking for: they describe
which mutations get selected at which rate, and allow for
fitness to depend on the biotic context. Indeed, the mathemat-
ical description of these models is very similar to that of the
Lotka–Volterra equation [95], even if frequency- and density-
dependence do not necessarily have the same consequences
(consider, for example, the two time points in figure 2b(ii)
where the two types have equal frequencies but different
abundances: after time 0, n1 increases in frequency, but after
time 17, n2 increases in frequency). Game-theoretical
models are often used to investigate how costly cooperative
traits within species (the production of ‘public goods’), such
as the secretion of extracellular enzymes that catalyse the
transformation of resources [96] or toxins that kill a compet-
ing strain or species [97,98], can evolve or be maintained in
the presence of defecting or cheating individuals that do
not pay the cost but gain the benefit. Sometimes they also
incorporate mutation [99] to explore how the mean trait
level within a species evolves over time. This approach has
also been applied to the evolution of interspecific interactions
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(d) Evolution of interspecific interactions
Most modelling approaches that assess how interspecific
interactions change over evolutionary timescales focus on
one specific type of interaction, such as interference compe-
tition [103] (where two species interact in a way that is
detrimental for both species, an interaction that can be rep-
resented as ‘−/−’), host–parasite [104,105] or predator–prey
interactions [106] (+/−), or mutualism [107,108] (+/+). Gen-
erally, these models look at how a single trait such as
parasite infectivity or host defence changes over time by con-
sidering different types (which may or may not be generated
by mutation) within each species, how their frequencies
change over time, and what consequences this has for the
population as a whole.

Understanding how such traits evolve is important when
studying the evolution of microbial communities. However,
not all microbial interactions can be classified with such
simple schemes, and the nature and strength of ecological
interactions often change with time [21,109,110]. Moreover,
even when the nature of an interaction is stable, this does
not necessarily mean that the phenotypic traits on which
the interaction is based will evolve, because species may
adapt to their local biotic and abiotic environment in
myriad other ways, particularly when the community con-
sists of more than two species. Therefore, the question is
not whether such interspecific interactions can evolve, but
what the likelihood relative to other traits is that they will
evolve.

One useful framework to structure our thinking about
this question is the classical Hamiltonian scheme that categor-
izes a behaviour based on its effect on both the actor and the
recipient (which in this case are two different species). This
scheme distinguishes four different classes: mutual benefit
(effect on self: +/ effect on other: +), selfishness (+/−), altru-
ism (−/+) and spite (−/−) [14,111,112]. The selection of
mutations that fall within the first two classes is easily
explained, because they provide a direct fitness benefit to
the actor. However, the selection of mutations that fall
within the latter two classes is more counterintuitive. Why
would an organism do something that is bad for itself?
Often, this is explained by kin selection: when suffering a
cost yourself is offset by a sufficiently large benefit to another
individual that is likely to share the same cooperative gene
(for example, because it is a relative), the net consequence
of the behaviour may still be positive for this gene, so that
it will be positively selected [88,113].

However, when considering behaviours that affect other
species, this explanation does not apply by definition,
because the recipient is highly unlikely to share the coopera-
tive gene. An alternative explanation is reciprocity, where the
recipient is likely to return the ‘favour’, be it positive or nega-
tive [100,114,115]. Examples of traits that fall into these
categories are the secretion of a costly metabolic compound
for a mutualistic species, or the production of an antibiotic
that inhibits an antagonistic species. Mutations conferring
such traits may be regarded as conferring an indirect fitness
benefit to the actor. Because they are selected for their effect
on the recipient rather than their effect on the actor (which
is negative), such mutations have a disproportionate chance
of changing the strength or nature of interspecific inter-
actions, and as such, will be particularly relevant for the
evolution of community-level properties.
4. Conceptual and computational models for the
evolution of microbial communities

As indicated above, reciprocity is required for a mutation
with an indirect fitness benefit to be positively selected.
How can such reciprocity be achieved? Any situation where
the recipient is sufficiently more likely to return the ‘favour’
specifically to the actor or its direct descendants, rather
than to all individuals of the acting species in general, will
have such a consequence [115–119]. In the case of higher
organisms, this may occur because of complex behaviours
such as the recipient remembering who previously did it a
favour [120,121]. However, in microbes, the easiest way for
reciprocity to occur is when they live in a spatially structured
environment [100,122–126].

To see this, consider the fate of a mutant that produces a
costly antibiotic that kills a competing species. When such a
mutant arises in a well-mixed environment, such as a shaking
flask, all its conspecifics will now be able to grow faster
because their competitor is inhibited, while they do not pay
the cost of antibiotic production. As a consequence, they
will grow more rapidly than the mutant. The mutant will
thus not be able to increase in frequency within its own popu-
lation. By contrast, when the same mutant arises in a spatially
structured environment, such as a biofilm, the mutant and its
descendants will profit more than their average conspecific
from the inhibition of their neighbouring competitors. This
is because the inhibitory compounds, as well as the extra
nutrients that are now available, are locally more concen-
trated. In spatially structured environments, such a mutant
is expected to increase in frequency within its population,
given that the associated cost is not too high.

Based on the above argument, we hypothesize that evol-
ution in well-mixed environments will proceed exclusively
via the selection of directly beneficial traits. By contrast, evol-
ution in spatially structured environments may proceed via
the selection of both directly and indirectly beneficial traits
(figure 3a); which of these two modes predominates will
depend on the availability and effect size of mutations on
each type of trait. Importantly, mutations that provide a
direct fitness benefit may also affect other organisms in
both positive and negative ways as a pleiotropic effect. For
example, when an organism becomes better at using
a resource and collaterally produces more metabolic
by-products, others may also profit from this. However,
such a mutation will not be selected because of the effect
that it has on others, but because of the effect that it has on
the actor itself.

To test the idea that spatial structure will determine
whether mutations with indirect benefits are selected for,
we developed a simple cellular automaton model [97] that
incorporates elements from both evolution and ecology: it
allows for intra- and interspecific interactions as well as the
possibility of these interactions evolving by mutations. This
model is similar to previous work that analysed the evolution
of traits that determine interspecies interactions (e.g.
[100,124,125]) but with an important distinction—that it
explicitly distinguishes between direct and indirect fitness
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or a negative effect on an antagonistic species (blue boxes). When selection acts only on mutations with direct effects (in well-mixed environments), mutations that
have a positive effect on the individual itself can increase in frequency (left and right panels: mutations I, II, VII and VIII). When selection acts on mutations with
both direct and indirect effects (in spatially structured environments), mutations that have a net positive effect can increase in frequency. For example, in the left
panel mutations to the top and right of the dashed—hypothetical trade-off—line (I, II, III and VIII) are associated with larger benefits than costs and may thus be
positively selected. Conversely, mutations to the bottom and left of the dotted line (IV, V, VI and VII) are associated with larger costs than benefits and will thus be
negatively selected. In the right panel, mutations to the bottom and right of the dotted line (I, VI, VII and VIII) may be positively selected, and mutations to the top
and left of the dotted line (II, III, IV and V) will be negatively selected. This implies that in some cases mutations with direct fitness costs may be selected for, and
mutations with direct fitness benefits selected against. (b) We modelled the case where two species (red and blue) have a positive initial effect on each other. Red
individuals can evolve by the acquisition of two types of mutations. First, they may acquire mutations that provide a direct fitness benefit, such as becoming better
at using a certain resource, or becoming more tolerant to a toxic compound. Individuals carrying such mutations should be able to increase in frequency in both
spatially structured and well-mixed environments. Second, they may acquire mutations that provide an indirect fitness benefit, such as producing a costly compound
that increases the growth of the blue species. Because the blue species has a positive effect on the red species, having more blue cells around, as well as each of
these cells having a higher growth rate, also provides a fitness benefit to the red species (e.g. because the blue cells excrete a metabolic by-product that the red
species can use, at a rate proportional to their growth rate). Individuals carrying such mutations should only be able to increase in frequency in spatially structured
environments. Cell size reflects growth rate. (c) Population dynamics in 10 replicate runs of a simple cellular automaton model, simulating a spatially structured
environment. Alleles A and B grow better when there are more cells of the other type in their immediate neighbourhood. A costly, more cooperative A0 mutant
(conceptually equivalent to mutation III in the left panel of a) invaded in 4/10 simulations and reached an intermediate equilibrium frequency. By contrast, this
mutant invaded in 0/10 replicates of a model simulating a well-mixed environment.
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effects of mutations (which can both be either positive or
negative). We assume that cells of two different species, A
and B, grow together on a 40× 40 grid with periodic bound-
ary conditions. The fitness of each cell depends on the
fraction of cells around it of each type of species, as well as
the fitness of each of these neighbouring cells. So, an inter-
action impacts both the reproductive success of the other
species and its reciprocal interaction. In each time step, one
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cell in the grid reproduces with a probability proportional to
its fitness. We then randomly choose another cell to die, with
the descendant of the reproducing cell pushing all cells in its
path towards the now-empty spot vacated by the dead cell. A
complete population turnover will take on average 40 × 40¼
1600 such time steps. For details of the model, see the
Methods section.

Here we focus on the scenario where both types already
have a slightly positive effect on each other (i.e. an example
of passive mutualism [123]; figure 3b). We assess whether a
single mutant A’, which has a more positive effect on B but
grows more slowly than the other A cells, can increase in fre-
quency within the population. Note that, even if we do not
explicitly test this here, we predict that the same logic will
also apply to the case where both species have a slightly
negative effect on each other and a costly mutant with a
stronger negative effect emerges. We run the simulation for
50 whole-population turnovers and determine the probability
that the mutant establishes, i.e. that it rises above some mini-
mum abundance so that it is unlikely to be lost by stochastic
effects. In parallel, we run control simulations for a well-
mixed environment, where the fitness of a cell depends not
just on its neighbours, but on all other cells in the population.

For the parameter settings that we chose, we find that a
costly mutant with a strong positive effect on a cooperating
species invades in 41 out of 100 cases (figure 3c, Methods).
When it does, the original A genotype is driven to extinction,
and the mutant reaches an equilibrium concentration of
approximately 20% (that is, A0 equilibrates at a lower fre-
quency than the other type, B, presumably because it
invests into an interaction that is beneficial for B). By contrast,
in the well-mixed environment, the mutant invades in only 2
out of 100 cases, and when it does, it reaches only very low,
fluctuating concentrations, suggesting that such invasion is
the result of genetic drift. While the precise dynamics
depend on the details of the model as well as the parameter
settings [127], our goal here is to provide a proof of principle
showing that costly mutations that provide an indirect fitness
benefit can be selected for in a multi-species community.
Models are abstractions, and as such will never be able to
capture the full complexity of the real world. However, they
serve an important purpose in isolating and directly evaluating
the importance of specific factors for the phenomena that we
observe. When we find that our intuitions bear out in
simple—arguably unrealistic—cases, we can then start to
explore which conditions are necessary for these findings to
hold, and how different individually important factors interact.

Our results are consistent with previous models that
investigated the effect of spatial structure on the evolution
of mutualism [100,124,125]. However, our model is different
in that it does not focus exclusively on a single, cooperative
trait or interaction, but can be easily adjusted to consider
the selection of selfish or antagonistic traits. An interesting
future extension of the model might be to allow for mutants
providing direct and indirect fitness benefits to arise simul-
taneously, and to investigate how the success of such
mutants depends on the composition of each species as
well as their abundances. For example, based on the models
discussed above, we might predict that mutations with a
direct fitness benefit will have a relative advantage at lower
densities, because they increase growth rate (r), whereas
mutations with an indirect fitness benefit will have a relative
advantage at higher densities, because they impact
interactions (α). Another interesting extension is to investigate
the impact of genetic architecture and the correlation struc-
ture of mutational effects on self versus non-self. That is,
are mutations with a direct versus indirect fitness benefit
more likely to occur, and/or have a different distribution of
fitness effects? Does a mutation with a more positive effect
on the actor generally have a more positive effect on others
around it as well?

Similarly, it might be insightful to explicitly model the
different classes of metabolites that are expected to underlie
the interactions and to assess whether such a mechanistic
approach makes predictions that are qualitatively different
from those of the phenomenological approach that we used
here. Finally, real communities consist ofmore than two species
(or multiple strains of the same species, which should have
similar consequences as long as these strains have sufficiently
different growth characteristics and are unlikely to share the
same cooperative gene (so that we can safely ignore kin selec-
tion [88,113])). This may spatially isolate interacting species
[128,129], exert opposing selection pressures on a focal species
[62] and result in higher-order interactions [24,130]. Predicting
the joint effect of such forces is not straightforward. However,
oneway toview this issue is to assume that everyspecies adds a
dimension to the diagramdepicted in figure 3a. Such increased
dimensionality may, on the one hand, open up new pathways
for individuals to adapt, but, on the other hand, also constrain
evolution, because mutations will be increasingly likely to
decrease fitness in at least one respect [62,131,132]. This
would suggest that evolution will proceed fastest under
some intermediate community diversity.

The generation of a conceptual, qualitative model, in
which reality is abstracted away to its minimal essence
(figure 3a), along with generation of a simple, quantitative
model, to see whether our intuitions bear out at least in prin-
ciple (figure 3c), are useful first steps towards understanding
the evolution of microbial communities. However, science is
ideally an iterative process of models and experiments,
where each informs the other. One way to assess whether
our hypotheses can stand the test of reality is to precisely
quantify the direct and indirect fitness effects of traits that
are thought to drive the interaction between species
[133,134]. If a mutation provides a direct benefit, a knock-
out mutant will grow more slowly than its wild-type counter-
part when grown in monoculture. Conversely, if a mutation
provides an indirect benefit, a knock-out mutant will exert
a weaker effect (positive or negative) on the growth and/or
activity of the interacting species, which may be established
using either coculture or growth in spent medium. This indir-
ect effect should then feed back on growth of the focal species.
Another approach, which more directly assesses the relative
importance ofmutationswith direct and indirect fitness benefits
for evolution, is to performevolution experimentswithmultiple
microbial species in both spatially structured and well-mixed
environments. Careful phenotypic, genotypic and metabolic
characterization of evolved isolates can then be used to disen-
tangle mutations with direct and indirect fitness benefits.

While distinguishing direct from indirect fitness effects
experimentally is far from trivial, it provides substantial
insights into the evolutionary dynamics in microbial commu-
nities. In order to understand the long-term fate and the
consequences of mutations of community members, it is cru-
cial to understand how selection acts on these mutations, and
whether benefits of these mutations to the mutant occur only
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indirectly, through the interaction with another species.
Mutations that have a positive effect on both a focal and a
recipient species (such as the cross-feeding interaction) are
sometimes automatically assumed to have been selected for
the latter effect, even if the most parsimonious explanation
might be that these mutations are under direct selection
based on the advantage of secreting metabolic by-products.
Yet, to make any definite claims about selection history,
even in such cases one would need to quantify both direct
and indirect effects to ensure that the observed dynamics
are consistent with a direct benefit only, and no additional
indirect effect needs to be invoked. We, therefore, see great
potential in experimental approaches that disentangle direct
and indirect fitness effects of mutations.
il.Trans.R.Soc.B
375:20190256
5. Scaling up
Whether traits typically confer a direct or indirect fitness
benefit to the actor can have important consequences. When
a mutation in a focal species gets selected for its effect on a
second species, be it positive or negative, this second species
will now be under stronger selection to acquire a mutation
with a similar effect on its partner as well. This is because
the indirect benefit that the second species can obtain from
an increased investment into the interaction has increased as
well. As such we would predict that when evolution proceeds
predominantly via the selection of mutations with an indirect
fitness benefit, interaction strength will increase over time,
potentially to the point of obligate mutualism or bi-stable
exclusion. When species initially have an opposite effect on
each other (+/−), the long-term direction of this coevolution-
ary cycle is less clear. However, one possibility is that the
outcome depends on which species mutates first. For
example, when a first species evolves to excrete more of a com-
pound that inhibits a second species, which has a positive
effect on the first species, this second species now will be
under stronger selection to decrease its help to the first
species, or even to start harming it. Clearly, this prediction
will not hold for interactions of which the sign cannot
change by definition, such as host–parasite interactions (but
note that even such interactions may not be constant
[135,136]). Nonetheless, microbial communities are domi-
nated by chemically mediated interactions, suggesting that
the selection of indirectly beneficial mutations may occur
also in the case of asymmetric interactions.

The overall sign and strength of interspecific interactions
have important consequences for properties at the level of
the community. More positive interactions are associated
with increased productivity, because fewer resources
are wasted on competitive traits, and species may engage in
division of labour [137,138]. At the same time, an overrepre-
sentation of positive interactions will make a community less
stable, because it decreases the number of negative feedback
loops, and consequently, when one species is perturbed, it
may drag the others down with it to extinction [139]. By con-
trast, more negative interactions should have a stabilizing
effect on the community, because any interaction loop with
an odd number of negative connections will result in a nega-
tive feedback loop [140]. Negative interactions will also
decrease productivity, and whenever interspecific competition
becomes stronger than intraspecific competition, this may lead
to bi-stable exclusion [141]. More generally, the topology and
interaction strengths of any type of network, including the
interaction network of a microbial community, are predicted
to have far-reaching consequences for the stability and
resilience of the system [142–144].

One intriguing question that has received an increasing
amount of interest over the past few years is whether
microbial communities may be regarded as coherent units,
on which selection can act directly [145,146]. If this were
the case, we might be able to select for certain desired com-
munity-level properties, such as efficiency in producing a
specific compound [44]. While this idea has a strong intuitive
appeal, experimental results have been mixed [147]. This
results from most likely due to the fact that for selection to
act on something, a minimum amount of heritability is
needed: if a microbial community breaks up into its com-
ponent parts, or changes in composition owing to
ecological and evolutionary forces, sufficiently often relative
to it giving birth to a similar community, natural and artificial
selection will not be able to act upon the properties of the
community.

One way in which such heritability may be increased is if
species become so strongly dependent on each other as a
result of coevolution that they can no longer live alone
[148]. Alternatively, it may result from organisms having co-
evolved in a community context for sufficiently long that each
of them has become locally adapted to its biotic environment,
such that foreign species will be unable to replace their resi-
dent counterparts [45,149]. Interestingly, our hypotheses
predict that both of these types of coevolution should occur
significantly more often in spatially structured environments
(because it is there that mutations are selected for their indir-
ect fitness effects), which might be an interesting idea to test
experimentally. Increased metabolic dependency may also
change the spatial association between organisms itself,
suggesting that this process may even be subject to a
self-reinforcing feedback loop [123].
6. Conclusion
The evolution of microbial communities is a fascinating and
complex process that has potentially far-reaching consequences.
To understand it, we need an integrated approach that encom-
passes elements from microbiology, ecology and evolution.
Here, we have reviewed the evidence for the importance of
the evolution of microbial communities in host-associated as
well as free-living communities, and integrated previous
empirical and theoretical findings to arrive at a conceptual
model of this process. We tested our intuitions using a simple
quantitative model and found support for our hypotheses.
The next step will be to test these hypotheses experimentally
and provide input for a more refined version of the model in
turn, thus closing the scientific cycle ofmodels andexperiments.
7. Methods
In our cellular automaton model, we simulated the cell division
and death dynamics of two species, A and B, on a 40 × 40 grid
with periodic boundary conditions, mimicking a spatially struc-
tured environment. The A species also has a mutant variant A0.
The fitness of each cell i, which determines the probability it
will divide at the next time step, is the sum of a basal fitness r
and a term proportional to the total fitness of all cells of opposite
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species in its immediate eight-cell neighbourhood, weighed by
an interaction parameter (v):

fi,A ¼ rA þ vB!A

X

each neighbour
j of type B

f j,B

fi,A0 ¼ rA0 þ vB!A0
X

each neighbour

j of type B

f j,B

fi,B ¼ rB þ vA!B

X

each neighbour

j of type A

f j,A þ vA0!B

X

each neighbour

j of typeA0

f j,A0 ,

where the basal fitness parameters are rA ¼ rB ¼ 1 and rA0 ¼ 0:9,
while the interaction parameters are vB!A ¼ vB!A0 ¼ vA!B ¼ 1
and vA0!B ¼ 5. That is, the wild-type A and B cells have identical
basal fitness and help each other equally, while the mutant A0

provides a stronger benefit to B but at a cost to its basal fitness.
We start with a grid that is fully occupied by cells randomly

chosen to be either A or B, each with initial fitness randomly
drawn from a uniform distribution. In each time step, we start
by updating the fitness of all cells according to the above
equations, constraining growth rates between 0 and 1. Then we
randomly choose one cell in the grid to reproduce with prob-
ability that is proportional to its updated fitness, placing the
new cell in one of the eight neighbouring positions. Next, we ran-
domly choose another cell on the grid to die, and the new cell
pushes all cells in the direction in which it is placed relative to
its mother cell towards the now-empty spot, taking a path with
only a single turn. We define one population turnover as 40×
40¼ 1600 of such time steps.

We started by running this simulation for 10 population turn-
overs to let the population reach an approximately steady-state
configuration. Then we introduced a single A0 mutant and ran
the simulation until either the mutant went extinct or reached
an ‘establishment’ threshold, which we defined as 10 cells; we
chose this threshold to be twice the maximum number of
mutant cells that we observed for a mutant destined for extinc-
tion (based on 20 preliminary trials). We repeated this
procedure 100 times, all starting from the same initial population.
Altogether the mutant established in 41 out of 100 of these
simulations.

As a control, we performed the same simulations but let
the fitness of each cell depend on interactions from all other
cells in the population (rather than just cells in the immediate
neighbourhood), thus mimicking a well-mixed environment:

fi,A ¼ rA þ vB!A

200

X

each cell

j of type B

f j,B

fi,A0 ¼ rA0 þ vB!A0

200

X

each cell
j of type B

f j,B

fi,B ¼ rB þ vA!B

200

X

each cell

j of type A

f j,A þ vA0!B

200

X

each cell

j of type A0

f j,A0 ,

where we rescale the interactions by 200 to keep parameters com-
parable between the two models, since in the well-mixed case
each cell has approximately 200 times more neighbours than in
the spatially structured case.

We chose 16 cells as the establishment threshold in this case,
since eight cells were the maximum number reached by mutants
destined for extinction (based on 20 preliminary trials). Based on
this criterion, we observed establishment in 8 out of 100 simu-
lations. Because we suspected that these putative
establishments might actually be due to genetic drift rather
than positive selection, we continued these simulations for
another 50 population turnovers. Six of these cases indeed led
to extinction during that time, while in the remaining two
cases, the mutant was still present at low, fluctuating frequencies
(less than 4%) by the end and did not substantially affect the fre-
quency of the wild-type A.

We plotted the first 10 replicates of each simulation for
figure 3c. We ran all simulations in R.
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