Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;11(3):241–256. doi: 10.1016/0168-1702(88)90086-X

Pneumovirus-like characteristics of the mRNA and proteins of turkey rhinotracheitis virus

David Cavanagh 1,, Thomas Barrett 2
PMCID: PMC7133996  PMID: 3195218

Abstract

Electronmicroscopy has indicated that turkey rhinotracheitis virus (TRTV), the causative agent of an acute repiratory disease in turkeys, is a member of the Paramyxoviridae family. To determine if TRTV belongs to one of the three defined genera of this family (Paramyxovirus, Morbillivirus and Pneumovirus) we have analysed the RNA and proteins induced during replication of TRTV in Vero cells. Following replication in the presence of actinomycin D 10 polyadenylated RNA bands, ranging in Mr from 0.22 to 2.0 × 106, were detected in infected cells; some bands probably contained 2 or more RNA species. Viral proteins were studied after radiolabelling in the presence of [35S]methionine and [3H]glucosamine. Comparison of the polypeptides in mock-infected and infected cells, virions and nucleocapsids and after lentil-lectin chromatography and immunoprecipitation revealed seven virus-specific polypeptides (p), some of which were glycosylated (gp): gp82 (Mr 82K), gp68, gp53, gp15, p43, p40 and p35. These are considered to be analogous to the large glycopolypeptide (HN, H and G), fusion protein precursor F0, the F protein cleavage products F1 and F2, nucleocapsid (N), phosphorylated (P) and matrix (M) polypeptides, respectively, of the Paramyxoviridae. Two other polypeptides (Mr 200K and 22K) were also detected, as was a glycopolypeptide of Mr 97K, probably related to gp82. Tunicamycin inhibited glycosylation of gp53 and gp15 but gp82 was little affected, most glycans still being present on a glycopolypeptide of approximately 79K. This finding, indicating that gp82 has mostly O-linked glycans, considered with the mRNA profile and the molecular weight of the N protein shows that of the three genera in this family, TRTV most closely resembles the Pneumovirus genus.

Keywords: Pneumovirus, Paramyxoviridae, RNA, Protein, Turkey

References

  1. Ball L.A., Young K.K.Y., Anderson K., Collins P.L., Wertz G.W. Vol. 83. 1986. Expression of the major glycoprotein G of human respiratory syncytial virus from recombinant vaccinia virus vectors; pp. 246–250. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett T., Many B.W.J. Molecular cloning of the nucleoprotein gene of canine distemper virus. J. Gen. Virol. 1984;65:549–557. doi: 10.1099/0022-1317-65-3-549. [DOI] [PubMed] [Google Scholar]
  3. Barrett T., Underwood B. Comparison of messenger RNAs induced in cells infected with each member of the morbillivirus group. Virology. 1985;145:195–199. doi: 10.1016/0042-6822(85)90217-x. [DOI] [PubMed] [Google Scholar]
  4. Campbell J.J., Cosby S.L., Scott J.K., Rima M., Martin S.J., Appel M. A comparison of measles and canine distemper virus polypeptides. J. Gen. Virol. 1980;48:149–159. doi: 10.1099/0022-1317-48-1-149. [DOI] [PubMed] [Google Scholar]
  5. Cash P., Wunner W.H., Pringle C.R. A comparison of the polypeptides of human and bovine respiratory syncytial viruses and murine pneumonia virus. Virology. 1977;82:369–379. doi: 10.1016/0042-6822(77)90012-5. [DOI] [PubMed] [Google Scholar]
  6. Chamberlain J.P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal. Biochem. 1979;98:132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  7. Collins M.S., Gough R.E. Characterization of a virus associated with turkey rhinotracheitis. J. Gen. Virol. 1988;69:909–916. doi: 10.1099/0022-1317-69-4-909. [DOI] [PubMed] [Google Scholar]
  8. Collins M.S., Gough R.E., Lister S.A., Chettle N., Eddy R. Further characterisation of a virus associated with turkey rhinotracheitis. Vet. Rec. 1986;118:606. [PubMed] [Google Scholar]
  9. Cook J.K.A., Darbyshire J.H., Peters R.W. The use of chicken tracheal organ cultures for the isolation and assay of avian infectious bronchitis virus. Arch. Virol. 1976;50:109–118. doi: 10.1007/BF01318005. [DOI] [PubMed] [Google Scholar]
  10. Dickens L.E., Collins P.L., Wertz G.W. Transcriptional mapping of human respiratory syncytial virus. J. Virol. 1984;52:364–369. doi: 10.1128/jvi.52.2.364-369.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dubovi E.J. Analysis of proteins synthesized in respiratory syncytial virus-infected cells. J. Virol. 1982;42:372–378. doi: 10.1128/jvi.42.2.372-378.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garten W., Kohama T., Klenk H-D. Proteolytic activation of the haemagglutinin-neuraniinidase of Newcastle disease virus involves loss of a glycopeptide. J. Gen. Virol. 1980;51:207–211. doi: 10.1099/0022-1317-51-1-207. [DOI] [PubMed] [Google Scholar]
  13. Giraud P., Bennejean G., Guittet M., Toquin D. Turkey rhinotracheitis in France: preliminary investigations on a ciliostatic virus. Vet. Rec. 1986;118:606–607. [PubMed] [Google Scholar]
  14. Gruber C., Levine S. Respiratory syncytial virus polypeptides. III. The envelope-associated proteins. J. Gen. Virol. 1983;64:825–832. doi: 10.1099/0022-1317-64-4-825. [DOI] [PubMed] [Google Scholar]
  15. Gruber C., Levine S. Respiratory syncytial virus polypeptides. IV. The oligosaccharides of the glycoproteins. J. Gen. Virol. 1985;66:417–432. doi: 10.1099/0022-1317-66-3-417. [DOI] [PubMed] [Google Scholar]
  16. Huang Y.T., Wertz G.W. Respiratory syncytial virus in RNA coding assignments. J. Virol. 1983;46:667–672. doi: 10.1128/jvi.46.2.667-672.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lamb R.A., Mahy B.W.J., Choppin P.W. The synthesis of Sendai virus polypeptides in infected cells. Virology. 1976;69:116–131. doi: 10.1016/0042-6822(76)90199-9. [DOI] [PubMed] [Google Scholar]
  19. Levine S. Polypeptides of respiratory syncytial virus. J. Virol. 1977;21:427–431. doi: 10.1128/jvi.21.1.427-431.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ling R., Pringle C.R. Turkey rhinotracheitis virus: in vivo and in vitro polypeptide synthesis. J. Gen. Virol. 1988;69:917–923. doi: 10.1099/0022-1317-69-4-917. [DOI] [PubMed] [Google Scholar]
  21. McDougall J.S., Cook J.K.A. Turkey rhinotracheitis: preliminary observations. Vet. Rec. 1986;118:206. doi: 10.1136/vr.118.8.206. [DOI] [PubMed] [Google Scholar]
  22. Mountcastle W.E., Compans R.W., Choppin P.W. Protein and glycoproteins of paramyxoviruses: a comparison of simian virus 5, Newcastle disease virus and Sendai virus. J. Virol. 1971;7:47–52. doi: 10.1128/jvi.7.1.47-52.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peeples M., Levine S. Respiratory syncytial virus: polypeptides their location in the virion. Virology. 1979;95:137–145. doi: 10.1016/0042-6822(79)90408-2. [DOI] [PubMed] [Google Scholar]
  24. Pringle C.R., Shirodaria P.V., Gimenez H.B., Levine S. Antigen and polypeptide synthesis by temperature-sensitive mutants of respiratory syncytial virus. J. Gen. Virol. 1981;54:173–183. doi: 10.1099/0022-1317-54-1-173. [DOI] [PubMed] [Google Scholar]
  25. Rima B.K. The proteins of morbilliviruses. J. Gen. Virol. 1983;64:1205–1219. doi: 10.1099/0022-1317-64-6-1205. [DOI] [PubMed] [Google Scholar]
  26. Satake M., Coligan J.E., Elango N., Norrby E., Ventatesan S. Respiratory syncytial virus envelope glycoprotein (G) has a novel structure. Nucl. Acids Res. 1985;13:7795–7812. doi: 10.1093/nar/13.21.7795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stern D.F., Sefton B.M. Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J. Virol. 1982;44:804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walsh E.E., Brandriss M.W., Schlesinger J.J. Purification and characterization of the respiratory syncytial virus fusion protein. J. Gen. Virol. 1985;66:409–415. doi: 10.1099/0022-1317-66-3-409. [DOI] [PubMed] [Google Scholar]
  29. Walsh E.E., Cote P.J., Femie B.F., Schlesinger J.J., Brandriss M.W. Analysis of the respiratory syncytial virus fusion protein using monoclonal and polyclonal antibodies. J. Gen. Virol. 1986;67:505–513. doi: 10.1099/0022-1317-67-3-505. [DOI] [PubMed] [Google Scholar]
  30. Ward K.A., Lamden P.R., Ogilvie M.M., Watt P.J. Antibodies to respiratory syncytial virus polypeptides and their significance in human infection. J. Gen. Virol. 1983;64:1867–1876. doi: 10.1099/0022-1317-64-9-1867. [DOI] [PubMed] [Google Scholar]
  31. Waxham M.N., Wolinsky J.S. A fusing mumps virus variant selected from a nonfusing parent with the neuraminidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. Virology. 1986;151:286–295. doi: 10.1016/0042-6822(86)90050-4. [DOI] [PubMed] [Google Scholar]
  32. Wertz G.W., Collins P.L., Huang Y., Gruber C., Levine S., Ball L.A. Vol. 82. 1985. Nucleic acid sequence of the G protein gene of human respiratory syncytial virus reveals an unusual type of viral membrane protein; pp. 4075–4079. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wilde A., Morrison T. Structural and functional characterization of Newcastle disease virus polycistronic RNA species. J. Virol. 1984;51:71–76. doi: 10.1128/jvi.51.1.71-76.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wilding G.P., Baxter-Jones C., Grant M. Ciliostatic agent found in rhinotracheitis. Vet. Rec. 1986;118:735. doi: 10.1136/vr.118.26.735-b. [DOI] [PubMed] [Google Scholar]
  35. Wunner W.H., Pringle C.R. Repiratory syncytial virus proteins. Virology. 1976;73:228–243. doi: 10.1016/0042-6822(76)90077-5. [DOI] [PubMed] [Google Scholar]
  36. Wyeth P.J., Gough R.E., Chettle N., Eddy R. Preliminary observations on a virus associated with turkey rhinotracheitis. Vet. Rec. 1986;118:139. doi: 10.1136/vr.119.6.139-a. [DOI] [PubMed] [Google Scholar]

Articles from Virus Research are provided here courtesy of Elsevier

RESOURCES