
Int. J. Appl. Comput. Math (2019) 5:116
https://doi.org/10.1007/s40819-019-0699-7

ORIG INAL PAPER

Analysis and Optimal Control of Fractional-Order
Transmission of a Respiratory Epidemic Model

David Yaro1 ·Wilson Osafo Apeanti1 · Saviour Worlanyo Akuamoah1 ·
Dianchen Lu1

Published online: 15 July 2019
© Springer Nature India Private Limited 2019

Abstract
The World Health Organization is yet to realise the global aim of achieving future-free and
eliminating the transmission of respiratory diseases such as H1N1, SARS and Ebola since the
recent reemergence of Ebola in the Democratic Republic of Congo. In this paper, a Caputo
fractional-order derivative is applied to a system of non-integer order differential equation to
model the transmission dynamics of respiratory diseases. The nonnegative solutions of the
system are obtained by using the Generalized Mean Value Theorem. The next generation
matrix approach is used to obtain the basic reproduction numberR0. We discuss the stability
of the disease-free equilibrium when R0 < 1, and the necessary conditions for the stability
of the endemic equilibrium when R0 > 1. A sensitivity analysis shows that R0 is most
sensitive to the probability of the disease transmission rate. The results from the numerical
simulations of optimal control strategies disclose that the utmost way of controlling or prob-
ably eradicating the transmission of respiratory diseases should be quarantining the exposed
individuals, monitoring and treating infected people for a substantial period.

Keywords Fractional calculus · Caputo fractional derivative · Respiratory epidemic model ·
Stability analysis · Optimal control · Numerical simulations

Introduction

The respiratory syncytial virus, influenza virus and parainfluenza virus are some viruses
that cause respiratory diseases. Influenza viruses cause more or less respiratory diseases
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[1]. Influenza viruses are group into Type A and Type B. The viruses are often transmitted
from people and cause seasonal influenza epidemics each year. The evolving prevalence of
infectious diseases is increasing every year. It occurs through the respiratory tract. The spread
of the disease is rapid and widespread. Since 1980, the disease has appeared just like bird
flu in Asia. The outbreak of the 2014 Ebola virus in West Africa, severe acute respiratory
infectious (SARS) disease and the Middle East respiratory syndrome (MERS) caused severe
impact on the health system. Most respiratory diseases have no vaccines, such as SARS and
Ebola. These diseases spread quickly and may be re-infected. After the flu season, there are
several different types of influenza (Types A and B) and subtypes (Type A) that circulate and
cause disease. For example, the bird flu virus has several subtypes such as H5N1, H7N3,
H7N7, H7N9, and H9N2, which can infect humans [1].

Epidemiological mathematical models have proven to be a valuable tool for understand-
ing, analyzing influenza virus infection dynamics, disseminating and recommending control
strategies. Although [2–6] has completed a great deal of work on dynamic modeling of
influenza, it is limited to ordinary differential equations. However, currently, it has been
found that the use of fractional differential equations to model many different fields of phe-
nomena has been very successful [7–18]. For instance, in mathematical epidemiology, Ebola
virus epidemic has been modeled with fractional-order differential equations by [19]. They
used the SEIR fractional-order model to analyze data published by the WHO to provide pro-
jections of outbreaks in three countries in West Africa. The model considered fits precisely
with the real data. Their findings revealed that the outbreak will last about two years, with an
estimated 9 million infected people. Although individuals heredity play an important role in
mortality rate of the disease, data analysis shows that the predicted death toll is very high.

Goufo et al. [20] took into account the stability analysis of a non-linear spread Ebola hem-
orrhagic fever epidemic model. They used conventional time derivatives to express models
that contain new parameters that happen to be fractional. They proved that the model is well
defined, poses non-negative solutions and also established the conditions for boundedness.
The Routh–Hurwitz criterion was used to show the existence and stability analysis of Ebola
virus model equilibrium states and showed that they strongly depend on non-linear propaga-
tion. Also, they provide the conditions for the persistence of the Ebola virus in the system.
In addition, numerical simulations of non-linear propagation are provided and the results
obtained are significant for combating and preventing Ebola hemorrhagic fever, which has
so far caused the deaths of hundreds of families and continues to infect many people in West
Africa.

Fractional diffusion mimics the human mobility network by simulating disease outbreaks
[21]. Human mobility networks can smooth the spread of infectious diseases from the side-
walk to the flight route. The effort of control and removal depends on describing these
networks in terms of individual connections and flux rates between the contact nodes. In
some cases, transportation can be parametrized by a gravity-type model or approximated
by diffuse random walks. Alternatively, they separated domestic commercial air traffic into
a case study of the utility of non-diffusion heavy-tailed transport models. A new stochas-
tic simulation of typical influenza-like infections was adopted, targeting the dense, highly
connected America air travel network. They show that the mobility on the network can be
defined mainly by a power law, which is consistent with the previous study. They observed
that the global evolution of an outbreak on the network is precisely reproduced by a two-
parameter space-fractional diffusion equation, which is determined by the air travel network.
The dynamic changes of cytotoxic T-lymphocyte (CTL) responses in Ebola virus infection
in vivo are described by a fractional-order model with time delay [22]. They introduced a
time-delay during the CTL response period to represent the time required to simulate the
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immune system. Stability and Hopf bifurcation were obtained from the model through frac-
tional Laplace transform. Moreover, the stability conditions show that the dynamics of the
model can be improved by the fractional-order delay.

In [23] SIR epidemic model with non-integer order under the conditions of external noise
is studied. The behavior of the system changes with the introduction of seasonality and noise
force. It revealed that different non-integer order and parameters improve the dynamical
behavior of the system.Multi-scale fuzzy entropy is used to study the complexity of stochastic
models. They designed a hard limiter control system and simulation results which showed
that with effective medical and health measures the proportion of infected people can be
controlled to significantly small numbers.

Compared with integer order models, non-integer order models are more effective in
modeling biological systems which have long-range and temporal memories [24]. In [25],
González-Parra et al. proposed a nonlinear order system to discuss the outbreaks of H1N1
influenza. The fractional model does not only rely on the present stage but also on all its
history which makes fractional models more general than the integer-order models. They
also determined that the nonlinear fractional epidemiological model can be well matched to
provide numerical results that are in good agreement with the actual data for H1N1 influenza.
The model suggested gives valuable facts for understanding, predicting and controlling the
spread of different epidemics across the globe.

For these reasons, the fact that fractional (non-integer) order models of many phenomena
have recently been shown to be more realistic than the integer order, and the fact that the
fractional order also has long-range memories motivated this study. In addition, it is also
obvious that modeling by fractional order derivative can capture any natural phenomena or a
rich variety of dynamics observed in the system.Many of the past models focused only on the
analysis of the influenza outbreaks in human populations. But, a model in which the order is
an integer to describe the transmission of a respiratory epidemic has recently been proposed
in [26]. However, modeling the transmission of a respiratory epidemic by fractional order
model might provide a feasible alternative in controlling or probably eradicating the disease.

The present study introduces Caputo fractional-order into SEIR epidemic type of model
proposed by [26]. The proposed model is analyzed without control measures to investigate
its stability conditions. The sensitivity of the basic reproductive number R0 is analyzed
to determine the most sensitive parameters. The interpretation of the sensitivity led us to
two control measures. The optimal control theory is then used to investigate the efficiency of
incorporating the controlmeasures, namely, quarantine of exposed population andmonitoring
and treating of the infected population.

The remaining part of the paper is structured as follows: We provide some basic and
necessary definitions about the fractional calculus in section “Fractional Calculus”. The
description of the model is discussed in section “The Model”. The nonnegative solution and
the stability analysis of the fractional-order differential equations are discussed in Sections
“Non-negative Solutions” and “Model Equilibrium States and Stability” respectively. The
optimal control of the epidemic is discussed in section “Optimal Control”. A numerical
solution of the fractional model using Atanackovic and Stankovic method is discussed in
section “NumericalMethod”.We support our theoretical analysis with numerical simulations
in section “Numerical Simulation and Discussion”. Finally, the paper concludes in section
“Conclusion”.
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Fractional Calculus

In this section, we define fractional integral and fractional derivative of Riemann–Liouville
and Caputo respectively which are applied in this work.

Definition 1 [27]. The order σ > 0 of fractional integral operator function h : R+ −→ R
defined by

I σ h(k)
1

Γ (σ)

∫ k

0
(k − ξ)σ−1h(ξ)dξ, (1)

is called the Riemann–Liouville fractional integral.
Here and elsewhere Γ is known as the Euler gamma function and is defined as

Γ (r) =
∫ ∞

0
ξ r−1e−ξ dξ. (2)

Definition 2 [12]. The derivative function of fractional order σ > 0 (where σ lie in the
half-open interval (0,1]), defined by

Dσ∗ah(ξ) = 1

Γ (�a� − σ)

∫ ξ

0
(ξ − s)�a�−σ−1 d�σ�

ds�σ� h(s)ds. (3)

is called the Caputo fractional derivative, where a is the starting point.
We use the Caputo derivative definition in this work. The initial conditions for Caputo defined
fractional differential equation is the same as ordinary differential equations which is a core
advantage.

TheModel

Model Description

The model we studied in this work is proposed by [26]. The model considers four variables,
namely, the population which is susceptible ( S(ξ)), the population which is exposed (E(ξ)),
the infected population (I (ξ)), and the recovered population (R(ξ)). According to [26],
b(ξ) represents the rate of new susceptible people entering the population at time ξ , β

represents the probability of disease transmission, ν represents the seroconversion rate, α

represents the recovery rate, μN represents the natural mortality rate, μD represents the
disease induced death rate, and κ represents the rate at which the recovered return to the
susceptible population (due to the loss of immunity). These assumptions lead to the following
integer-order differential equation presented by [26], where Ar (ξ) = S(ξ) + E(ξ) + I (ξ) is
the effective risk population at time ξ (or t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S(ξ)

dξ
= b(ξ) −

(
β

I (ξ)

Ar (ξ)
+ μN

)
S(ξ) + κ R(ξ),

d E(ξ)

dξ
= β

I (ξ)

Ar (ξ)
S(ξ) − (ν + μN )E(ξ),

d I (ξ)

dξ
= νE(ξ) − (μD + α)I (ξ),

d R(ξ)

dξ
= α I (ξ) − (μN + κ)R(ξ).

(4)
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The system (4) in fractional order is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dσ∗a S(ξ) = bσ (ξ) −
(

β
I (ξ)

Ar (ξ)
+ μσ

N

)
S(ξ) + κσ R(ξ),

Dσ∗a E(ξ) = β
I (ξ)

Ar (ξ)
S(ξ) − (νσ + μσ

N )E(ξ),

Dσ∗a I (ξ) = νσ E(ξ) − (μσ
D + ασ )I (ξ),

Dσ∗a R(ξ) = ασ I (ξ) − (μσ
N + κσ )R(ξ),

(5)

with initial conditions

S(0) = S0, E(0) = E0, I (0) = I0, R(0) = R0. (6)

where Dσ∗a = dσ

dξσ
is the Caputo fractional derivative of order σ . It is important to notice

that when the fractional-order σ −→ 1 , the system (5) becomes the integer-order system
(4).

Non-negative Solutions

Denote R4+ = {Z ∈ R
4 : Z ≥ 0} and let Z(ξ) = (S(ξ), E(ξ), I (ξ), R(ξ))T . We need the

following Lemma in [28] to proof non-negative solutions of system (5).

Lemma 4.1 (Generalized Mean Value Theorem [28]). Let h(m) ∈ C[d, e] and Dσ∗ah(m) ∈
C(d, e] for 0 < σ ≤ 1 and d, e ∈ R then

h(m) = h(d) + 1

Γ (σ)
Dσ∗ah(ε)(m − d)σ ,

with d ≤ ε ≤ 1,∀m ∈ (d, e].
Remark 4.1 Assume h(m) ∈ C[0, e] and Dσ∗ah(m) ∈ C(0, e] for 0 < σ ≤ 1. It follows from
Lemma 4.1 that if Dσ∗ah(m) ≥ 0,∀m ∈ (0, e) then h(m) is non-decreasing ∀m ∈ [0, e], and
if Dσ∗ah(m) ≤ 0,∀m ∈ (0, e) then h(m) is non-increasing ∀m ∈ [0, e].
Theorem 1 The solution of the fractional-order initial value problem given with (5)–(6) is
unique and in R

4+.

Proof Using Theorem 3.1 together with Remark 3.2 in [29], we can obtain the existence and
uniqueness of the solution of (5)–(6) in (0,∞). We prove that the domain R4+ for the model
is positively invariant, since

Dσ ∗a S|S=0 = bσ + κσ R ≥ 0,

Dσ∗a E |E=0 = β
I S

S + I
≥ 0,

Dσ∗a I |I=0 = νσ E ≥ 0,

Dσ∗a R|R=0 = ασ I ≥ 0,
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around non-negative domain or neighborhood on each hyperplane, the vector field points to
R
4+. ��

Model Equilibrium States and Stability

For the equilibrium states of the system of fractional order model (5), let
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dσ∗a S(ξ) = 0,

Dσ∗a E(ξ) = 0,

Dσ∗a I (ξ) = 0,

Dσ∗a R(ξ) = 0.

(7)

Then the equilibrium states are K0 =
(

bσ

μσ
N

, 0, 0, 0

)
and K1 = (S̄, Ē, Ī , R̄) where

Ī =
bσ νσ (μσ

N + κσ )

(
(νσ + μσ

N )(μσ
D + ασ ) − βνσ

)

(νσ + μσ
N )(μσ

D + ασ )

(
(μσ

N + κσ )
(
(νσ +μσ

N )(μσ
D+ασ ) − μσ

N (μσ
D + ασ +νσ ) − βνσ

)−κσ ασ νσ

)
+ β(νσ )2κσ ασ

,

S̄ =
bσ νσ (μσ

N + κσ ) −
(

(μσ
N + κσ )(νσ + μσ

N )(μσ
D + ασ ) − κσ ασ νσ

)
Ī

μσ
N νσ (μσ

N + κσ )
,

Ē = (μσ
D + ασ ) Ī

νσ
,

R̄ = ασ Ī

(μσ
N + κσ )

.

The diseases free equilibrium state K0, is where the infectives equal to zero (I = 0) and
the endemic equilibrium state K1, is where the infectives is nonzero (I = 0).

The basic reproduction number of the system (5) using the next generation matrix
approach, given by

K = FV −1where

F =
[

∂Fu(x0)

∂xv

]
and V =

[
∂Vu(x0)

∂xv

]
with 1 ≤ u, v ≤ p,

where F is non-negative and V is a non-singular M-matrix.
Applying this method on the system (5), where

F =

⎡
⎢⎢⎢⎣

β I S

S + E + I
0
0
0

⎤
⎥⎥⎥⎦ , and V =

⎡
⎢⎢⎢⎣

(νσ + μσ
N )E

−νσ E + (μσ
D + ασ )I

−bσ + β I S

S + E + I
+ μσ

N S − κσ R

−ασ I + (μσ
N + κσ )R

⎤
⎥⎥⎥⎦ .

Now, finding F and V , at disease free equilibrium, K0, and using K = FV −1 we have

FV −1 =
⎡
⎣

βνσ

(νσ + μσ
N )(μσ

D + ασ )

β

(μσ
D + ασ )

0 0

⎤
⎦
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Therefore, the basic reproduction number, R0, is the most dominant eigenvalue of FV −1,
that is,

R0 = βνσ

(νσ + μσ
N )(μσ

D + ασ )
. (8)

The Jacobian matrix J (K0) for the system (5) evaluated at K0 is given by

J (K0) =

⎛
⎜⎜⎝

−μσ
N 0 −β κσ

0 −(νσ + μσ
N ) β 0

0 νσ −(μσ
D + ασ ) 0

0 0 ασ −(μσ
N + κσ )

⎞
⎟⎟⎠ .

Theorem 2 The disease free equilibrium state K0 of system (5) is locally asymptotically

stable if
βνσ

(νσ + μσ
N )(μσ

D + ασ )
< 1.

Proof The disease free equilibrium state K0 is asymptotically stable locally given that the
eigenvalues Λl , l = 1, 2, 3, 4, of J (K0) satisfy the conditions [30,31]:

|argΛi | > σ
π

2
. (9)

We can evaluate these eigenvalues by solving the following characteristic equation

det(J (K0) − ΛI ) = 0

this leads to the equation

(−μσ
N − Λ)(κσ + μσ

N + Λ)(Λ2 + Λ(P + Q) + P Q − W ) = 0,

where

P = μσ
N + νσ ,

Q = μσ
D + ασ ,

W = βνσ .

The characteristic equation gives the roots

Λ1 = −μσ
N ,

Λ2 = −κσ − μσ
N ,

Λ3,4 = −(P + Q) ±√(P + Q)2 − 4(P Q − W )

2
.

Obviously, P + Q > 0, and if P Q > W , then all the eigenvalues Λl , l = 1, 2, 3, 4, satisfy
the condition given by (9). ��

The basic reproduction number denoted byR0 is
βνσ

(νσ + μσ
N )(μσ

D + ασ )
value and is defined

as the number of cases occurring in a population which is completely susceptible. Biologi-
cally, if R0 is less than one, then the infection will disappear, but if it is more than one, the
infection still exists.
For the discussion of the asymptotic stability of the persistence of the disease of system (5),
we need the following definition and Lemma 5.1.
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Definition 3 [32].The discriminant D(h) of a polynomial

h(y) = ym + c1ym−1 + c2ym−2 + · · · + cm (10)

is defined by D(h) = (−1)m(m−1)/2R(h, h′), where h′ is the derivative of h. If f (y) =
yξ +d1yξ−1 +d2yξ−2 +· · ·+dm ,R(h, f ) is the determinant of the corresponding Sylvester
(m + ξ) ⊗ (m + ξ) matrix, the Sylvester matrix is formed by filling the matrix beginning
with the upper left corner with the coefficients of h(y) and then shifting down one row and
one column to the right side. The process is then repeated for the coefficients of f (y).

Lemma 5.1 [32]. For the polynomial equation,

H(Λ) = Λm + b1Λ
m−1 + b2Λ

m−2 + · · · + bm = 0, (11)

the conditions displayed below make all the roots of (11) satisfy (9):

1. for m = 1, the condition for (11) is b1 > 0
2. for m = 2, the conditions for (11) are either Routh–Hurwitz conditions or b1 < 0

4b2 > (b1)2,∣∣∣∣ tan−1

(√
4b2 − (b1)2

b1

) ∣∣∣∣ > σπ

2
;

3. for m = 3, if the discriminant of H(Λ), D(H) is positive, then Routh–Hurwitz conditions
are the necessary and sufficient conditions for (11), i.e.
b1 > 0, b3 > 0, b1b2 > b3 i f D(H) > 0.

4. If D(H) < 0, b1 ≥ 0, b3 > 0, σ < 2/3 , then the condition (11) is satisfied. Also if
D(H) < 0, b1 < 0, b2 < 0, σ > 2/3, then all roots of P(λ) = 0 satisfies |arg(Λ)| <

σπ/2.
5. If D(H) < 0, b1 > 0, b2 > 0, b1b2 = b3 then condition (11) is satisfied for all σ ∈ [0, 1).
6. For general m, bm > 0 is a necessary condition for condition (11) to be satisfied.

The Jacobian matrix J (K1) calculated at the disease persistence equilibrium is given as:

J (K1)=

⎛
⎜⎜⎝

β Ī S̄

(S̄ + Ē + Ī )2
− β Ī

S̄ + Ē + Ī
− μσ

N
β Ī S̄

(S̄ + Ē + Ī )2
−
(

β

S̄ + Ē + Ī
− β Ī

(S̄ + Ē + Ī )2

)
S̄ κσ

− β Ī S̄

(S̄ + Ē + Ī )2
+ β Ī

S̄ + Ē + Ī
−
(

β Ī S̄

(S̄ + Ē + Ī )2
+ νσ + μσ

N

)
β S̄

S̄ + Ē + Ī
− β Ī S̄

(S̄ + Ē + Ī )2
0

0 νσ −(μσ
D + ασ ) 0

0 0 ασ −(μσ
N + κσ )

⎞
⎟⎟⎠.

By using the characteristic equation det(J (K1) − ΛI ) = 0, the linearized system above is
in the form

H(Λ) = Λ4 + d1Λ
3 + d2Λ

2 + d3Λ + d4 = 0, (12)

where

d1 = 1

S̄ + Ē + Ī

(
(3Ē + 3S̄ + 3 Ī )μσ

N + (νσ + β + ασ + κσ + μσ
D) Ī

+
(

νσ + ασ + κσ + μσ
D

)
(Ē + S̄)

)
,

d2 = 1

S̄ + Ē + Ī

(
(3Ē + 3S̄ + 3 Ī )(μσ

N )2 + ((2νσ + 2β + 3ασ + 2κσ + 3μσ
D) Ī

+ 2(Ē + S̄)(νσ + 3

2
ασ

+ κσ + 3

2
μσ

D))μσ
N + ((β + ασ + κσ + μσ

D)νσ + (β + ασ + μσ
D)κσ
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+β(ασ + μσ
D)) Ī + ((ασ + κσ + μσ

D)νσ

+ κσ (ασ + μσ
D))Ē − S̄((β − ασ − κσ − μσ

D)νσ − κσ (ασ + μσ
D))

)
,

d3 = 1

(S̄ + Ē + Ī )2

(
(S̄ + Ē + Ī )2(μσ

N )3 + (S̄ + Ē + Ī )((νσ

+β + 3ασ + κσ + 3μσ
D) Ī

+ (νσ + 3ασ + κσ + 3μσ
D)(Ē + S̄))(μσ

N )2

+
(

((β + 2ασ + κσ + 2μσ
D)νσ + (β + 2ασ + 2μσ

D)κσ

+ 2β(ασ + μσ
D)) Ī 2 + ((β + 4ασ + 2κσ + 4μσ

D)νσ

+ (β + 4ασ + 4μσ
D)κσ + 2β(ασ + μσ

D))Ē

+ 4S̄((ασ + 1

2
κσ + μσ

D)νσ +
(
1

4
β + ασ + μσ

D

)
κσ

+ 1

2
β(ασ + μσ

D)) Ī + 2(((ασ + 1

2
κσ + μσ

D)νσ

+ κσ (ασ + μσ
D))Ē − S̄((β − ασ − 1

2
κσ − μσ

D)νσ − κσ (ασ + μσ
D)))(Ē + S̄)

)
μσ

N

+(((β + ασ + μσ
D)κσ + β(ασ + μσ

D))νσ + κσ β(ασ + μσ
D)) Ī 2 + (((β + 2ασ + 2μσ

D)κσ

+β(ασ + μσ
D))νσ + κσ β(ασ + μσ

D))Ē + 2S̄κσ (ασ + μσ
D)

(
νσ + 1

2
β)

)
Ī

+ κσ (Ē + S̄)((ασ + μσ
D)Ē − S̄(β − ασ − μσ

D))νσ

)
,

d4 = 1

(S̄ + Ē + Ī )2

(
(S̄ + Ē + Ī )2(ασ + μσ

D)(μσ
N )3 +

(
(ασ + μσ

D)(νσ + β + κσ ) Ī 2

+ 2(ασ + μσ
D)(Ē + S̄)

(
νσ + 1

2
β + κσ

)
Ī + ((ασ + μσ

D)(νσ + κσ )Ē

− S̄((β − ασ − μσ
D)νσ − κσ (ασ + μσ

D)))(Ē + S̄)

)
(μσ

N )2

+
(

((β + κσ )νσ + κσ β)(ασ + μσ
D) Ī 2 + (ασ + μσ

D)(((β + 2κσ )νσ

+ κσ β)Ē + 2S̄κσ

(
νσ + 1

2
β)

)
Ī + (Ē + S̄)κσ ((ασ + μσ

D)Ē − S̄(β − ασ − μσ
D))νσ

)
μσ

N

+ νσ Īβκσ μσ
D(Ē + Ī )

)
.

Let D(H) be the discriminant of the polynomial H , then based on the definition 3, we obtain
the discriminant of H as

D(H) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 d1 d2 d3 d4 0 0
0 1 d1 d2 d3 d4 0
0 0 1 d1 d2 d3 d4
4 3 d1 2 d2 d3 0 0 0
0 4 3 d1 2 d2 d3 0 0
0 0 4 3 d1 2 d2 d3 0
0 0 0 4 3 d1 2 d2 d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= 256 d4
3 + d4

2(−27 d1
4 + 144 d1

2d2 − 192 d1 d3 − 128 d2
2)

+ d4(18 d1
3d2 d3 + d1

2(−4 d2
3 − 6 d3

2 − 80 d1 d2
2d3 + 16 d2

4 + 144 d2 d3
2)

− 4 d1
3d3

3 + d1
2d2

2d3
2 + 18 d1 d2 d3

3 − 4 d2
3d3

2 − 27 d3
4.

Lemma 5.2 From condition (6) in Lemma 5.1 the positive equilibrium point K1 is locally
asymptotically stable, since the polynomial H(Λ) as given in (12) has a coefficients d1, d2,
d3, and d4 positives.

A Sensitivity Analysis ofR0

Here, we investigate the response of R0 to parameter changes and determine the effect of
each parameter on R0 and the potential for effective control and elimination of the disease.
It is straightforward to calculate the partial derivatives of the value of R0 using Eq. (8)
with respect to the parameters β, νσ , bσ , μσ

N , μσ
D and the recovery rate ασ . With all other

parameters held constant, the elasticity Ex (or the variable’s normalized forward sensitivity
index) approximates the fractional change inR0 that results from a unit fractional change in
parameter x , defined as

Ex = x

R0
· ∂R0

∂x
.

This index shows how sensitive R0 is to changes of parameter x . Specifically, a positive
(negative) index shows that an increase in the parameter value results in an increase (decrease)
of R0 [33].
The elasticities for the quantities of interest are

Eβ = 1 (13)

Eνσ = 1 − νσ

(νσ + μσ
N )

(14)

Eμσ
N

= − μσ
N

(νσ + μσ
N )

(15)

Eμσ
D

= − μσ
D

(μσ
D + ασ )

(16)

Eασ = − ασ

μσ
D + ασ

(17)

Figure 1 indicate that, R0 is most sensitive to β the disease transmission rate, followed
by ασ the recovery rate. The seroconversion rate νσ and the natural death rate μσ

N have the
same sensitivity index. It can also be observed that, R0 is least sensitive to μσ

D , the disease
induced death rate.
In detail, the sensitivity indexes for ασ , β, νσ , μσ

D , and μσ
N , are found to be −0.9999988, 1,

0.0058, −0.00000122, and −0.0058 respectively, once all parameters are fixed at their base-
line values (Fig. 1). Thus, for instance, if the rate of recovery were to increase or (decrease)
by 10%, then the value ofR0 would decrease or (increase) by 9.999988%. Likewise, a 10%
increase or (decrease) of the disease transmission rate would correspond to a 10% decrease
or (increase) of the R0, 10% increase or (decrease) of seroconversion rate would decrease
or (increase) the R0 by 0.058%, 10% increase or (decrease) of the disease induced death
rate would correspond to decrease or (increase) the value of R0 by 0.0000122% and 10%
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Fig. 1 The sensitivity analysis of the basic reproductive number

increase or (decrease) of the natural death rate would correspond to a 0.058% decrease or
(increase) in the value of R0.

Therefore, the above interpretations recommend that control strategies that can efficiently
decrease the probability of disease transmission β, natural death rate μσ

N , disease induced
death rate μσ

D , should be used to control the disease transmission effectively. Additionally,
increase the rate of recovery ασ will lead to a decrease inR0, thus all control strategies that
can effectively help reduce the transmission of the respiratory diseases should be applied.
Themathematical perspective for these strategies would be detailed in our subsequent model.

Optimal Control

In this section, we extend our model in Eq. (6) by introducing two time-dependent control
measures, namely u1(ξ) (quarantine of exposed population groups) and u2(ξ) (monitoring
and treatment of infected populations ). It is assumed that the exposed population is reduced
by the factor (1 − u1(ξ)) as they are quarantine. Furthermore, the infected population is
reduced by a factor of (1− u2(ξ)) as they are monitored and treated by health professionals.
The model system (6) becomes

Dσ∗a S = bσ −
(

β
I

S + E + I
(1 − u1) + μσ

N

)
S + κσ R,

Dσ∗a E = β
I

S + E + I
(1 − u1)S − (νσ (1 − u2) + μσ

N )E,

Dσ∗a I = νσ (1 − u2)E − (μσ
D + ασ )I ,

Dσ∗a R = ασ I − (μσ
N + κσ )R,

with the given objective function

J (u1, u2) =
∫ T

0
(c1E + c2 I + c3u2

1 + c4u2
2)dξ, (18)

where E is the exposed population and I is the infected population. T is the final time and
the coefficients c1, c2, c3, c4 are positive weights. Our aim is to minimize the exposed and
infected population while minimizing the cost of control u1, u2. Thus, we search for an
optimal control u∗

1, u∗
2, such that
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J (u∗
1, u∗

2) = min
u1,u2

{J (u1, u2)|u1, u2 ∈ Ω} (19)

where the control set is

Ω = {(u1, u2)|ui : [0, T ] −→ [0,∞) Lebesgue measurable, i = 1, 2, }.
The terms c1E and c2 I represent the cost of reducing the exposed and infected population

respectively, while c3u2
1 is the cost of quarantine and also, c4u2

2 is the cost of monitoring
and treatment. The necessary conditions that an optimal control must satisfy come from
the Pontryagin’s Minimum Principle [34–37]. This principle converts Eqs. (6) and (18) into
a problem of point-wise minimizing a Hamiltonian M with respect to (u1, u2) stated as
follows:

M = c1E + c2 I + c3u2
1 + c4u2

2

+ λS

{
bσ −

(
β

I

S + E + I
(1 − u1) + μσ

N

)
S + κσ R

}

+ λE

{
β

I

S + E + I
(1 − u1)S − (νσ (1 − u2) + μσ

N )E

}

+ λI

{
νσ (1 − u2)E − (μσ

D + ασ )I

}

+ λR

{
ασ I − (μσ

N + κσ )R

}
,

where λS , λE , λI and λR , adjoint variables or co-state variables [34–37]

− dλS

dξ
= ∂ M

∂S
= λS

(
β I (1 − u1) S

(S + E + I )2
− β I (ξ) (1 − u1)

S + E + I
− μσ

N

)

+ λE

(
−β I (1 − u1) S

(S + E + I )2
+ β I (1 − u1)

S + E + I

)

− dλE

dξ
= ∂ M

∂ E
= c1 + λS β I (1 − u1) S

(S + E + I )2

+ λE

(
−β I (1 − u1) S

(S + E + I )2
− νσ (1 − u2) − μσ

N

)
+ λI ν

σ (1 − u2)

− dλI

dξ
= ∂ M

∂ I
= c2 − ΛS

(
β (1 − u1)

S + E + I
− β I (1 − u1)

(S + E + I )2

)
S

+ λE

(
β (1 − u1) S

S + E + I
− β I (1 − u1) S

(S + E + I )2

)

+ λI
(−μσ

D − ασ
)+ λR ασ

− dλR

dξ
= ∂ M

∂ R
= λS κσ + λR

(−μσ
N − κσ

)

The transversality conditions are λS(T ) = λE (T ) = λI (T ) = λR = 0.
On the interior of the control set, where 0 < ui < 1, for i = 1, 2 we have

∂ M

∂u1
= 2 c3 u1 + λS β I S

S + E + I
− λE β I S

S + E + I
= 0,

∂ M

∂u2
= Eνσ λE − Eνσ λI + 2 c4 u2 = 0.

123



Int. J. Appl. Comput. Math (2019) 5 :116 Page 13 of 21 116

We obtain

u1 = 1

2

SIβ (λE − λS)

(S + E + I ) c3
,

u2 = 1

2

−Eνσ λE + Eνσ λI

c4
.

Theorem 3 The control parameters (u∗
1, u∗

2) that minimizes J (u1, u2) over U is given by

u∗
1 = max

{
0, min

(
1,

1

2

SIβ (λE − λS)

(S + E + I ) c3

)}
,

u∗
2 = max

{
0, min

(
1,

1

2

−Eνσ λE + Eνσ λI

c4

)}
,

where λS, λE , λI and λR are the adjoint variables satisfying (6) and the following transver-
sality conditions: λS(T ) = λE (T ) = λI (T ) = λR(T ) = 0 and

u∗
1 =
{ 0 if u1 ≤ 0

u1, if 0 < u1 < 1
1, if u1,≥ 1

u∗
2 =
{ 0 if u2 ≤ 0

u2, if 0 < u2 < 1
1, if u2,≥ 1.

Numerical Method

Atanackovic and Stankovic [38] numerical method FDE is discussed in this section. This
method indicates that the fractional derivative of a function f (ξ) with order σ may be stated
as

Dσ∗a g(ξ) = 1

Γ (2 − σ)
×
{

g(1)(ξ)

ξσ−1

[
1 +

∞∑
k=1

Γ (k − 1 + σ)

Γ (σ − 1)k!
]

−
[

σ − 1

ξσ
g(ξ)

+
∞∑

k=2

Γ (k − 1 + σ)

Γ (σ − 1)(k − 1)! ×
(

g(ξ)

ξσ
+ Vk(g)(ξ)

ξ k−1+σ

)]}
, (20)

where

Vk(g)(ξ) = −(k − 1)
∫ ξ

0
τ k−2g(τ )dτ, k = 2, 3, . . . , (21)

with the following properties:

d

dξ
Vk(g) = −(k − 1)ξ k−2g(ξ), k = 2, 3, . . . , (22)

By using K terms with the sums appearing in (20), we can approximate Dσ g(ξ) as

Dσ∗a g(ξ) = 1

Γ (2 − σ)
×
{

g(1)(ξ)

gσ−1

[
1 +

K∑
k=1

Γ (k − 1 + σ)

Γ (σ − 1)k!
]

−
[

σ − 1

ξσ
g(ξ)

+
K∑

k=2

Γ (k − 1 + σ)

Γ (σ − 1)(k − 1)! ×
(

g(ξ)

ξσ
+ Vk(g)(ξ)

ξ k−1+σ

)]}
.

123



116 Page 14 of 21 Int. J. Appl. Comput. Math (2019) 5 :116

The above equation can be written as

Dσ∗a g(ξ) � Ω(σ, ξ, K )g(1)(ξ) + Θ(σ, ξ, K )g(ξ) +
K∑

k=2

B(σ, ξ, K )
Vk(g)(ξ)

ξ k−1+σ
, (23)

where

Ω(σ, ξ, K ) = 1 +∑K
k=1

Γ (k−1+σ)
Γ (σ−1)k!

Γ (2 − σ)ξσ−1 ,

Z(σ, ξ) = 1

ξσ Γ (2 − σ)
,

B(σ, ξ, k) = − Γ (k − 1 + σ)

Γ (2 − σ)Γ (σ − 1)(k − 1)! ,

Θ(σ, ξ, K ) = Z(a, ξ) +
K∑

k=2

B(σ, ξ, k)

ξσ
.

We set

Θ1(ξ) = S(ξ), Θk(ξ) = Vk(S)(ξ),

ΘK+1(ξ) = E(ξ), ΘK+k(ξ) = Vk(E)(ξ),

Θ2K+1(ξ) = I (ξ), Θ2K+k(ξ) = Vk(I )(ξ),

Θ3K+1(ξ) = R(ξ), Θ3K+k(ξ) = Vk(R)(ξ), (24)

for k = 2, 3, . . . We can rewrite system (7) as

Ω(σ, ξ, K )Θ
′
1(ξ) + Φ(σ, ξ, K )Θ1(ξ) +

K∑
k=2

B(σ, ξ, k)
Θk(ξ)

ξ k−1+σ

= bσ (ξ) −
(

βΘ2K+1(ξ)

Θ1(ξ) + ΘK+1(ξ) + Θ2K+1(ξ)
+ μσ

N

)
Θ1(ξ) + κσ Θ3K+1(ξ),

ω(σ, ξ, K )Θ
′
K+1(ξ) + Φ(σ, ξ, K )ΘK+1(ξ)

+
K∑

k=2

B(σ, ξ, K )
ΘK+m(ξ)

ξ k−1+σ

= βΘ2K+1(ξ)

Θ1(ξ) + ΘK+1(ξ) + Θ2K+1(ξ)
Θ1(ξ) − (νσ + μσ

N )ΘK+1(ξ),

ω(σ, ξ, K )Θ
′
2K+1(ξ) + Φ(σ, ξ, K )Θ2K+1(ξ)

+
K∑

k=2

B(σ, ξ, K )
Θ2K+k(ξ)

ξ k−1+σ

= νσ ΘK+1(ξ) − (μσ
D + ασ )Θ2k+1(ξ),

ω(σ, ξ, K )Θ
′
3K+1(ξ) + Φ(σ, ξ, K )Θ3K+1(ξ) +

K∑
k=2

B(σ, ξ, K )
Θ3K+k(ξ)

ξ k−1+σ

= ασ Θ2K+1(ξ) − (μσ
N + κσ )Θ3K+1(ξ),

(25)
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where

Θk(ξ) = −(k − 1)
∫ ξ

0
ψk−2S(ψ)dψ,

ΘK+k(ξ) = −(k − 1)
∫ ξ

0
ψk−2E(ψ)dψ,

Θ2K+k(ξ) = −(k − 1)
∫ ξ

0
ψk−2 I (ψ)dψ,

Θ3K+k(ξ) = −(k − 1)
∫ ξ

0
ψk−2R(ψ)dψ,

k = 2, 3, . . . , K .

(26)

Now we can rewrite (23) and (25) as follows:

Θ ′
1(ξ) = 1

Ω(σ, ξ, K )

[
bσ (ξ)

−
(

βΘ2K+1(ξ)

Θ1(ξ) + ΘK+1(ξ) + Θ2K+1(ξ)
+ μσ

N + Φ(σ, ξ, K )

)
Θ1(ξ)

+ κσ Θ3K+1(ξ) −
K∑

k=2

B(σ, ξ, K )
Θm(ξ)

ξ k−1+σ

]
,

Θ ′
k(ξ) = −(k − 1)ξ k−2Θ1(ξ), k = 2, 3, . . . , K ,

Θ ′
K+1(ξ) = 1

Ω(σ, ξ, K )

[
βΘ2K+1(ξ)

Θ1(ξ) + ΘK+1(ξ) + Θ2K+1(ξ)
Θ1(ξ)

− (νσ + μσ
N + Φ(σ, ξ, K ))ΘK+1

−
K∑

k=2

B(σ, ξ, K )
ΘK+m(ξ)

ξ k−1+σ

]
,

Θ ′
K+k(ξ) = −(k − 1)ξ k−2ΘK+1(ξ), k = 2, 3, . . . , K ,

Θ ′
2K+1(ξ) = 1

Ω(σ, ξ, K )

[
νσ ΘK+1(ξ) − (μσ

D + ασ + Φ(σ, ξ, K ))Θ2K+1(ξ)

−
K∑

k=2

B(σ, ξ, K )
Θ2K+k(ξ)

ξ k−1+σ

]
,

Θ ′
2K+k(ξ) = −(k − 1)ξ k−2Θ2K+1(ξ), k = 2, 3, . . . , K ,

Θ ′
3K+1(ξ) = 1

Ω(σ, ξ, K )

[
ασ Θ2K+1(ξ) − (μσ

N + κσ + Φ(σ, ξ, K ))Θ3K+1(ξ)

−
K∑

k=2

B(σ, ξ, K )
Θ3K+k(ξ)

ξ k−1+σ

]
,

Θ ′
3K+k(ξ) = −(k − 1)ξ k−2Θ3K+1(ξ), k = 2, 3, . . . , K ,

(27)
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Table 1 Parameter values

Parameter Discription Value

bσ (ξ) Recruitment rate into the
susceptible population at time ξ

0.061/day [26]

β Probability of disease
transmission

1.1/day [40]

νσ Rate of seroconversion (from
expose to infectious)

0.004107/day [26]

ασ Rate of recovery 0.7222/day [26]

κσ Rate of loss of immunity 0.95 [26]

μσ
N Natural death rate 0.000024/day [26]

μσ
D Disease induced death rate 0.00000088/day [26]

(a) (b)

(c) (d)

Fig. 2 The figures show the trajectories for the state variables (S(ξ), E(ξ), I (ξ), R(ξ)) of system (5) for
different order values

with the initial conditions

Θ1(δ) = S0, Θk(δ) = 0, k = 2, 3, . . . , K ,

ΘK+1(δ) = E0, ΘK+k(δ) = 0, k = 2, 3, . . . , M,

Θ2K+1(δ) = I0, Θ2K+k(δ) = 0, k = 2, 3, . . . , K ,

Θ3K+1(δ) = R0, Θ3K+k(δ) = 0, k = 2, 3, . . . , K .

(28)

The system (27) with (28) can be solved numerically by using the Runge-Kutta fourth order
method.
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Fig. 3 The approximate solution
of S(ξ), E(ξ), I (ξ), R(ξ),
against time for σ = 1
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Fig. 4 The simulations displaying the result of u1 (quarantine of the exposed population groups) and u2
(monitoring and treatment of the infected people) on a exposed populations, b infected populations

Numerical Simulation and Discussion

In this section, we present numerical simulations to confirm the theoretical results obtained
in the preceding section.
By using the well known generalized Euler method (GEM) [39] with values in Table 1, we
simulate system (5).

For the parameter values in Table 1 above and by calculation, we obtained R0 = 1.5143
and the endemic equilibrium K1 = (1679.128, 858.647, 4.883, 3.712).
We obtained R0 = 1.5143, D(P) = 2.389 > 0 and the simulations in Fig. 2 show that the
endemic equilibrium K1 is positive and locally asymptotically stable for σ = 0.70, σ = 0.80,
σ = 0.90 and σ = 1.0, satisfying condition 6 of Lemma 5.1. It can obviously be seen in
Fig. 2 that, compared with the situation of order σ = 0.70 and σ = 0.80, the trajectory of the
system with order σ = 0.90 is nearer to the trajectory of the system with the order σ = 1.0.
Thus, the bigger of the trajectory difference, the distant from σ to 1.0.

It can be seen from Fig. 3 when σ = 1 system (5) is the classical integer-order system
(4). The display of the trajectories indicates the behavior of the approximate solutions for
system (5) obtained for the value of σ = 1.
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Fig. 5 Simulation displaying the
optimal control profile u1 and u2.
The u1 indicates control profile
of quarantine of the exposed
population’s whiles u2 indicates
control profile of monitoring and
treating the infected populations
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Fig. 6 This shows the phase portrait for fractional-order model with σ = 0.70, 0.80, 0.90, 1.0

The Effects of Optimal Control Strategies on the Exposed and Infected Populations

It can be seen from Fig. 4 that the optimal control u1 and u2 has a significant effect on the
exposed and the infected populations respectively. Infection level is reduced rapidly but not
eliminated. This suggests that monitoring and treatment strategies that can allow the immune
response to rebuilding should also be well-thought-out (Figs. 5, 6).
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Fig. 7 This shows the phase portrait for fractional-order model with σ = 0.70, 0.80, 0.90, 1.0

Conclusion

We introduced Caputo fractional-order into a classical integer-order model proposed by [26]
to model the transmission dynamics of respiratory disease. The nonnegative solution of the
model is provided by using the generalized mean value theorem. We obtained the basic
reproductive numberR0, which perform as a threshold parameter in the disease control. We
established and investigated the stability analysis of the fractional-ordermodel with respect to
the values ofR0. The disease-free equilibrium is locally asymptotically stable ifR0 < 1. For
R0 > 1, using Lemma 5.1 and condition 6, we investigated the local stability of the positive
endemic equilibrium state. Sensitivity analysis shows thatR0 is most sensitive to the disease
transmission rate β. This recommends that periodic monitoring by medical professionals
and researchers should be done to control the transmission of the disease. Additionally, we
investigated the optimal control problem by the application of the optimal control theory.
We used the Pontryagin’s Minimum Principle to provide the necessary conditions needed for
the existence of the optimal solution to the optimal control problem. Also, we applied the
Atanackovic and Stankovic method to provide a numerical solution to system (5). Lastly, the
theoretical results were verified by numerical simulations to measure the efficacy and impact
of control on the transmission of the respiratory diseases. From the numerical simulation, the
size of the infected population is significantly reduced under the controlled conditions. This
proposes that if all two control measures u1 (quarantine of exposed population groups) and
u2 (monitoring and treatment of infected populations) are employed for the same period of
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time and continue for a considerable period of time, the future of free from transmission of
a respiratory disease could be achieved. In this manner, the fractional-order optimal control
method can progress the value of the treatment (Fig. 7).

The major advantages of our proposed fractional order model which cannot be exhibited
by classical order model are:

– It’s highly effective and efficient which help us to obtain better results.
– It’s easy to implement.
– It provides improved precision of the process model by offering more flexibility in model

identification.
– By modeling system by fractional order we can model a higher system by low order

model.
– It has the effect of memory, which is essential factor in many biological processes.
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