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Abstract

Purpose: Due to the high incidence and mortality rates of lung cancer worldwide, early detection
of a precancerous lesion is essential. Low-dose computed tomography is a commonly used tech-
nique for screening, diagnosis, and prognosis of non-small-cell lung cancer. Recently, convolu-
tional neural networks (CNN) had shown great potential in lung nodule classification. Clinical
information (family history, gender, and smoking history) together with nodule size provide
information about lung cancer risk. Large nodules have greater risk than small nodules.

Approach: A subset of cases from the National Lung Screening Trial was chosen as a dataset in
our study. We divided the nodules into large and small nodules based on different clinical guide-
line thresholds and then analyzed the groups individually. Similarly, we also analyzed clinical
features by dividing them into groups. CNNs were designed and trained over each of these
groups individually. To our knowledge, this is the first study to incorporate nodule size and
clinical features for classification using CNN. We further made a hybrid model using an ensem-
ble with the CNN models of clinical and size information to enhance malignancy prediction.

Results: From our study, we obtained 0.9 AUC and 83.12% accuracy, which was a significant
improvement over our previous best results.

Conclusions: In conclusion, we found that dividing the nodules by size and clinical information
for building predictive models resulted in improved malignancy predictions. Our analysis also
showed that appropriately integrating clinical information and size groups could further improve
risk prediction.

© 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.7.2.024502]

Keywords: radiomics; non-small-cell lung cancer; National Lung Screening Trial; convolu-
tional neural network; low-dose CT; ensemble.

Paper 19302R received Dec. 4, 2019; accepted for publication Mar. 9, 2020; published online
Apr. 6, 2020.

1 Introduction

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer-related
mortality worldwide.1 In the United States, lung cancer is the second most commonly diagnosed
cancer, accounting for 13% of all cancer diagnoses, and lung cancer is the leading cause of
cancer-related deaths.2 Over the last several decades, there have been only small improvements
in five-year survival rates among patients diagnosed with lung cancer. Part of the reason why
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lung cancer survival is dismal is because most patients with lung cancer are diagnosed in a late
stage. To detect lung cancer at earlier stages, the National Cancer Institute (NCI) conducted the
National Lung Screening Trial3 to compare low-dose CT (LDCT) screening versus chest radi-
ography to reduce lung cancer mortality. The NLSTwas a randomized clinical trial conducted on
53,454 patients over 3 years (baseline and next 2 years’ follow-up scans) and revealed a 20%
mortality reduction among individuals screened with LDCT. However, there are limitations with
screening by LDCT, including false positives and detection of large numbers of indeterminate
pulmonary nodules. As such, biomarkers that can discriminate between malignant and benign
nodules would have direct translational significance.

Radiomics4 is an approach to extracting high-dimensional quantitative features from
standard-of-care medical imaging (including LDCT) that can be analyzed for predictive and
diagnostic analysis. Along with the quantitative radiomics features, deep learning approaches
have been utilized recently for lung cancer early detection and classification.5–8 In this study,
we utilized convolutional neural network (CNN) for analysis. In our previous study,9 we
experimented with cropping (extracting a fixed region for every patient) and warping (extracting
the exact tumor region for every patient) using transfer learning. In this study, we evaluated the
performance for both warped and cropped nodules for training a CNN.

Nodule size, especially the longest diameter, provides important information on nodule
malignancy. Cherezov et al.10 took the nodule size as a parameter to split the dataset into large
(size ≥ 16 mm), medium (size ≥ 8 and <16 mm), and small (size < 8 mm) nodules and then
built individual radiomics models for each of those smaller subsets. He showed that by splitting
lung nodules into size categories, overall malignancy prediction could be improved. Clinical
information, such as family history, smoking history, and gender,11 are the epidemiologic risk
factors for lung cancer. The stratified analysis by size and clinical covariates was to try to
discover subgroups (e.g., male or former smoker) that would allow for better prediction of
future risk. An overall model was created by combining predictions from these individual sub-
groups to enhance the malignancy prediction.

In this paper, we make the following contributions to obtain a better prediction of nodules
that will become malignant.

I. The distribution of nodule size differs between lung cancer and control cases. Changing
the size threshold from 4 mm in the NLST study to 6 mm in the National Comprehensive
Cancer Network (NCCN) and American College of Radiology (ACR) enabled the false
positive rate to be reduced.12–14 Because of these reasons, we analyzed whether the clas-
sification result could be enhanced by dividing the nodules by size information. In this
study, we used three different categorizations for splitting.

II. Clinical features are epidemiological risk factors for lung cancer. So we utilized three
different clinical features (family history, gender, and smoking history) to divide the
cohorts.

III. We designed an effective hybrid model by merging size and clinical information for
malignancy prediction, as recommended by Ref. 15.

2 Materials and Methods

2.1 Convolutional Neural Network

A CNN16 is a feed forward network in the deep neural network family in which outputs gen-
erated from the previous layer pass as inputs to the next layer. CNNs usually consist of many
layers, and a large quantity of training data is required as well. In our current dataset, we had
261 cases for training, which was very small to train a CNN from scratch. Data augmentation
was applied to generate more training images. Three CNN architectures were built using Keras17

with Tensorflow.18 Experiments with larger and smaller size models and transfer learning were
conducted, but the models discussed were most effective. The input image size for the CNN was
100 × 100 (bicubic interpolation was used for resizing). RMSprop19 was used for gradient
descent optimization, along with a constant learning rate of 0.0001 and 200 training epochs.
A batch size of 16 was used during the training and validation. Dropout20 along with L2
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regularization21 was applied before the classification layer to minimize overfitting for all three
CNNs. Since we had two classes, binary cross entropy was used as the loss function.

CNN1 with 841,681 parameters had two convolution layers succeeded by two fully con-
nected layers. CNN2 had two convolution layers succeeded by one fully connected layer and
one long short-term memory (LSTM)22 layer. CNN2 had 845,033 parameters. CNN3 was a
cascaded CNN architecture in which the images were fed to both the left branch and the right
branch. We applied dropout to both the left and right branches to prevent overfitting. In the left

Table 1 CNN architectures.

CNN1 CNN2 CNN3

Layers Parameters Layers Parameters Layers Parameters

Input image 100 × 100 Input image 100 × 100 Left branch:

Conv 1 64 × 5 × 5,
pad 0, stride 1

Conv 1 64 × 5 × 5,
pad 0, stride 1

Input image 100 × 100

Max pool 1 10 × 10

Leaky ReLU 1 Alpha = 0.01 Leaky ReLU 1 Alpha = 0.01 Dropout 0.1

Max pool 1 3 × 3, stride 3,
pad 0

Max pool 1 3 × 3, stride 3,
pad 0

Right branch:
Input image

100 × 100

Conv 2 64 × 2 × 2,
pad 0, stride 1

Conv 2 64 × 2 × 2,
pad 0, stride 1

Conv 1 64 × 5 × 5,
pad 0, stride 1

Leaky ReLU 2 Alpha = 0.01 Leaky ReLU 2 Alpha = 0.01 Leaky ReLU 1 Alpha = 0.01

Max pool 2 3 × 3, stride 3,
pad 0

Max pool 2 3 × 3, stride 3,
pad 0

Max pool 2a 3 × 3, stride 3,
pad 0

Conv 2 64 × 2 × 2,
pad 0, stride 1

Dropout 0.1 Dropout 0.1

Fully connected 128 Fully
connected

128 Leaky ReLU 2 Alpha = 0.01

1 + ReLU 1 + ReLU Max pool 2b 3 × 3, stride 3,
pad 0

Fully connected 8 LSTM 1 +
ReLU

8 Dropout 0.1

2 + ReLU L2 regularizer 0.01

L2 regularizer 0.01 Dropout 0.25

Dropout 0.25 Fully
connected 2

1 sigmoid Merge left branch
and right branch

Fully connected 3 1 sigmoid Conv 3 + ReLU 64 × 2 × 2,
pad 0, stride 1

Max pool 3 2 × 2, stride 2,
pad 0

L2 regularizer 0.01

Dropout 0.1

Fully connected 1 1 sigmoid

Total parameters: 841,681 Total parameters: 845,033 Total parameters: 39,553
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branch, a max pooling operation (10 × 10) was applied to reduce the image size so that both left
and right branches can be concatenated. After the concatenation, another convolution layer was
used before the final classification layer. The main idea behind this architecture was to provide
the classification layer a reduced version of the raw image and image feature information (fea-
tures generated directly from original images in the left branch).23 CNN3 had 39,553 parameters,
which is significantly fewer parameters than our other 2 CNN architectures. In our previous
study,24 we experimented with different numbers of layers, learning rates, and convolution
kernels and different amounts of regularization and evaluated the performance on the validation
data. Based on the performance of validation data, the parameters for our CNNs are shown in
Table 1. More detailed analysis about the CNN architectures can be found in Ref. 24.

2.2 NLST Dataset

A subset of deidentified noncancer, nodule positive controls, and screen detected lung cancer
cases3,25 from the LDCT arm of NLSTwas obtained from the Cancer Data Access System from
the NCI. The multi-institutional NLST study spanned 3 years: baseline screening (T0) along
with two follow-up screening intervals (T1 and T2) 1 year apart. The nodule positive controls
and lung cancer cases all had a nodule identified at the T0 screen, but it was not diagnosed as
lung cancer. The original selection of lung cancers and nodule positive controls was explained by
Schabath et al.25 There were 170 screen-detected lung cancers identified, which had a positive
screening at baseline (T0) and then the lung cancer was diagnosed as screen detected lung
cancers at T1 (85 cases) and T2 (85 cases). Using a 2:1 nested case-control study, 328 nodule-
positive controls had nodules (never diagnosed as cancer) that were followed from T0 to T2 and
had similar demographics as those diagnosed as lung cancer. The nodule positive controls and
lung cancer cases were divided into two cohorts: cohort 1 (for training) and cohort 2 (testing).
Figure 1 presents how the cases were split into two cohorts. Cohort 1 contained the lung cancer
cases that had a positively screened nodule in the baseline scan, and the positively screened
nodules were diagnosed as lung cancer at the first follow-up scan (T1); whereas in cohort 2,
the positively screened nodules during the baseline scan (T0) became malignant after 2 years
(T2). Throughout this study, the nodule positive controls had never developed lung cancer.
Cohort 1 contained 85 incident lung cancer cases and 176 control cases, whereas cohort 2
had 85 incident lung cancer and 152 control cases. From the LDCT scans, the nodules were

Fig. 1 (a) NLST study and (b) flowchart of selection of cohort 1 and cohort 2 from NLST study.
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segmented using the Definiens Software26 by a radiologist with more than 9 years of experience
as described elsewhere.27 For the current analysis, we utilized a single image slice for each sub-
ject that had the largest nodule area. We then extracted only the nodule region by incorporating
a rectangular region that completely contained the nodule region and called it a “warped” nodule.
We also applied a fixed region size of 17 × 17 (average height and width for all cohort 1 cases) to
extract the nodule region and called it “cropped.” Some examples of cropped and warped nod-
ules are shown in Figs. 2 and 3. In this case, some images would have area outside the nodule,
and some images would partially cover a nodule.

2.3 Splitting Criterions for Training and Test Set

In this study, we analyzed the lung cancer cases and nodule positive controls by longest nodule
diameter and clinical features (gender, smoking history, and family history). According to the
NCCN and ACR, the positively screened nodule should have size > 6 mm in diameter.28 Based
on the longest diameter, we have divided both cohort 1 and cohort 2 into three subsets: <6 mm

Fig. 2 (a) Lung image with a small nodule inside outlined by yellow, (b) warped nodule, and
(c) cropped nodule (the cropped size of 17 × 17 was smaller than the warped nodule, hence, the
cropped nodule image partially covers the nodule).

Fig. 3 (a) Lung image with a very small nodule inside outlined by yellow, (b) warped nodule, and
(c) cropped (the cropped size of 17 × 17 was larger than the warped nodule, hence, the cropped
nodule image has area outside the nodule).
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(small nodules), ≥6 and <16 mm (intermediate nodules), and ≥16 mm (large nodules).29

The number of cases for the large nodules (≥16 mm) was small, so we merged the intermediate
and large nodules into one class and continued our experiment with two classes: <6 mm (small
nodules) and ≥6 mm (large nodules).

We also used the Fleischner criteria for solid nodules to split the dataset into three groups
according to the size: <6 mm, ≥6 and <8 mm, and ≥8 mm (split by 6 and 8). Table 2 shows
the number of cases in each subset after splitting using size.30 We also analyzed the cases and
controls by three clinical covariates: gender (male and female), family history of lung cancer
(yes and no), and smoking history (current and former). Table 3 shows the number of cases in
each subset after splitting using various clinical criteria. For each subset, data augmentation was
used to generate more images, and each of the three CNNs was trained separately.

3 Experiments and Results

In our study, cohort 1 and cohort 2 were taken as the train and test set, respectively. Figures 4 and
5 show the workflow diagram of our study. Splitting the cohorts based on nodule longest diam-
eter and clinical features provides multiple subgroups for training. For each subgroup, we trained
a CNN on cohort 1 data and made a prediction on cohort 2. Cohort 1 and cohort 2 were divided
using a chosen splitting criterion, and then for every criterion, 70% of the images from cohort 1
were chosen randomly for training, and the remaining 30% were used as a validation set.

Training a CNN from scratch requires hundreds of images for every class. Image augmen-
tation was applied on cohort 1 by rotating each image 15 deg and then flipping vertically. Along
with the rotation, elastic deformation (shifting each pixel value) was used to enhance the number
of images for our training set further. Elastic deformation31,32 can be illustrated as

Table 2 Number of cases after splitting using various nodule size criteria.

Splitting criteria Cohort Subset Cancer Noncancer Total Chi-square

Split by 6 and 16 C1 <6 14 43 57 76.172

≥6 and <16 54 126 180

≥16 17 7 24

C2 <6 23 21 44 87.265

≥6 and <16 43 123 166

≥16 19 8 27

Split by 6 C1 <6 14 43 57 155.37

≥6 71 133 204

C2 <6 23 21 44 134.35

≥6 62 131 193

Split by 6 and 8 C1 <6 14 43 57 35.92

≥6 and <8 mm 7 65 72

≥8 64 68 132

C2 <6 23 21 44 27.51

≥6 and <8 mm 19 64 83

≥8 43 67 110

Note: Chi-square analysis: For split by 6 and 16 mm and 6 and 8 mm, df ¼ 2 and p ¼ 0.05, critical value is
5.991; for split by 6 mm only df ¼ 1 and p ¼ 0.05, critical value is 3.84. Here none of them are significant.
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EQ-TARGET;temp:intralink-;e001;116;154Fðx1; y1Þ ¼ m � Iðx; yÞ þDða; bÞ; (1)

where F is the new location of the original pixel after the shifting, I is the original pixel,D is the
displacement vector, and m is the strength of the displacement. To obtain an 85% similarity
(structural similarity index) between elastic augmented image and original images, in our study,
a, b, and m were chosen empirically as 3. Elastic augmentation was performed on the original
nodule images, and then rotation and flipping were performed on the elastic augmented images.
Hence, our training set had original nodule images, rotated and flipped original images, and

Fig. 4 Workflow diagram of our analysis.

Table 3 Number of cases after splitting using various clinical criteria.

Splitting criteria Cohort Subset Cancer Noncancer Total Chi-square

Gender C1 Male 46 104 150 9.5824

Female 39 72 111

C2 Male 48 88 136 6.9004

Female 37 64 101

Family history C1 Yes 22 32 54 89.69

No 63 144 207

C2 Yes 19 24 43 85.799

No 66 128 194

Smoking history C1 Current 43 90 133 0.0957*

Former 42 86 128

C2 Current 46 85 131 4.60192

Former 39 67 106

Note: Chi square analysis: Here df ¼ 1 and p ¼ 0.05, critical value is 3.84. Smoking history cohort 1 is
significant.
*Statistical significance.
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elastic augmented nodule images of the original nodule as well as rotated and flipped versions
of them.

The completely separate cohort 2 was used to evaluate performance using area under the
receiver operating characteristic (AUROC).33 Overall accuracy was computed by summarizing
the confusion matrices of each size group and the pseudoprobabilities from each size group were
merged to obtain overall AUROC.

Where the data were split by nodule size, we observed that classification performance on
large nodules (≥16 mm) or (≥8 mm) were better than on small nodules (<6 mm) for all
3 CNN architectures. We also found that warped nodules enabled better results than cropped
nodules. For 6-mm and 16-mm split, CNN1 obtained 96.29% accuracy with 0.92 AUC for large
nodules (>16 mm). CNN1 also achieved 82.72% accuracy with 0.9 AUC for large nodules
(>8 mm) in the 6- and 8-mm split. For small nodules (<6 mm), 72.72% accuracy with 0.82
AUROC was obtained from CNN3. The overall best accuracy of 78.9% and AUC of 0.9 was
obtained from CNN1 using 6- and 16-mm thresholds. Detailed results from warped and cropped
tumors using size splits are shown in Tables 4 and 5, respectively. An overall AUCROC curve for
each CNN is shown in Figs. 6 and 7.

Clinical features (gender, family history, and smoking history) were also utilized to split
the dataset. From our study, we found that by training using only female study participants,
we generated 78.43% accuracy with 0.86 AUC from CNN1, which was better than for the male
cases. In a study conducted by Pinsky et al.,34 lung cancer risk was reduced gradually over time
for 30+ pack year former smokers. Former smokers’ risk can change with time, so it is perhaps
harder to predict their risk, and good performance on that group will show the power of our
approach. From CNN3, 78.3% accuracy and 0.86 AUC were achieved for former smokers.
Family history, a clinical feature, is associated with lung cancer incidence. Most subjects had
no family history of lung cancer. Our model was most accurate on the no family history group,
with 76.3% accuracy (0.84 AUC) using CNN3. Classification performance of warped nodules
was better than for cropped nodules for clinical features. The overall best accuracy of 76.79%
and AUC of 0.88 was obtained using the CNN3 architecture with a smoking history threshold.
Detailed results from warped and cropped tumors using clinical features to split examples are
shown in Tables 6 and 7, respectively. The overall AUCROC curve for each CNN is shown in
Figs. 8 and 9.

Fig. 5 Workflow diagram of our analysis for clinical features.

Paul et al.: Hybrid models for lung nodule malignancy prediction utilizing convolutional neural network. . .

Journal of Medical Imaging 024502-8 Mar∕Apr 2020 • Vol. 7(2)



T
ab

le
4

O
ve

ra
ll
re
su

lts
us

in
g
C
N
N
s
fo
r
no

du
le

si
ze

(w
ar
p)
.

C
N
N

6
on

ly

O
ve

ra
ll
6
m
m

6
an

d
16

O
ve

ra
ll
6

an
d
16

m
m

6
an

d
8

O
ve

ra
ll
6

an
d
8
m
m

<
6
m
m

≥
6

<
6
m
m

≥
6
an

d
<
16

≥
16

<
6
m
m

≥
6
an

d
<
8

≥
8

C
N
N
1

61
.3
6
(0
.7
8)

79
.2
7
(0
.9
2)

76
(0
.8
9)

61
.3
6
(0
.7
8)

80
.1
6
(0
.9
1)

96
.2
9
(0
.9
2)

78
.9

(0
.9
)

61
.3
6
(0
.7
8)

77
.1

(0
.8
9)

82
.7

(0
.9
)

76
.7
9
(0
.8
8)

C
N
N
2

61
.3
6
(0
.7
8)

78
.2
3
(0
.9
)

75
.1

(0
.8
7)

61
.3
6
(0
.7
8)

78
.2
9
(0
.8
8)

77
.7
7
(0
.8
7)

75
.1

(0
.8
7)

61
.3
6
(0
.7
8)

77
.1

(0
.8
8)

80
(0
.9
)

75
.5

(0
.8
7)

C
N
N
3

72
.7
2
(0
.8
2)

79
.7
9
(0
.8
9)

78
.4
8
(0
.8
9)

72
.7
2
(0
.8
2)

79
.5
2
(0
.8
5)

77
.7
7
(0
.8
8)

78
.0
5
(0
.8
7)

72
.7
2
(0
.8
2)

77
.1

(0
.8
8)

80
.9

(0
.8
1)

78
.0
5
(0
.8
3)

N
ot
e:

A
cc
ur
ac

y
an

d
A
U
C

in
br
ac

ke
ts

ob
ta
in
ed

fr
om

ea
ch

si
ze

gr
ou

p
ar
e
sh

ow
n
in

th
is

ta
bl
e.

A
n
ov

er
al
lm

od
el

w
as

m
ad

e
by

co
m
bi
ni
ng

pr
ed

ic
tio

ns
of

th
e
in
di
vi
du

al
su

bg
ro
up

s.
B
ol
df
ac

e
si
gn

ifi
es

th
e
be

st
re
su

lts
ob

ta
in
ed

.

T
ab

le
5

O
ve

ra
ll
re
su

lts
us

in
g
C
N
N
s
fo
r
no

du
le

si
ze

sp
lit

(c
ro
p)
.

C
N
N

6
on

ly

O
ve

ra
ll
6
m
m

6
an

d
16

O
ve

ra
ll
6

an
d
16

m
m

6
an

d
8

O
ve

ra
ll
6

an
d
8
m
m

<
6
m
m

≥
6

<
6
m
m

≥
6
an

d
<
16

≥
16

<
6
m
m

≥
6
an

d
<
8

≥
8

C
N
N
1

56
.8
1
(0
.6
6)

71
(0
.8
2)

67
.9
2
(0
.7
9)

56
.8
1
(0
.6
6)

75
.9

(0
.8
7)

74
.0
7
(0
.7
6)

72
.1
5
(0
.8
2)

56
.8
1
(0
.6
6)

77
.1

(0
.8
8)

66
.3
6
(0
.7
8)

68
.7
7
(0
.8
)

C
N
N
2

52
.2
7
(0
.6
3)

72
.5
3
(0
.8
3)

67
.9
2
(0
.8
)

52
.2
7
(0
.6
3)

76
.5

(0
.8
8)

74
.0
7
(0
.7
6)

71
.3

(0
.8
)

52
.2
7
(0
.6
3)

77
.1

(0
.8
6)

68
.1
8
(0
.7
9)

68
.3
5
(0
.7
7)

C
N
N
3

52
.2
7
(0
.6
3)

71
(0
.8
2)

66
.6

(0
.7
8)

52
.2
7
(0
.6
3)

75
.3

(0
.8
1)

74
.0
7
(0
.7
8)

70
.4
6
(0
.7
7)

52
.2
7
(0
.6
3)

77
.1

(0
.8
3)

66
.3
6
(0
.7
5)

67
.0
8
(0
.7
5)

N
ot
e:

A
cc
ur
ac

y
an

d
A
U
C

in
br
ac

ke
ts

ob
ta
in
ed

fr
om

ea
ch

si
ze

gr
ou

p
ar
e
sh

ow
n
in

th
is

ta
bl
e.

A
n
ov

er
al
lm

od
el

w
as

m
ad

e
by

co
m
bi
ni
ng

pr
ed

ic
tio

ns
of

th
e
in
di
vi
du

al
su

bg
ro
up

s.

Paul et al.: Hybrid models for lung nodule malignancy prediction utilizing convolutional neural network. . .

Journal of Medical Imaging 024502-9 Mar∕Apr 2020 • Vol. 7(2)



Fig. 7 ROC curves for various nodule size splits (crop). (a) CNN1 architecture, (b) CNN2 archi-
tecture, and (c) CNN3 architecture.

Fig. 6 ROC curves for nodule size (warp). (a) CNN1 architecture, (b) CNN2 architecture, and
(c) CNN3 architecture.
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To integrate the three clinical features into a single model, an ensemble approach was
chosen. For a given size split averaging, the pseudoprobabilities from the ensemble of
three CNN clinical models (smoking history, gender, and family history) provided a new
classifier. The overall best accuracy of 81% and AUC of 0.9 was obtained with CNN3 when
using an ensemble of the three clinical features. Detailed results from warped and cropped
tumors using clinical features to split the data are shown in Tables 6 and 7, respectively.

Since nodule size is also a risk factor for lung cancer incidence,10 we made an ensemble of all
three clinical features and size categories to investigate if adding size and the clinical features
would further improve the result. This means, e.g., with the 6-mm split, that there will be
four CNNs used to create a prediction for <6 and ≥6 mm. Using this approach, we achieved
83.12% accuracy with 0.9 AUC from CNN1 using three clinical features and the 6- and 16-mm
size threshold. Detailed results are shown in Tables 8 and 11 (Appendix). In our previous
study24 without splitting, we achieved 75.1% (AUC 0.82), 75.5% (AUC 0.86), and 76%
(AUC 0.87) from CNN1, CNN2, and CNN3, respectively. In a separate study27 using radiomics
features, 76.79% accuracy with 0.81 AUC was achieved. We next discussed the improvement
by splitting using different criteria from our previous studies.24,27 From this study, 78.9%
accuracy with 0.9 AUC was achieved by splitting using 6- and 16-mm threshold using CNN1,
which displayed an improvement of ∼4% in accuracy and 0.08 in AUC. Similarly, splitting
using smoking criteria showed an improvement of 0.79% in accuracy and 0.01 in AUC using
CNN3.

After creating an ensemble, these results were further enhanced. The McNemar test and stan-
dard error were used to test significance improvement in accuracy and AUCROC, respectively.
Detailed statistical analysis is shown in Tables 9 and 10.

Fig. 8 ROC curves for clinical features (warp). (a) CNN1 architecture, (b) CNN2 architecture, and
(c) CNN3 architecture.
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4 Discussion and Conclusions

Clinically, LDCT scans are an early detection modality to detect nodules. Definitive diagnosis
must be conducted via pathological assessment. Screening for lung cancer via LDCT can detect
lung cancer in early stages, which has been shown to improve survival outcomes and lower
medical expenses.35 Therefore, as a screening tool, a low-false negative rate for LDCT is crucial.
However, current LDCT detects large numbers of indeterminate pulmonary nodules, of which
only a fraction (∼4%) are malignant. Thus there is a critical need to reduce the false positive
rate using noninvasive approaches, such as radiomics and quantitative imaging. In this study, we
divided both cohorts created from NLST data using different sizes and clinical features and
analyzed each of these size (e.g., <6 mm) or clinical groups (e.g., female and male) individually

Fig. 9 ROC curves for clinical features split (crop). (a) CNN1 architecture, (b) CNN2 architecture,
and (c) CNN3 architecture.

Table 8 Results using CNNs by ensemble of size and clinical features (warp).

CNN
6 mm only +

clinical features
6 and 16 mm +
clinical features

6 and 8 mm +
clinical features

CNN1 81.89 (0.89) 83.12 (0.9) 81.89 (0.89)

CNN2 78.05 (0.87) 78.48 (0.88) 78.05 (0.87)

CNN3 82.27 (0.89) 82.7 (0.9) 82.7 (0.87)

Note: Accuracy and AUC in brackets obtained from after the ensemble of all clinical features and size are
shown in this table. Here we created an ensemble of overall results from Table 4 and ensemble results of
all clinical features from Table 6.
Boldface signifies the best results obtained.
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Table 9 Comparison of our current results with quantitative features19 for warped nodules.

Significance test AUROC (standard error) Accuracy (McNemar)

Quantitative features27 versus CNN1
ensemble of 3 clinical features

0.81 (SE: 0.0273) versus
0.89 (SE: 0.0205)

76.79% versus 80.16%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN2
ensemble of 3 clinical features

0.81 (SE: 0.0273) versus
0.83 (SE: 0.0258)

76.79% versus 77.21%

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN3
ensemble of 3 clinical features

0.81 (SE: 0.0273) versus
0.9 (SE: 0.0195)

76.79% versus 80.01%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN1
ensemble of three clinical features +
6 mm size

0.81 (SE: 0.0273) versus
0.89 (SE: 0.0205)

76.79% versus 81.89%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN1
ensemble of 3 clinical features +
6 and 16 mm size

0.81 (SE: 0.0273) versus
0.9 (SE: 0.0195)

76.79% versus 83.12%

Significant at p ¼ 0.05 Significant at p ¼ 0.05

Quantitative features27 versus CNN1
ensemble of 3 clinical features +
6 and 8 mm size

0.81 (SE: 0.0273) versus
0.89 (SE: 0.0205)

76.79% versus 81.89%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN2
ensemble of 3 clinical features +
6 mm size

0.81 (SE: 0.0273) versus
0.87 (SE: 0.0224)

76.79% versus 78.05%

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN2
ensemble of 3 clinical features +
6 and 16 mm size

0.81 (SE: 0.0273) versus
0.88 (SE: 0.0215)

76.79% versus 78.48%

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN2
ensemble of 3 clinical features +
6 and 8 mm size

0.81 (SE: 0.0273) versus
0.87 (SE: 0.0224)

76.79% versus 78.05%

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN3
ensemble of 3 clinical features +
6 mm size

0.81 (SE: 0.0273) versus
0.89 (SE: 0.0205)

76.79% versus 82.27%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN3
ensemble of 3 clinical features +
6 and 16 mm size

0.81 (SE: 0.0273) versus
0.9 (SE: 0.0195)

76.79% versus 82.7%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

Quantitative features27 versus CNN3
ensemble of 3 clinical features +
6 and 8 mm size

0.81 (SE: 0.0273) versus
0.87 (SE: 0.0224)

76.79% versus 82.7%

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

Abbreviation: SE, standard error.
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Table 10 Comparison of our current results with CNNs without splitting18 for warped nodules.

Significance test AUROC (standard error) Accuracy (McNemar)

CNN1 versus CNN1 6 mm only 0.82 (SE: 0.0266) versus
0.89 (SE: 0.0205)

75.1 versus 76

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN1 versus CNN1 6 and 16 mm only 0.82 (SE: 0.0266) versus
0.9 (SE: 0.0195)

75.1 versus 78.9

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN1 versus CNN1 6 and 8 mm only 0.82 (SE: 0.0266) versus
0.88 (SE: 0.0215)

75.1 versus 76.79

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN2 versus CNN2 6 mm only 0.86 (SE: 0.0233) versus
0.87 (SE: 0.0224)

75.5 versus 75.1

Not significant at p ¼ 0.05 NA

CNN2 versus CNN2 6 and 16 mm only 0.86 (SE: 0.0233) versus
0.87 (SE: 0.0224)

75.5 versus 75.1

Not significant at p ¼ 0.05 NA

CNN2 versus CNN2 6 and 8 mm only 0.86 (SE: 0.0233) versus
0.87 (SE: 0.0224)

75.5 versus 75.5

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN3 versus CNN3 6 mm only 0.87 (SE: 0.0224) versus
0.9 (SE: 0.0195)

76 versus 78.48

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN3 versus CNN3 6 and 16 mm only 0.87 (SE: 0.0224) versus
0.87 (SE: 0.0224)

76 versus 78.05

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN3 versus CNN3 6 and 8 mm only 0.87 (SE: 0.0224) versus
0.83 (SE: 0.0258)

76 versus 78.05

NA Not significant at p ¼ 0.05

CNN1 versus CNN1 ensemble of
3 clinical features

0.82 (SE: 0.0266) versus
0.89 (SE: 0.0205)

75.1% versus 80.16%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN2 versus CNN2 ensemble of
3 clinical features

0.86 (SE: 0.0233) versus
0.83 (SE: 0.0258)

75.5% versus 77.21%

NA Not significant at p ¼ 0.05

CNN3 versus CNN3 ensemble of
3 clinical features

0.87 (SE: 0.0224) versus
0.9 (SE: 0.0195)

76.79% versus 80.01%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN1 versus CNN1 ensemble of
3 clinical features + 6 mm size

0.82 (SE: 0.0266) versus
0.89 (SE: 0.0205)

75.1% versus 81.89%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05
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using small CNNs. We found that splitting nodules into various groups enabled the CNNs to
generate improved overall malignancy prediction.

Nodule size, especially the longest diameter, provides important information regarding
nodule malignancy.36,37 Preliminary results from the NELSON trial38 reported that small nodules
(<5 mm) had a 0.4% probability of lung cancer, large nodules (≥10 mm) needed prompt diag-
nostic attention (15% probability of lung cancer), and intermediate nodules (≥5 and <10 mm)
had a lung cancer risk (1.3% lung cancer probability) and needed to be addressed via a screening
procedure. Shi et al.39 analyzed the nodule sizes for solitary pulmonary nodules (SPN) in
predicting malignancy. They found that large nodules (size > 20 mm) were more prone to have
lobulation. SPNs < 10 mm had a higher risk factor for air cavity density. Chang-Zhang also
correlated malignancy occurrence with respect to nodule sizes and found that larger lesions
(size > 10 mm) tend to be malignant while smaller nodules (size < 10 mm) were generally
benign lesions. Larici et al.15 studied various size parameters and clinical aspects of lung cancer
and concluded that size information along with the clinical features (e.g., family history, smok-
ing history, and age) would enhance the malignancy risk for pulmonary nodules.

In this work, we analyzed whether nodule size and clinical features could provide additional
meaningful information to improve lung nodule malignancy prediction. We utilized the CNN
architectures from our previous study24 to investigate whether a CNN could learn better after
grouping cases for training by size and clinical information. Due to the inclusion of size and
clinical information, the workflow of this study became slightly different; this is shown in Figs. 4
and 5. We split the nodules with respect to different sizes and clinical categories and trained a

Table 10 (Continued).

Significance test AUROC (standard error) Accuracy (McNemar)

CNN1 versus CNN1 ensemble of
3 clinical features + 6 and 16 mm size

0.82 (SE: 0.0266) versus
0.9 (SE: 0.0195)

75.1% versus 83.12%

Significant at p ¼ 0.05 Significant at p ¼ 0.05

CNN1 versus CNN1 ensemble of
3 clinical features + 6 and 8 mm size

0.82 (SE: 0.0266) versus
0.89 (SE: 0.0205)

75.1% versus 81.89%

Significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN2 versus CNN2 ensemble of
3 clinical features + 6 mm size

0.86 (SE: 0.0233) versus
0.87 (SE: 0.0224)

75.5% versus 78.05%

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN2 versus CNN2 ensemble of
3 clinical features + 6 and 16 mm size

0.86 (SE: 0.0233) versus
0.88 (SE: 0.0215)

75.5% versus 78.48%

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN2 versus CNN2 ensemble of
3 clinical features + 6 and 8 mm size

0.86 (SE: 0.0233) versus
0.87 (SE: 0.0224)

75.5% versus 78.05%

Not significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN3 versus CNN3 ensemble of
3 clinical features + 6 mm size

0.87 (SE: 0.0224) versus
0.89 (SE: 0.0205)

76% versus 82.27%

Not Significant at p ¼ 0.05 Not significant at p ¼ 0.05

CNN3 versus CNN3 ensemble of
3 clinical features + 6 and 16 mm size

0.87 (SE: 0.0224) versus
0.9 (SE: 0.0195)

76% versus 82.7%

Not Significant at p ¼ 0.05 Significant at p ¼ 0.05

CNN3 versus CNN3 ensemble of
3 clinical features + 6 and 8 mm size

0.87 (SE: 0.0224) versus
0.87 (SE: 0.0224)

76% versus 82.7%

Not significant at p ¼ 0.05 Significant at p ¼ 0.05
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CNN for each of the size and clinical categories. Later, the models of these subgroups were
combined into an ensemble of classifiers to provide an overall accuracy and AUC. To our knowl-
edge, this is the first analysis using a CNN ensemble that considers clinical and nodule size
information for malignancy prediction.

The malignant and control cases had varied distributions,10 which is why three different size
(longest diameter) thresholds were chosen for our study: 6 mm only, 6 and 16 mm, and 6 and
8 mm. 6 and 16mmwere chosen based on the criteria of NCCN and ACR. Based on 6- and 16-mm
thresholds, the nodules were separated into three groups: <6 mm (small nodules), ≥6 and <16 mm

(intermediate nodules), and≥16 mm (large nodules). We had a very small number of large nodules
(size > 16 mm), so we merged the large nodules with intermediate nodules using a single thresh-
old of 6 mm: <6 mm (small nodules) and ≥6 mm (large nodules). Based on the Fleischner criteria,
we also utilized 6 and 8 mm as thresholds to split the nodules into three groups: <6 mm (small
nodules), ≥6 and <8 mm (intermediate nodules), and ≥8 mm (large nodules).

Large lung nodules are prone to malignancy, so it is important to find them early and provide
an accurate diagnosis. CNN1 achieved 96% accuracy with 0.92 AUC using the lung nodules of
size ≥ 16 mm. An 82.72% accuracy with 0.9 AUC was achieved by CNN1 for nodule
size ≥ 8 mm. Even the nodules ≥6 mm were predicted with ∼80% accuracy and 0.89 AUC
by CNN3. From the analysis, we found that for all three size thresholds used, models for large
nodules were showing better predictive performance than those for small nodules (<6 mm).
From CNN3 72.72% accuracy was achieved for small nodules (<6 mm), which showed that
smaller nodules could be difficult to classify. They usually have less risk38 and could be iden-
tified by semantic or visual features (e.g., spiculation and lobulation).41,42 We did not include
any semantic or visual features in the current study, but in future studies, we will incorporate
visual findings for small nodules. We found the overall best accuracy of 78.9% and AUC 0.9
from the 6- and 16-mm threshold using CNN1 as shown in Table 4.

Family history, smoking history, and gender are epidemiological risk factors for lung cancer.
Smoking is one of the major contributors to the lung cancer risk. Tindle et al.43 analyzed the
association between mortality and smoking abstinence using the patients from NLST study.
Kaplan-Meier survival curves were used to analyze survival differences. Current smokers had
a lung cancer specific and all-cause mortality hazard ratio of (2.14 to 2.29) and (1.79 to 1.85),
respectively, which was higher than the former smokers. They also concluded that former smok-
ers with more than 7 years of cessation from smoking would have mortality reduced by 20%. The
study by Remen et al.44 showed that the risk of lung cancer among current smokers is higher than
a former heavy smoker and the risk would get lower within five years after quitting. But still,
former smokers had three times greater risk of lung cancer than nonsmokers. Cannon-Albright
et al.45 conducted a case-control study in Montreal to determine the association between risk of
lung cancer and smoking history. The study was conducted between 1996 and 2000 and included
1203 lung cancer and 1513 control cases. They discovered that the odds ratio for nonsmoking
versus smoking was 7.82 for males and 11.76 for females. They also found that 86% of lung
cancer cases were associated with smoking and concluded that the lung cancer risk would
increase with duration and intensity of smoking.

Yoshida et al.46 evaluated the involvement of family history of lung cancer with the risk of
lung cancer. The study was conducted on 5048 lung cancer cases. They observed a significant
relationship between lung cancer with the first-, second-, or third-degree relatives. The relative
risk of lung cancers increased for each additional case of first degree relative (FDR) spanning
from 2.57 relative risk for 1 or more FDR to 4.44 relative risk for 3 or more FDR. Novello et al.47

analyzed the associations between family history of cancer and the risk of lung cancer. The study
included 1733 lung cancer and 6643 control cases. Among males, the lung cancer history in
siblings was associated significantly with small cell carcinoma risk (2.28 odds ratio) and
adenocarcinoma risk (2.25 odds ratio), whereas the parental lung cancer history increased the
adenocarcinoma risk (odds ratio = 1.72) among females.

The development of lung cancer in men differs from that in women. Cherezov et al.48 ana-
lyzed the lung cancer risk on gender and smoking status. They concluded that the risk of adeno-
carcinoma was higher in female smokers than male and the risk of lung cancer was also higher in
females than in males. In a recent study by Schabath and Cote,11 it was shown that the lung
cancer incidence and mortality among males is more than among females in the USA. Due
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to these reasons, we also analyzed three different clinical features separately to analyze which of
them could be useful for malignancy prediction and risk assessment.

From our study, we correctly predicted females (78.43% accuracy) and males (73.5% accu-
racy). We already know family history is a risk factor for lung cancer. We correctly predicted
nodules would become malignant for 76.3% of patients with no family history and 72.33%
patients with family history. In the set of current and former smokers, we predicted nodules
becoming malignant correctly for 78.3% of former smokers and 75.57% of current smokers.

The clinical features are dependent on each other and could provide more predictive infor-
mation if we combine them.48 They are certainly used in combination by physicians. So we made
an ensemble of models using these three clinical features and achieved 81% accuracy (0.9 AUC).
As size is also a lung cancer risk predictor, we also combined models built on different size
nodules with the clinical features. Hence, we learned an ensemble of four models using the
CNN1 architecture (for each model) and obtained 83.12% accuracy with 0.9 AUC as shown
in Table 8. This is significantly better than our previous results.24,27 Detailed results including
significance tests are shown in Tables 9 and 10

Multivariable analysis was performed to determine if the size and clinical features were
statistically significant with respect to the class labels. Logistic regression was performed using
R software (glm2 package). The clinical features (gender, smoking history, and family history)
were not statistically significant, but all size thresholds (6 mm only, 6 and 16 mm, and 6 and
8 mm) were significant at p ¼ 0.05. These suggest that the size is more important for malig-
nancy prediction. The logistic regression models were not competitive for accuracy/AUC.

We also compared malignancy prediction between warped and cropped nodules. We found
that warped nodules give better malignancy prediction than cropped nodules. Warped nodules
will always contain the full nodule, but cropped nodules could have only part of the nodule
or some excess area around the nodule, which could be the reason that models using cropped
nodules perform worse. Results obtained from the cropped nodules are shown in Tables 5, 7, and
11 (in Appendix).

In Ref. 48, it was shown that a CNN can learn the size of an object even when an image is
resized. This experiment was performed on the COCO49 and the NLST dataset.

There were some limitations to this study. For this study, we used 2-D slices instead of 3-D
volumes. We experimented with 2-D slices to check the viability of providing size and clinical
information to build a CNN model. We utilized a semiautomatic segmentation approach and
analysis, which is a limitation for this study.

In conclusion, we found that dividing the nodules according to size and clinical information
for building predictive models gave better malignancy prediction. An ensemble of models built
on different size nodules and nodules from patients with different clinical features significantly
enhances malignancy prediction.

5 Appendix

In this section, we show the results obtained from the cropped lung nodules. We found the overall
best accuracy of 74.68% and AUC 0.83 from the 6- to 16-mm threshold and clinical features
using CNN1, as shown in Table 11.

Table 11 Results using CNNs by ensemble of size and clinical features (crop).

CNN
6 mm only +

clinical features
6 and 16 mm +
clinical features

6 and 8 mm +
clinical features

CNN1 72.57 (0.8) 74.68 (0.83) 73.83 (0.81)

CNN2 73.83 (0.81) 74.2 (0.82) 74.2 (0.82)

CNN3 72.5 (0.78) 73 (0.78) 72.5 (0.77)

Note: Accuracy and AUC in brackets obtained from after the ensemble of all clinical features and size are
shown in this table. Here we created an ensemble of overall results from Table 5 and ensemble results of
all clinical features from Table 7.
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