Skip to main content
. 2020 Apr 6;7(2):024502. doi: 10.1117/1.JMI.7.2.024502

Table 1.

CNN architectures.

CNN1 CNN2 CNN3
Layers Parameters Layers Parameters Layers Parameters
Input image 100×100 Input image 100×100 Left branch:  
Conv 1 64×5×5, pad 0, stride 1 Conv 1 64×5×5, pad 0, stride 1 Input image 100×100
Max pool 1 10×10
Leaky ReLU 1 Alpha = 0.01 Leaky ReLU 1 Alpha = 0.01 Dropout 0.1
Max pool 1 3×3, stride 3, pad 0 Max pool 1 3×3, stride 3, pad 0 Right branch: Input image 100×100
Conv 2 64×2×2, pad 0, stride 1 Conv 2 64×2×2, pad 0, stride 1 Conv 1 64×5×5, pad 0, stride 1
Leaky ReLU 2 Alpha = 0.01 Leaky ReLU 2 Alpha = 0.01 Leaky ReLU 1 Alpha = 0.01
Max pool 2 3×3, stride 3, pad 0 Max pool 2 3×3, stride 3, pad 0 Max pool 2a 3×3, stride 3, pad 0
Conv 2 64×2×2, pad 0, stride 1
Dropout 0.1 Dropout 0.1    
Fully connected 128 Fully connected 128 Leaky ReLU 2 Alpha = 0.01
1 + ReLU   1 + ReLU   Max pool 2b 3×3, stride 3, pad 0
Fully connected 8 LSTM 1 + ReLU 8 Dropout 0.1
2 + ReLU   L2 regularizer 0.01    
L2 regularizer 0.01 Dropout 0.25    
Dropout 0.25 Fully connected 2 1 sigmoid Merge left branch and right branch  
Fully connected 3 1 sigmoid     Conv 3 + ReLU 64×2×2, pad 0, stride 1
Max pool 3 2×2, stride 2, pad 0
L2 regularizer 0.01
Dropout 0.1
Fully connected 1 1 sigmoid
Total parameters: 841,681 Total parameters: 845,033 Total parameters: 39,553