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Abstract

Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and 
breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening 
tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance 
from sunlit leaf pixels collected from a plot (~2 m×2 m) in <1 min. Using field-grown Nicotiana tabacum with genetic-
ally altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive models for eight 
photosynthetic parameters and pigment traits. Using partial least squares regression (PLSR) analysis of plot-level 
sunlit vegetative reflectance pixels from a single visible near infra-red (VNIR) (400–900 nm) hyperspectral camera, we 
predict maximum carboxylation rate of Rubisco (Vc,max, R2=0.79) maximum electron transport rate in given conditions 
(J1800, R2=0.59), maximal light-saturated photosynthesis (Pmax, R2=0.54), chlorophyll content (R2=0.87), the Chl a/b ratio 
(R2=0.63), carbon content (R2=0.47), and nitrogen content (R2=0.49). Model predictions did not improve when using two 
cameras spanning 400–1800 nm, suggesting a robust, widely applicable and more ‘cost-effective’ pipeline requiring 
only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified 
species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved 
photosynthetic performance in field trials.
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Introduction

Projected population increase and pressures on land and agri-
cultural resource availability induced by a changing global cli-
mate is placing increased demand to secure global food supply 
in the coming decades (Tilman et al., 2009; Foley et al., 2011). 
Improving photosynthetic capacity has become a target to en-
able crop yield increases (Monteith and Moss, 1977; Long et al., 
2006; Zhu et al., 2010; Evans, 2013). Inefficiencies in the photo-
synthetic pathway have inspired research efforts to exploit nat-
ural variation in photosynthetic capacity (Lawson et al., 2012), 
and to improve photosynthetic pathways transgenically (Ort 
et al., 2015). Thus, crop scientists and breeders face the chal-
lenge of characterizing genetic improvements in field trials in a 
high-throughput manner as a screening tool to identify ‘photo-
synthetically superior’ germplasm (Furbank and Tester, 2011). 
While photosynthetic capacity has been successfully estimated 
from hyperspectral imaging at the ecosystem scale (Serbin 
et al., 2015), it is often too coarse in spatial resolution to dis-
criminate in mixed germplasm field trails. While hyperspectral 
analysis has predicted leaf-level photosynthetic capacities and 
pigment contents (Serbin et al., 2012; Ainsworth et al., 2014; 
Yendrek et al., 2017; Silva-Perez et al., 2018), it has limitations 
as leaf clip measurements only pinpoint a few individual leaves 
in a plot canopy. Currently there are limited tools to screen a 
whole plot, rather than individual leaves, for photosynthetic 
performance. Plot-level estimations with proximal sensing 
platforms are needed to allow rapid capture of reflectance from 
all sunlit vegetation in the sensor range, eliminating the need to 
make assumptions about plot performance based on leaf-level 
samples, and expanding the spatial and temporal capabilities of 
analysis to capture hundreds of plots in a single day.

The maximum carboxylation rate of Rubisco (Vc,max) and 
maximum electron transport rate in given conditions (Jmax) are 
widely used as determinants of photosynthetic capacity for the 
carbon reduction cycle and the electron transport chain, respect-
ively (von Caemmerer and Farquhar, 1981; von Caemmerer, 
2000), and are traditionally derived at the leaf level with infra-
red gas exchange analysis. The response of leaf-level CO2 assimi-
lation to incrementing CO2 is measured (Long and Bernacchi, 
2003) and analyzed (Sharkey et  al., 2007) according to the 
mechanistic model of photosynthesis (Farquhar et  al., 1980). 
The quantum yield of CO2 fixation (ϕCO2) and maximum 
light-saturated photosynthetic rates (Pmax) are also used as deter-
minants of photosynthetic operating efficiency, as derived from 
leaf-level gas exchange measurements of the response of CO2 
assimilation to incrementing photosynthetically active radiation 
(PAR) (Ögren and Evans, 1993). Due to the wealth of physio-
logical information provided, leaf-level gas exchange has dom-
inated retrieval of these photosynthetic parameters for decades, 
but it is limited and time restrictive for the sampling required 
to measure large crop trials. Additionally, upscaling from leaf gas 
exchange to determine plot or canopy photosynthetic capacity 
from gas exchange often requires complex modeling with many 
assumptions (de Wit, 1965; Evans and Farquhar, 1991; De Pury 
and Farquhar, 1997; Yin and Struik, 2017; Wu et al., 2019).

Recently, advances have been made in quantifying photo-
synthesis from spectral analysis at the leaf to ecosystem scales. 

At the leaf level, with a hand-held spectral leaf gun, photosyn-
thetic capacity (Vc,max and Jmax) and chlorophyll, carbon (C) and 
nitrogen (N) content have been predicted successfully from 
hand-held reflectance spectroscopy across the full electromag-
netic spectrum (400–2500 nm) for tree species (Serbin et al.,  
2012, 2016), productive cropping systems (Ainsworth  
et  al., 2014; Yendrek et  al., 2017; Silva-Perez et  al., 2018; Ely 
et al., 2019), and in field trials of Nicotiana tabacum with altered 
photosynthetic pathways (Fu et al., 2019; Meacham-Hensold 
et  al., 2019). Partial least squares regression (PLSR) analysis 
of reflectance spectra has also been applied to predict photo-
synthetic capacity with airborne hyperspectral imaging at the 
agroecosystem canopy scale (Serbin et al., 2015); however, the 
most advanced satellite hyperspectral systems capture ~1 pixel 
per 10–30 m (Transon et al., 2018), which is too coarse in spa-
tial resolution to identify genotypic variation within field trials 
of many small plots. Advanced UAV (unmanned aerial vehicle) 
systems are able to capture greater spatial resolution (~40 cm 
per pixel) (Zarco-Tejeda et al., 2013; Ruwaimana et al., 2018), 
but still fall short of the millimeter resolution required to 
build models to predict photosynthetic capacities at the scale 
of individual leaves in small plots. While multispectral cam-
eras are widely available at higher resolution and used to de-
rive plot-level spectral vegetation indices (SVIs) from discreet 
spectral wavelengths (Curran et al., 1990; Gamon et al., 1992; 
Thenkabail et al., 2000; Zarco-Tejada et al., 2002; Haboudane 
et  al., 2004), SVIs are not able to determine photosynthetic 
parameters beyond structural inference on physiological pro-
cesses from discreet spectral bands. Satellite-mounted multi-
spectral imaging systems have also been widely exploited to 
derive spectral indices such as the enhanced vegetation index 
(EVI) and normalized difference vegetation index (NDVI), 
and, more recently, solar-induced fluorescence (SIF) (Guanter 
et al., 2014; Porcar-Castell et al., 2014; Guan et al., 2016) and 
linked to ecosytem gross primary productivity (GPP) (Smith 
et al., 2002; Wylie et al., 2003; Rahman et al., 2005; Zhang et al., 
2014, 2018; Barnes et al., 2017; Shi et al., 2017; He et al., 2019). 
Multispectral SVI and SIF estimates have been incorporated 
into terrestrial biosphere models to predict photosynthetic 
capacities at the ecosystem scale (Demarty et al., 2007; Kattge 
et al., 2009; Zhang et al., 2014), but have not been used to pre-
dict photosynthetic capacity in smaller scale plot trials.

Resolving hyperspectral analysis of photosynthetic parameters 
at the plot level holds many practical and technical challenges. 
First, hyperspectral cameras and sensors that capture reflectance 
at the spatial and spectral resolution required for plot-level ana-
lysis are often limiting in terms of availability, affordability, and 
suitability for field trial scanning. Secondly, field phenotyping 
proximal sensing platforms (Deery et al., 2014) to house such 
sensors are not currently commercially available and need to 
be fabricated for purpose. Thirdly, hyperspectral imaging sys-
tems generate memory-intensive three-dimensional data sets 
with two spatial dimensions (Sx and Sy) and one spectral (Sλ) 
dimension, forming ‘hypercubes’ (Bannon, 2009), necessitating 
advanced data storage systems and custom analysis pipelines. 
Fourthly, at the plot level, plant geometrical structure, leaf 
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scattering properties, background soil, and dynamic environ-
mental conditions (Verhoef, 1984; Vogelman et  al., 1996; Gao 
et al., 2000; Jay et al., 2016) need to be resolved against leaf-level 
‘ground truth’ measurements to accurately infer photosynthetic 
performance upscaled from leaf to plot level. Finally, ensuring 
use of this technology answers important physiological questions 
requires effective interdisciplinary collaboration between engin-
eering, computational, and biological specialists.

In this study, we present a plot-level high-throughput 
phenotyping platform housing two hyperspectral cameras. 
One visible near infra-red (VNIR) camera captured reflect-
ance from 400 nm to 900 nm (spectral resolution 2.1 nm) and 
the second near infra-red (NIR)/shortwave infra-red (SWIR) 
camera from 900 nm to 1800 nm (spectral resolution 4.9 nm). 
We created an automated hyperspectral imaging processing 
pipeline that extracts plot-level sunlit vegetation pixel reflect-
ance spectrum to predict Vc,max, J1800, chlorophyll content, Chl 
a:b, C content, N content, Pmax, and ϕCO2. From PLSR ana-
lysis of plot-level reflectance spectra from hyperspectral images, 
we predict these photosynthetic traits in field trials of wild-
type and genetically modified lines of N. tabacum. We assess the 
contribution of spectral regions and the applicability of this 
technique to the field phenotyping community, and offer a 
tool for high-throughput phenotyping of large-scale crop trials 
to facilitate screening for increasing crop yields.

Materials and methods
Data from two growing seasons (2017 and 2018) were used in this study, 
presented in two performance tests. For performance test 1, three wild-type 
and seven transgenic N. tabacum lines were measured over the 2017 and 
2018 growing seasons (Table 1). Measurements in 2017 were taken from 
22 June to 1 August and in 2018 on 24 and 25 July. For performance test 
2, two wild-type and eight transgenic N. tabacum plants were measured in 
2018 on 26, 27, and 28 July. In performance test 1, predictive models were 
built from hyperspectral reflectance (both leaf and plot level) with ground 
truth data from gas exchange measurement of CO2 response curves for 
Vc,max and J1800, and leaf pigment extractions for chlorophyll content, Chl 
a:b, C content, and N content. For performance test 2, predictive models 
for plot- and leaf-level Pmax and ϕCO2 were trained with ground truth data 
from gas exchange measurement of light response curves.

Plant material
In 2017, three wild-type N. tabacum cultivars and six transgenically modi-
fied lines (described in detail in Table 1) were grown at the University 
of Illinois Energy Farm Facility in Urbana, Illinois (40°03'46.4''N, 
88°12'25.4''W, 215 m above sea level). All experiments consisted of four 
replicated plots of each genotype arranged in a 6×6 grid and spaced 
0.38 m apart with 36 plants per plot. Each plot measured ~2×2 m. All 
transgenic material is expressed in the Petite Havana background, with 
the exception of the Rubisco antisense lines in the W38 background. 
Seedlings were germinated in greenhouse conditions in float trays using 
a coir soil mix (Coco loco) maintained daily at 150  ppm N using a 
20–20–20 general-purpose water-soluble fertilizer. Plants were trans-
planted to the field at the four-leaf stage. High levels of ESN Smart 
Nitrogen (310 kg ha–1, ~150 ppm soil concentration) were applied to 
the field site 2 weeks prior to transplanting. A broad action herbicide, 
glyphosate-isopropylammonium (41%) (Killzall; VPG) (15 liters at 70 g 
l–1) was applied once to all plots 2 d prior to transplanting. A biological 
pesticide Bacillus thuringiensis var. kurstaki (54%) (DiPel PRO) was applied 
to the prepared field site 5 d prior to transplant and at biweekly intervals 
thereafter to control for tobacco pests. Irrigation was provided to all plots 
as needed to eliminate water limitation throughout growth.

In 2018, two wild-type, five previously grown transgenic lines, and 
three newly added transgenic lines (described in detail in Table 1) were 
grown according to the same protocol as in 2017. All transgenic plant 
material was homozygous, with the exception of the single Rubisco anti-
sense and decreased PsbS line (4-KO). Single Rubisco antisense plants 
were planted to the field without screening. The 4-KO seedlings were 
screened 8 d post-emergence with chlorophyll fluorescence imaging to 
identify and select only plants with the PsbS knockout phenotype for low 
non-photochemical quenching (NPQ).

Hyperspectral image collection
A ground-based field phenotyping platform was built to house two 
hyperspectral push-broom cameras mounted on a horizontal beam 
(Fig. 1A). The first hyperspectral imaging camera (PIKA II; Resonon, Inc., 
Bozeman, MT, USA) captured spectral radiation from 400 nm to 900 nm 
in 2.1 nm contiguous bands (240 spectral bands in total) with 640 spatial 
channels. The second camera (PIKA NIR: Resonon, Inc.) recorded spec-
tral radiation from 900 nm to 1800 nm in 4.9 nm contiguous bands (164 
spectral bands) with 320 spatial channels. Both cameras were mounted at a 
height of 1.6 m from the soil and were triggered simultaneously above a plot 
to acquire two images during an ~30 s scan. Images were captured in high-
irradiance conditions during a 3 h window around solar noon and stored 
using SpectrononPro software (Resonon, Inc.). A  99% reflective white 
Teflon panel was mounted horizontally and level with the top of the plant 
canopy and captured in the field of view for each image (Fig. 1B). Images 
were captured and stored in raw data mode. The cameras were calibrated to 
remove electrical and dark current daily prior to data acquisition. Camera 
integration time was set at 20% below the saturation point according to the 
radiance signal from the Teflon panel before each scan to avoid saturation.

Hyperspectral image analysis pipeline
An automated image analysis pipeline was created using Python (Python 
Software Foundation, https://www.python.org/), to extract spectral re-
flectance from images acquired in raw data mode (Fig. 2A). Data from 
each camera went through the same three phases of processing: first, 
conversion of raw data in digital numbers to radiance using radiometric 
calibration; secondly, the classification of pixels (Fig.  2B); and, thirdly, 
conversion of radiance pixels to reflectance (Fig. 2C). For the first phase, 
raw data were converted to absolute radiance using radiometric calibra-
tion files from the camera manufacturer. In the second phase, the image 
was segregated to represent six matter classifications using K-means clus-
tering (Spath, 1985) which separated pixels of interest (sunlit leaves and 
Teflon) from shaded leaves, soil, platform shadow, and non-biological 
matter. Thirdly, reflectance (R) was calculated using the radiance signa-
ture from the Teflon white reference captured in each image against a 
lab-calibrated Teflon standard using Equation 1:

R =
Ssunlit
Sref

∗Rref (1)

where Ssunlit is radiance from sunlit leaves, Sref is radiance from the Teflon panel, 
and Rref is the percentage reflectance from the lab-calibrated Teflon standard. 
Brightness in digital numbers was converted to percentage reflectance (Fig. 
2D), before reflectance from all sunlit pixels in each image was averaged per 
plot (Fig. 2E). Spectral reflectance from both cameras in the same plot was 
joined to give reflectance for sunlit leaves per plot from 400 nm to 1800 nm. 
Spectra were filtered with a polynomial order of 2 using 11 spectral measure-
ments (nm) as the window length (Savitzky and Golay, 1964). Prior to PLSR 
analysis, spectral bands below 450 nm and above 1700 nm were removed due 
to excess noise, and those between 1313 nm and 1440 nm were removed due 
to atmospheric water absorption (Hill and Jones, 2000; Serbin et al., 2015).

Leaf spectral measurements
Leaf-level spectral measurements were made using a spectroradiometer 
(Fieldspec4; Analytical Spectral Devices - ASD, Boulder, CO, USA), with 
a leaf clip attached to a fiber optic cable. Leaf spectral reflectance was 
measured in situ from 400 nm to 2500 nm with spectral resolution of 

https://www.python.org/
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3 nm in the visible and NIR spectra (350–1000 nm) and 8 nm in SWIR 
(1000–2500 nm) spectra. The device houses a radiometrically calibrated 
light source which was standardized for relative reflectance prior to meas-
urement using a Spectralon (Labsphere Inc., North Dutton, NH, USA) 
panel for white reference. In 2017, three leaves were sampled per plot and 

five per plot in 2018. Measurements were made on the last fully expanded 
leaf, maintaining natural leaf orientation avoiding the leaf midrib and 
edges. On a single leaf, six reflectance spectra were recorded using the leaf 
clip attachment in different regions of the same leaf. The six spectra for 
a single leaf were then averaged to give a mean spectrum per leaf. Each 

Table 1. Nicotiana tabacum genotypes used in this study and description of transgenic modification, with reference to detailed 
description of transformation

Genotype Year(s) grown Transgene Expected transgene function

Petite Havana 2017 and 2018 None (WT) NA
Samsun 2017 and 2018 None (WT) NA
Mammoth 2017 None (WT) NA
Single R  
antisense

2017 Rubisco small subunit antisense from Nicotiana benthamiana. 40% of 
wild-type Rubisco, background: W38 (Hudson et al., 1992)

Reduced photosynthetic capacity

Double R 
antisense

2017 and 2018 Rubisco small subunit antisense from Nicotiana benthamiana. 10% of 
wild-type Rubisco, background: W38 (Hudson et al., 1992)

Reduced photosynthetic capacity

Bypass AP3 2017 and 2018 Two transgenic genes expressing the enzymes glycolate dehydrogenase 
and malate synthase as an alternative photorespiratory pathway, back-
ground: Petite Havana (South et al., 2019)

Increased photosynthetic capacity, 
by reduction of energy loss  
associated with photorespiration.

Bypass AP3/
RNAi

2018 Same as Bypass AP3 but with RNAi to down-regulate native chloroplast 
glycolate transport, background: Petite Havana (South et al., 2019).

Increased photosynthetic capacity, 
by reduction of energy loss  
associated with photorespiration.

PSBS-43 2017 and 2018 Increased PsbS mRNA levels from transformation with Nicotiana 

benthamiana Psbs coding sequence and 35S promoter, background: 
Petite Havana (Głowacka et al., 2016, 2018)

Increased photosynthetic  
capacity, due to increase in elec-
tron transport metabolite pools.

Psbs-4 2017 and 2018 Decreased PsbS mRNA levels from transformation with Nicotiana 

benthamiana Psbs coding sequence and 35S promoter, background: 
Petite Havana (Głowacka et al., 2016, 2018)

Reduced photosynthetic capacity, 
due to decreased electron  
transport metabolite pools.

VPZ-23 2017 and 2018 Three transgenes from Arabidopsis thaliana, expressing violaxanthin 
de-epoxidase (VDE), zeaxanthin epoxidase (ZEP), and PSII subunit S 
(psbS), background: Petite Havana (Kromdijk et al., 2016)

Increased photosynthetic capacity, 
due to overexpressed xanthophyll 
cycle enzymes.

LMD 2018 Transgene from Arabidopsis thaliana expressing plastid division protein 
(FtsZ), background: Petite Havana.

Low mesophyll density: increased 
chloroplast size and decreased 
chloroplast number.

LCD 2018 Decreased mRNA levels of low cell density (LCD1) homolog of Nicotiana 

tabacum by RNAi, background: Petite Havana.
Low mesophyll cell density and 
lowered photosynthetic capacity

Fig. 1. A ground-based phenotyping platform housing two hyperspectral cameras and an RGB camera (A), with a moveable white reflectance panel 
mounted at the top of the canopy level (B).
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single measurement was the mean of 10 scans at a scan speed of 100 ms. 
A spectral splice correction was applied to each spectrum to remove heat 
drift effects that may shift the sensors and align the visible and SWIR 
sensors to the NIR sensors within the Fieldspec4, using the FieldSpectra 
package in R according to Serbin et al. (2015). For quality control, spectra 
with abnormally high light levels at 450 nm were excluded from analysis 
to ensure the leaf clip was properly fastened onto the leaf for each meas-
urement. Spectral samples with a deviation from the mean reflectance 
>2% were eliminated from analysis along with leaves with fewer than 
four viable spectra.

Predictive PLSR models for all traits were built at both leaf and canopy 
levels for comparisons. For plot-level models, the averaged ground truth 
subsamples (three leaf measurements in 2017 and five leaf measurements 
in 2018) from each plot were used as input for model building and valid-
ation. For leaf-level models, each individual leaf subsample measurement 
was included as a training data point without averaging per plot.

PLSR analysis
Predictive models were built for eight traits, following PLS principles 
(Wold et  al., 2001) according to the protocol of Serbin et  al. (2015), 

modified for N. tabacum. Although in our previous work (Fu et al., 2019), 
multiple stacked machine learning algorithms showed increased predict-
ability (+5% for R2) of photosynthetic capacity (Vc,max), we used PLSR 
only in this work given the ability to derive scaling coefficients across the 
electromagnetic spectra from this technique, which allow inference of 
important contributing regions of the spectra for trait prediction. Unlike 
other predictive algorithms, PLSR coefficient loadings can be calculated 
to infer the physiological importance of specific spectral bands based on 
known vegetation spectral properties, and thus can be used to confirm 
the biological relevance of model builds between different devices and 
scales.

We used the open-source PLS package (Mevik and Wehrens, 2007) in 
R (The R Foundation for Statistical Computing, Wien, Austria) to create 
a linear model of waveband coefficients that account for trait variation in 
reflectance spectra. The optimal number of components (latent variables: 
LVs) for each model build was determined from the minimum root mean 
square error (RMSE) of the predicted residual sum of squares (PRESS) 
statistic (Esbensen et  al., 2002), using a leave-one-out cross-validation 
(CV) approach that then makes a prediction for the out-of-sample ob-
servation (Siegmann and Jarmer, 2015). This prevents overfitting. Models 
were trained with data pairs of leaf or plot reflectance and a ground truth 

Fig. 2. Example of the hyperspectral image analysis processing workflow. Images are captured in raw data mode (digital numbers) and represented as 
an RBG image (A). Pixels are separated into categories using K-means clustering (B) to extract all sunlit leaf pixels, and converted to reflectance (C) from 
raw data in digital numbers (D). Mean value and the SD of all sunlit leaf reflectance pixels are computed (D).
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measurement, and cross-validated with 1000 times random resampling to 
determine model stability. All model R2 values presented herein are from 
this CV. Loading weights indicate known spectral peaks or profiles for 
each model and are translated to the variable importance in projection 
(VIP), calculated as the weighted sum of squares of PLS weights (Wold 
et al., 2001; Farrés et al., 2015).

Temperature corrections were not applied to bring photosynthetic 
parameters to a standard temperature prior to model fitting; absolute plot 
temperature was not measured at the time of image capture. As such, all 
leaf- and plot-level models include temperature variation. No outliers 
were removed from the predictive models presented.

Infra-red gas exchange measurements

CO2 response
Photosynthetic (A) versus intercellular CO2 (Ci) response curves were col-
lected within 30 min of the leaf spectral measurements on the same last fully 
expanded leaves to determine Vc,max and J1800 for each leaf using a portable 
leaf gas exchange system with a leaf cuvette (LI-6800; LICOR Biosciences, 
Lincoln, NE, USA). Four machines were used by four operators to ensure 
unbiased sampling. Leaf temperature was determined as the mean of three 
measurements with a hand-held IR gun (FLIR TG54, FLIR® Systems, 
Inc., Wilsonville, OR, USA). Leaf temperature for gas exchange was set to 
match this mean leaf temperature prior to each CO2 response curve, and 
relative humidity was set to 65%. PAR was set to 1800 µmol m−2 s−1, and 
CO2 concentrations were adjusted stepwise over a range of 50–2000 µmol 
mol−1 in set increments as follows: 400, 200, 50, 100, 300, 400, 600, 900, 
1200, 1500, 1800, and 2000. Leaves were acclimated to chamber conditions 
for a minimum of 160 s prior to each A/Ci curve with a minimum and 
maximum wait time of 160 s and 200 s, respectively, before each individual 
measurement of a response curve. Vc,max and J1800 were determined from 
these A/Ci curves according to the mechanistic model of photosynthesis 
(Farquhar et al., 1980) and analyzed using a curve fitting utility developed 
by Sharkey et al. (2007). While light response curves were carried out prior 
to analysis to determine saturating light intensity as ~1800 µmol m−2 s−1; 
we refer to maximum electron transport as J1800 rather than Jmax to avoid 
potential false claims of true maximal capacity (Sharkey, 2016). Mesophyll 
conductance (gm) was constrained according to values for tobacco at 25 °C 
reported previously, with temperature dependency incorporated from the 
linear relationship of gm with temperature where y= –0.44 + 0.058x (Evans 
and von Caemmerer, 2013).

Light response
In performance test 2, to train the Pmax and ϕCO2 PLSR models, photo-
synthetic (A) versus irradiance (Q) response curves were collected within 
30 min of leaf spectral measurements, on the same leaves, with a portable 
leaf gas exchange system (LI-6800; LICOR Biosciences). All environ-
mental settings matched those for A/Ci response curves (temperature to 
match ambient, relative humidity 65%), but with CO2 set to 400 µmol 
mol−1. Irradiance concentrations were adjusted stepwise over a range of 
2000–0 µmol m−2 s−1 in set increments as follows: 2000, 1800, 1400, 1000, 
600, 400, 200, 150, 100, 75, 50, and 0.

Leaf absorption for each genotype was determined using an 
integrating sphere (LI-1800; LICOR Biosciences) connected to a 
spectrometer (USB-2000; Ocean Optics Inc., Dunedin, FL, USA) as 
the mean absorptance of six last fully expanded leaves (Supplementary 
Table S1 at JXB online) measured on the last day of performance test 
2 (29 July 2018). A/Q curves were then corrected for absorbed ir-
radiance (Ia). ϕCO2 was calculated as the slope of the relationship be-
tween A and absorbed irradiance below 150 µmol m−2 s−1. Pmax was 
calculated by a non-rectangular curve fit according to Thornley and 
Johnson (1990) as:

Pmax =
Ia + Pmax −

»
(Ia + Pmax)

2 − 4Ia θPmax
2θ

− Rd

where Pmax is maximum light-saturated photosynthesis, ϕ is quantum 
yield, Ia is absorbed irradiance, θ is the curvature factor, and Rd is the dark 
respiration rate.

Chlorophyll, carbon, and nitrogen content
In performance test 1, immediately following each leaf spectral measure-
ment, a 2.01 cm2 leaf disc was destructively harvested from each leaf using 
a cork borer, placed in 2 ml tubes and flash-frozen in liquid nitrogen. To 
determine leaf chlorophyll (mg m–1), one leaf disc from each leaf was 
incubated in 96% (v/v) ethanol for 24 h at 4 °C. The bleached material 
and ethanol were mixed (100 µl of solution for each sample) and analyzed 
with a Synergy 2 photospectrometer (BioTek Instruments, Inc, Winooski, 
VT, USA) at 470, 649, and 665 nm (Lichtenthaler and Wellburn, 1983). 
To determine leaf carbon and nitrogen content (%), three more 2.01 cm2 
leaf discs were destructively harvested, and dried until constant mass, and 
a subset of ground tissue of known mass (3±0.5  mg) was combusted 
with oxygen in an elemental analyzer (Costech 4010; Costech Analytical 
Technologies) and calibrated to %N and %C against an acetanilide 
standard curve.

Results

Physiological and spectral characteristics

Our models captured a wide range of natural and genetically 
altered trait variation over consecutive growing seasons (2017 
and 2018). For performance test 1, averaged plot-level meas-
urements of observed Vc,max, J1800, chlorophyll content, Chl a:b, 
N content, and C content (Supplementary Fig. S1A–F) in-
clude variation of environmental and meteorological condi-
tions (between three and five subsamples per plot), with Vc,max 
from 13.4 µmol m−2 s−1 to 359.3 µmol m−2 s−1 (Supplementary 
Fig. S1A), J1800 from 54.9 µmol m−2 s−1 to 362.1 µmol m−2 s−1 
(Supplementary Fig. S1B), chlorophyll content from 0.1 mg m–2 
to 0.3 mg m–2 (Supplementary Fig. S1C), Chl a:b from 1.7 to 
3.7 (Fig. S1D), N content from 2.53% to 8.4% (Supplementary 
Fig. S1E), and C content from 36.2% to 47.4% (Supplementay 
Fig. S1F). In performance test 2, from light response curves 
measured between 26 and 29 July in 2018, Pmax ranged be-
tween 4.1 µmol m−2 s−1 and 77.7 µmol m−2 s−1 (Supplementary 
Fig. S1G), and ϕCO2 ranged between 0.024 µmol m−2 s−1 and 
0.064 µmol m−2 s−1 (Supplementary Fig. S1H). Hyperspectral 
reflectance from all sunlit pixels per plot used to build PLSR 
models for all traits exhibit a peak centering at ~550 nm and 
high reflectivity in the NIR from 800 nm to 1300 nm, and 
a smaller peak developing from 1440  nm to 1800  nm, fol-
lowing the expected spectral profile pattern. However reflect-
ance values are slightly lower than expected between 900nm 
and 1250 nm (Fig. 3).

Plot-level PLSR predictions

The corresponding reflectance spectrum from all sunlit pixels 
per plot (Fig.  3) paired with the observed, measured traits 
(Supplementary Fig. S1) produced robust predictive plot-level 
models for all traits other than ϕCO2. Mean spectra used for 
each model build in performance test 1 varied slightly, as spectra 
without a paired ‘ground truth’ sample for each trait were elimin-
ated from model build data sets (Fig. 3). For example, in the SSuD 
genotype, J1800 could not be determined from gas exchange as 
the low Rubisco content meant this genotype was never elec-
tron transport limited but instead always Rubisco limited. Given 
that J1800 could not be calculated, the J1800 spectral sample size 
is reduced compared with the Vc,max model build (Fig. 3A, B). 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
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Similarly, a small number of leaf disc samples for leaf chlorophyll, 
carbon, and nitrogen content were lost in transportation, storage, 
or during analysis, creating slight variation in spectral sample used 
for chlorophyll (Fig. 3C), and C and N (Fig. 3D) model builds.

Using reflectance spectra from 450–900 nm only, collected 
with a single VNIR hyperspectral camera, Vc,max (R2 0.79, 
RMSE% 11.9), J1800 (R

2 0.59, RMSE% 11.5), chlorophyll con-
tent (R2 0.87, RMSE% 10), Chl a:b (R2 0.63, RMSE% 18.5), 
and Pmax (R

2 0.54, RMSE% 10.6) were highly predictable from 
PLS hyperspectral regression models (Fig. 4; Table 2). PLSR 
predictions performed moderately well for C content (R2 0.47, 
RMSE% 18.7, Fig.  4E) and N content (R2 0.49, RMSE% 
15.9%, Fig.  4F), but offered no predictability for ϕCO2 (R

2 
0.02, RMSE%, Fig.  4H; Table  2). When compared with the 
single camera models, PLSR models using both hyperspectral 
cameras (Fig.  5) had weakened predictive power (lower R2 
and increased RMSE%) for all traits, except Chl a:b (Table 2). 
Using both cameras, Vc,max (R

2 0.74, RMSE% 13.1, Fig. 5B), 
R2 decreased by 5% and RMSE% increased by 1.9%. However, 
for Chl a:b, predictability increases when both cameras are used 
(R2 0.77, RMSE% 14, Fig. 5D), where R2 increases by 14%, 
and RMSE% decreases by 4.5% (Table 2).

Model loading weights indicate the importance of regions of 
the reflectance spectra for trait variation. For plot-level PLSR 
predictions with a single VNIR camera (450–900 nm), the re-
gion around 700 nm is important for all traits (Fig. 6). When 
translated to a VIP score for easier interpretation (Fig. 7), 700 nm 
is shown to be the most important region for Vc,max, J1800, and 
chlorophyll content predictions. While ~700 nm is important 
for all other traits, for C and N content regions from 500 nm to 
650 nm and from ~820 nm and ~870 nm in the NIR also hold 
importance (Fig. 7C, D). For Chl a:b and Pmax, the entire NIR 
from 700 nm to 900 nm holds weight. When plot-level model 
loadings (Fig. 6) and VIP scores (Fig. 7) are compared with those 
from leaf-level PLSR models built using the same leaves that 
ground truth the plot-level models, they generally follow the 
same response pattern for all traits, with the exception of VIP 
scores for Chl a:b (Fig. 7D) and ϕCO2 (Fig. 7H).

Leaf-level PLSR models

When leaf-level PLSR models were built to include different spec-
tral ranges (500–900, 500–1700, and 500–2400 nm), only Vc,max, 
N content, and Pmax predictability showed minor improvement 

Fig. 3. Mean plot-level sunlit leaf reflectance for all spectra included in plot-level PLSR models, from performance test 1, Vc,max (A), J1800 (B), chlorophyll 
content and Chl a:b (C), and C and N content (D), and performance test 2, Pmax and ϕCO2 (E). Spectra are obtained from our automated image analysis 
pipeline with the atmospheric water absorption band at 1313–1440 nm removed, and displayed with the minimum and maximum from all data and 95% 
confidence intervals. n=the number of plots the spectra represent. Sample size for each trait varies dependent on the amount of viable ground truth 
samples taken for each trait.
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with greater spectral range (Table 3). The CV R2 for Vc,max re-
mained the same when the model used reflectance from 500 nm 
to 1700 nm, rather than from 500 nm to 900 nm, but there was 

a 2% increase when the full spectrum was used (500–2400 nm). 
For Pmax CV, R2 increased by 7% when the spectral bandwidth 
matched that of both hyperspectral cameras (500–1700  nm) 

Fig. 4. Comparison between observed photosynthetic parameters and those predicted from PLS regression of plot-level sunlit leaf reflectance using 
a single VNIR hyperspectral camera (450–900 nm) for Vc,max (A), J1800 (B), chlorophyll content (C), Chl a:b (D), C content (E), and N content (F) in 
performance test 1, and Pmax (G) and ϕCO2 (H) in performance test 2. Observed parameters are the mean of 3–5 leaf-level ground truth measurements, 
and predictions are the mean of 1000 times cross-validation of the model.
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rather than with the single VNIR only (500–900 nm), but no 
benefit was seen with the addition of the SWIR (1700–2400 nm). 
Leaf N content is the only trait for which improved predictability 
correlated with increased spectral range, with a 3% increase in 
CV R2 using 500–1700 nm, and a further 7% increase using 500–
2400 nm (Table 2). Unlike the plot-level ϕCO2 model, ϕCO2 
was highly predictable from PLSR analysis of leaf-level spectral 
reflectance (CV R2 between 0.61 and 0.63, Table 3).

For PLSR models built at the leaf level for three different 
spectral ranges (500–900, 500–1700, and 500–2400  nm, 
Fig. 8A–H), VIP scores in the VNIR from 400 nm to 800 nm 
were larger than those in the NIR and SWIR from 800 nm 
to 2400 nm, for all traits other than leaf C and N contents. For 
C (Fig. 8E) and N (Fig. 8F) contents, VIP peaks at ~1400 nm 
and 1900 nm suggest these regions also hold high importance 
for predictability. Comparing VIP scores for models built with 
a single VNIR camera (Pika II, 450–900 nm) showed greater 
variability than those for models built with two cameras (Pika 
II and Pika NIR, Fig. 8I–P). While all models had high VIP 
scores between 450 nm and 900 nm, and C and N contents 
followed a similar pattern seen at the leaf level (Fig. 8M, N), 
Vcmax and J1800 also had VIP peaks at ~1100 nm and 1700 nm 
(Fig. 8I, J). VIP scores for plot-level ϕCO2 models were not 
shown due to the lack of predictability of this parameter with 
hyperspectral imaging in this study.

Discussion

Results show that photosynthetic capacity (Vc,max and J1800), 
maximum light-saturated photosynthesis (Pmax), and associ-
ated photosynthetic pigment contents (C, N, chlorophyll, and 
Chl a:b) can be predicted using high-throughput proximal 
plot-level hyperspectral imaging. PLSR analysis of reflectance 
spectra is now well established as a robust tool for estimating 
photosynthetic performance at the leaf level (Serbin et al., 2012; 
Ainsworth et al., 2014; Yendrek et al., 2017; Silva-Perez et al., 
2018), and the technique holds integrity when used on plants 
with altered photosynthetic pathways (Meacham-Hensold 
et al., 2019). At a broader spatio-temporal scale, data collected 

with the Airbourne Visible Infrared Imaging spectrometer 
(AVIRIS) has been used with PLSR analysis of reflectance 
spectra to successfully predict photosynthetic capacity (Vc,max) 
at the agroecosystem canopy level, providing lessons for eco-
system and earth system models (Serbin et al., 2015). The re-
sults here offer a tool to measure between these contrasting 
scales to derive photosynthetic capacity as a crop breeding 
selection tool. The predictive models presented in this study 
show the utility of hyperspectral imaging as a tool for plot-
level phenotyping for superior photosynthetic performance in 
large-scale field trials, offering potential to screen hundreds of 
accessions in a single day.

Spectral compositional features

Electromagnetic energy in the visible range provides the en-
ergy for photosynthesis, and absorption in the visible region 
specifically between 660 nm and 700 nm is of high importance 
for photosynthetic predictions from reflectance spectra (Serbin 
et al., 2012; Silva-Perez et al., 2018; Fu et al., 2019; Meacham-
Hensold et al., 2019). Similarly, the region of transition from 
low reflectivity in the visible range to higher reflectivity in 
the NIR (~750 nm), termed ‘red-edge’, has been utilized to 
predict Vc,max (Dillen et al., 2012) and is also heavily weighted 
in previous PLSR predictive model loadings (Yendrek et  al., 
2017; Silva-Perez et al., 2018; Meacham-Hensold et al., 2019). 
These relationships are underpinned by the importance of 
chlorophyll, nitrogen, and Rubisco in photosynthetic processes 
(Evans, 1989) and the dominating influence of these pigments 
on reflectance spectra from 500 nm to 800 nm (Curran, 1989; 
Elvidge, 1990; Ustin et al., 2009). VIP scores quantify the con-
tribution of each variable (spectral bands) to overall variance 
and, in this study, when models were built using data from a 
single VNIR camera (450–900 nm), the greatest peaks in VIP 
scores are also in the chlorophyll absorption bands and the red-
edge regions for Vc,max and J1800, Pmax, chlorophyll content, and 
N content (Fig.  7), fitting with previous spectral reflectance 
compositional observations (Farrés et al., 2015).

Previous leaf-level studies show that some regions of the 
lower energy NIR, particularly ~1400 nm, are also important 

Table 2. PLSR stability statistics for models built with a single camera (450–900 nm), and for models built with both cameras 
(450–1700 nm) 

Trait 450–900 nm (Pika II) 450–1700 nm (Pika II+Pika NIR)

Train R2 CV R2 RMSE  
(trait unit)

RMSE (%) Bias 
(trait 
unit)

Train R2 CV R2 RMSE  
(trait unit)

RMSE (%) Bias  
(trait unit)

Change 
in CV R2 
(%)

Change 
in RMSE 
(%)

Vc,max  (µmol m–2 s–1) 0.91 0.79 38.7 11.2 -0.49 0.96 0.74 45.3 13.1 1.64 -5 +1.9

J1800 (µmol m–2 s–1) 0.88 0.59 35.3 11.5 -0.39 0.95 0.52 41.1 13.4 3.42 -7 +1.9

Chlorophyll (mg m–2) 0.98 0.87 0.02 10 0.002 0.98 0.55 0.03 15 –0.0008 -32 +5
Chl a:b 0.95 0.63 0.37 18.5 0.103 0.97 0.77 0.28 14 0.024 +15 –4.5
C content (%) 0.9 0.47 3.1 27.6 0.23 0.91 0.28 2.6 23.1 0.15 -19 +4.4
N content (%) 0.85 0.49 0.93 15.5 -0.32 0.95 0.40 1 17 –0.007 -9 +1.2

Pmax (µmol m–2 s–1) 0.82 0.54 7.77 1.06 0.12 0.91 0.50 8.52 11.6 0.75 -4 +1

ϕCO2  
(quanta/A µmol m–2 s–1)

0.35 0.02 3.33 8325 0.014 0.5 0.01 3.79 9475 -0.099 -0.1 +1150
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for photosynthetic PLSR predictions (Yendrek et  al., 2017). 
However, in this study, plot-level models built using reflect-
ance in the VNIR range only (450–900  nm) give greater 

predictability than those using reflectance from a greater spec-
tral range (450–1700 nm) (Figs 4, 5; Table 3). This was unex-
pected and may be the result of compounding factors. In our 

Fig. 5. Comparison between observed photosynthetic parameters and those predicted from PLS regression of plot-level sunlit leaf reflectance using 
both VNIR hyperspectral camera (450–900 nm) and NIR/SWIR (900–1700 nm) cameras for Vc,max (A), J1800 (B), chlorophyll content (C), Chl a:b (D), C 
content (E), and N content (F) in performance test 1, and Pmax (G) and ϕCO2 (H) in performance test 2. Observed parameters are the mean of 3–5 leaf-
level ground truth measurements, and predictions are the mean of 1000 times cross-validation of the model.
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plot-level analysis using both cameras (450–1700 nm), we re-
moved reflectance between 1313 nm and 1440 nm given con-
volution of reflectance spectra in that region from atmospheric 
water absorption properties (Hill and Jones, 2000; Serbin et al., 

2015), where removal of these bands is unnecessary when 
using a leaf clip with an artificial light source. Thus, it follows, 
with the absence of reflectance at ~1400 nm, that the spec-
tral region detected by the single VNIR camera (400–900 nm) 

Fig. 6. Model loadings from leaf-level and plot-level PLSR models from 450–900 nm for all traits: Vc,max (A), J1800 (B), chlorophyll content (C), Chl a:b (D), 
C content (E), and N content (F) in performance test 1, and Pmax (G) and ϕCO2 (H) in performance test 2.
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captures the most important regions for photosynthetic pre-
dictions. This offers one possible explanation for the strength 
of PLSR predictions for all parameters in this study from the 

single VNIR camera (Fig.  4). In addition, when reflectance 
spectra from both cameras (450–1700 nm) were used to build 
predictive models, VIP scores for chlorophyll content (Fig. 8K), 
Chl a:b (Fig. 8L), and Pmax (Fig. 8P) show that reflectance from 
the NIR above 900 nm holds little or no importance (Fig. 8). 
This is not surprising given that the absorption of chloro-
phyll occurs in the visible range (Ustin et al., 2009) and that 
Pmax should be highly related to pigment and pigment pool 
distributions. However, for Vc,max (Fig.  8I), J1800 (Fig.  8J), C 
content (Fig. 8M), and N content (Fig. 8N), while VIP peaks 
between 400 nm and 900 nm dominate, peaks at ~1150 nm 
and 1750 nm are present, suggesting secondary importance of 
these regions. Despite the known spectral properties for N and 
C contents in these regions (Curran, 1989; Asner and Martin, 
2008), and similarly high VIP scores around ~1100 nm in pre-
dictions of Vc,max from airborne spectroscopy (Serbin et  al., 
2015), models for these three parameters built with reflectance 
from both cameras (450–1700 nm) rather than just the VNIR 
(450–900 nm) are weaker (Figs 4, 5; Table 2).

Chl a:b is the only trait for which predictions improve when 
two cameras (450–1700 nm) are used for the model build ra-
ther than the single VNIR (450–900  nm) camera (Figs  4D, 
5D). With known chlorophyll absorption dominant only in the 
visible range, supported by the low loading values for the leaf 
level Chl a:b models above 900 nm (Fig. 8D), this raises ques-
tions as to the cause of improved predictability when adding 
reflectance spectra above 900 nm. This is probably due to the 
dilution effect for spectral regions of physiological importance 
when a ratio of two physiological traits is presented. While the 
Chl a:b model is unlikely to be overfit given the reliance on 
the PRESS statistic in latent variable number selection, physio-
logical importance is reduced, allowing ‘statistical’ number 
training rather than physiologically based ‘trait’ training. Thus 
care should be taken to eliminate spectral regions shown to 
hold little weight for the original trait pair when using this 
PLSR technique to predict ratio values.

Leaf-level comparisons

In attempts to understand the relationship between spectral 
range and predictability power of PLSR models, we built 
leaf-level models for all of the plot-level ground truth ma-
terial measured in this study at three different spectral ranges 
(Table 3). For each trait, we built models first using reflectance 
spectra measured with the Fieldspec4 from 500 nm to 900 nm, 
secondly from 500 nm to 1700 nm, and thirdly from 500 nm 
to 2400 nm. At the leaf level, with a single device measuring 
from 400 nm to 2500 nm and an artificial light source, the only 
trait prediction that improved with greater spectral range inclu-
sion was leaf N (500–900 nm CV R2=0.66, 500–1700 nm CV 
R2=0.69, 500–2400 nm CV R2=0.76, Table 3). The predict-
ability of all other parameters was not increased with increased 
spectral range. This may be due to the almost equal importance 
of VIP peaks around 1400 nm and 1900 nm when compared 
with the chlorophyll and red-edge regions from 500 nm to 
800 nm for N content (Fig. 8F). In contrast, at the leaf level 
for all other predicted traits in this study, the highest VIP scores 
occur between 500 nm and 800 nm, with only small peaks 
in the NIR and SWIR (Fig. 8A–H), which may explain the 

Fig. 7. Comparison of variable importance projection (VIP) scores from 
leaf-level and plot-level PLSR models from 450–900 nm for all traits: Vc,max 
(A), J1800 (B), chlorophyll content (C), Chl a:b (D), C content (E), and N (F) in 
performance test 1, and Pmax (G) and ϕCO2 (H) in performance test 2.
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lack of correlation between PLSR prediction power and spec-
tral range included in the leaf-level model builds for Vc,max, 
J1800, chlorophyll content, Chl a:b, C content, Pmax, and ϕCO2. 
While ϕCO2 is not predictable with PLSR analysis at the plot 
level (Figs  4H, 5H), it is highly predictable at the leaf level 
(Table 3; Supplemenetary Fig. S2), highlighting the need for 
high variation in observed trait values, to cover greater ‘trait 
space’ (Ely et al., 2019) for building robust models (Meacham-
Hensold et al., 2019). Where observed leaf traits are averaged 
(between three and five subsamples) at the plot level for ϕCO2, 
observed measurement repetitions are thus reduced, shrinking 
the trait space and consequently the model prediction strength.

Vegetative structural reflective properties and the compara-
tive loading and VIP scores for leaf and plot-level models from 
450 nm to 900 nm (Figs 6, 7) support the strength of plot-level 
models built with a single VNIR camera (Fig. 4). Loadings and 
VIP scores may support a lack of improved predictability when 
models for the same traits are built with reflectance from two 
cameras that span a greater spectral range (400–1700 nm), but 
they do not explain the apparent reduction in predictive power 
(Table 3). N and C content predictions, in particular, should 
perhaps be improved when lower energy regions of the NIR 
are included in analysis with both cameras, due to the known 
absorption features properties of C and N in the NIR (Curran, 

1989), and the strong VIP peaks at ~1100 nm and 1700 nm 
(Fig. 8M, N). This unexpected reduced model strength with 
increased spectral range is likely to be due to instrumentation 
limitations. Hyperspectral imaging equipment for phenotyping 
in field trials is limited. We used two hyperspectral cameras, 
with different spectral resolution (Pika II, 2.1 nm; Pika NIR, 
4.9 nm), different spatial resolution (Pika II, 7.4 µm pixel size; 
Pika NIR, 30 µm pixel size), and different signal to noise ratios 
(Pika II,198; Pika NIR, 1885), given the lack of affordability 
and availability of a single sensor to cover the full electromag-
netic spectra. The NIR camera has greater intrinsic error.

Improving plot-level hyperspectral predictions

The quality of the signal from the Pika NIR (900–1800 nm) 
camera presents a key challenge throughout this work. Model 
predictions using two cameras are probably weakened due to 
technical limitations rather than lack of importance of par-
ticular NIR spectral regions for physiological trait prediction. 
The reflectance profile from the Pika NIR imaging system, 
~900–1250 nm, is lower than expected when compared with 
reflectance measured with a leaf clip. Working with spec-
tral reflectance measured by imaging systems using sunlight 
rather than a leaf clip with an artificial light source presents 

Table 3. PLSR models built at leaf level for all traits using three different spectral ranges (500–900, 500–1700, and 500–2400 nm) 

Spectral range (nm) R2 Train R2 CV RMSECV (trait unit) RMSE (%) Model bias (trait unit) Latent variable (LV) no.

Vcmax  (µmol m–2 s–1)

500–900 0.71 0.67 48.33 13.98 0.066 7
500–1700 0.75 0.67 45.21 13.08 0.497 10
500–2400 0.79 0.69 41.67 12.06 0.646 11

 J1800 (µmol m–2 s–1)
500–900 0.59 0.40 38.58 13.38 1.211 11
500–1700 0.58 0.39 39.15 13.57 0.454 11
500–2400 0.53 0.40 41.38 14.35 0.017 8

 Chlorophyll content (mg m–2)
500–900 0.82 0.78 0.02 8.82 0.00007 10
500–1700 0.78 0.74 0.03 9.76 0.00003 6
500–2400 0.80 0.77 0.03 9.32 0.00001 6

 Chl a:b

500–900 0.87 0.78 0.25 8.56 -0.003 14
500–1700 0.86 0.79 0.25 8.84 0.0001 15
500–2400 0.85 0.76 0.50 7.50 0.005 13

 C content (%)
500–900 0.86 0.74 0.96 7.85 -0.011 15
500–1700 0.84 0.76 1.01 8.30 0.007 15
500–2400 0.86 0.75 0.95 7.84 0.016 15

 N content (%)
500–900 0.80 0.66 0.57 8.50 0.011 15
500–1700 0.80 0.69 0.58 8.65 0.007 15
500–2400 0.85 0.76 0.50 7.50 0.005 15

 Pmax (µmol m–2 s–1)
500–900 0.63 0.50 8.04 10.92 0.12 9
500–1700 0.71 0.57 7.15 9.71 -0.04 13
500–2400 0.72 0.56 7.04 9.55 0.04 13

 ϕCO2 (quanta/A µmol m–2 s–1)
500–900 0.76 0.62 0.004 8.82 0.000004 11
500–1700 0.77 0.63 0.003 8.63 -0.000001 12
500–2400 0.73 0.61 0.004 9.24 0.000044 9

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/eraa068#supplementary-data
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challenges, with light having been influenced by the atmos-
phere before reaching the leaf and again after reflection before 
detection by a sensor. This results in a more complex signal 

compared with reflectance from integrated full-spectrum leaf-
level devices. For example, quantification of leaf angles, re-
moval of background noise from scattered reflectance at lower 

Fig. 8. PLSR model variable importance projection (VIP) scores for models built with different spectral ranges for leaf level and for Vc,max (A), J1800 (B), 
chlorophyll content (C), Chl a:b (D), C content (E), N content (F), Pmax (G), and ϕCO2 (H), and at the plot level for the same traits, respectively (I–P). VIP 
scores for plot-level ϕCO2 models are not shown due to the lack of predictability of this parameter at the plot level.
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canopy levels, removal of background noise from soil (Verhoef, 
1984; Gao et  al., 2000), and correction for plot temperature 
at the time of image capture (Serbin et  al., 2015) could all 
improve plot-level model strength. Our plot-level reflectance 
spectra are also lower between 900  nm and 1250  nm than 
those from aircraft and other proximal hyperspectral imagers. 
Proximal hyperspectral imagery usually presents data captured 
from nadir sensors rather than push-broom scanning plat-
forms. At the time of our data collection, for mounting ~1 m 
above the target vegetation on a proximal sensing push-cart, 
push-broom line sensors offered the greatest spatial resolution 
and affordability. However, the camera angle rotation increases 
directional anistropy and, coupled with light scattering from 
background vegetation, increases our signal to noise ratio. 
While our automated analysis pipeline (Fig.  3) very accur-
ately accounts for radiance at the time of image capture using 
a Teflon reference panel for accurate conversion to reflectance 
(Fig. 2B), the signal could probably be improved with an up-
dated nadir scanner and future incorporation of more complex 
radiative transfer modelling to account for background scat-
tering. Leaf-level VIP scores show less variation than plot-level 
scores (Fig. 8), particularly in the NIR. While VIP scores are 
higher at the plot level, peaks do follow the same trends, thus 
the variation is likely to be indicative of scattering detected by 
the NIR hyperspectral camera and sensor noise rather than a 
need to question the true importance of these regions for pre-
diction of a given trait.

The variation in plot-level ground truthing also presents 
a known challenge as plot-level estimations are trained with 
leaf-level measurements. While currently this is the only real-
istic ground truth method for canopy photosynthetic measure-
ments, it is not ideal given the known limitations of applying 
leaf-level measurements to canopy estimations (Amthor, 1994; 
Baldocchi and Harley, 1995; De Pury and Farquhar, 1997; Wu 
et al., 2016) and the known variation in photosynthetic rates 
and capacities within crop canopies of the same germplasm 
and even within plant crowns at the highest levels of a canopy 
due to variation in light environment (Niinemets, 2007). 
More robust plot-level models could be trained with a greater 
number of ground truth samples, but the time taken to ob-
tain gas exchange measurements of photosynthetic capacity is 
a limitation. These challenges persist for the high-throughput 
phenotyping and the remote-sensing community and, as 
equipment develops and sensor integration capabilities ad-
vance, predictive models of the nature presented in this study 
will probably improve. Despite these challenges, this study 
proposes robust plot-level predictions of key photosynthetic 
parameters and structural traits that are the focus of current 
research efforts to increase crop yields for global food security 
(Evans, 2013; Ort et al., 2015).

The challenges facing agricultural production in the face of 
resource limitation and changing climate necessitates methods 
for rapid screening of large field trials for productivity and 
performance. The results from the automated hyperspectral 
image analysis pipeline we present synthesize high-resolution 
plot-level information to a single sunlit plot leaf reflectance 
spectrum for use in a variety of applications. Photosynthetic 
predictions from PLSR analysis of this output offers a tool 

for rapid field phenotyping for photosynthetic performance. 
Such synthesis of large spatial and temporal data sets with user-
friendly analysis pipelines that derive biologically relevant out-
comes will be increasingly important in the fight for increased 
global food production. The success of predictive models with 
a single VNIR hyperspectral camera widens the relevance and 
potential application of this technique for greater utility, as re-
duced spectral bandwidth equates to reduced cost of acquisi-
tion and operation of hyperspectral imaging systems.

Supplementary data

Supplementary data are available at JXB online.
Table S1. Leaf absorption values used to correct Pmax and 

ϕCO2 for genotypes in performance test 2.
Fig. S2. ‘Ground truth’ Vc,max, J1800, chlorophyll content, Chl 

a:b, N content, C content, Pmax and ϕCO2 values used to train 
predictive models.

Fig. S3. Comparison between observed photosynthetic 
parameters and those predicted from PLS regression of leaf-
level reflectance using ASD Fieldspec4 with leaf clip attach-
ment for ϕCO2 from reflectance from 500 nm to 900 nm and 
from 500 nm to 1700 nm.

Dataset 1. Spectrum collected with hyperspectral imaging 
cameras used for model builds for each trait as presented in 
Fig. 3.

Dataset 2.  PLSR model predictions from a single VNIR 
hyperspectral camera (450–900 nm), as shown in Fig. 4.

Dataset 3. PLSR model predictions from two hyperspectral 
cameras (450–1800 nm), as shown in Fig. 5.
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