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Variational principles play a fundamental role in
deriving the evolution equations of physics. They
work well in the case of non-dissipative evolution,
but for dissipative systems, the variational principles
are not unique and not constructive. With the
methods of modern nonequilibrium thermodynamics,
one can derive evolution equations for dissipative
phenomena and, surprisingly, in several cases, one
can also reproduce the Euler–Lagrange form and
symplectic structure of the evolution equations
for non-dissipative processes. In this work, we
examine some demonstrative examples and compare
thermodynamic and variational techniques. Then,
we argue that, instead of searching for variational
principles for dissipative systems, there is another
viable programme: the second law alone can be an
effective tool to construct evolution equations for both
dissipative and non-dissipative processes.

This article is part of the theme issue ‘Fundamental
aspects of nonequilibrium thermodynamics’.

1. Variational principles for dissipative
processes

Variational principles are the ultimate tools for deriving
the evolution equations of physics, in particular the
equations of motion in mechanics. They work well
without dissipation when the evolution is based on
symmetric differential operators [1,2]. However, for
dissipative systems, most of the differential equations

2020 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0178&domain=pdf&date_stamp=2020-03-30
http://dx.doi.org/10.1098/rsta/378/2170
mailto:van.peter@wigner.mta.hu
http://orcid.org/0000-0002-9396-4073
http://orcid.org/0000-0001-5822-6035


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190178

................................................................

are not symmetric; therefore, special modifications are necessary to construct a variational
principle in order to circumvent the strict mathematical conditions [3–5].

The applied tricks can be very different: for instance, changing the original equations,
increasing the number of variables, reducing the corresponding function spaces, turning to
statistical interpretations, and so on [6–13]. The obtained variational principles are special,
different and not equivalent [14]. A general construction methodology of dissipative evolution
equations in physics is still a challenge. A particularly strong requirement for any candidate
principle, variational or not, is that it should deal with both dissipative and non-dissipative
evolution equations. For the non-dissipative case, it must be compatible with Hamiltonian
principles, and in the dissipative case, with the laws of thermodynamics. Moreover, it must be
universal and simple.

In this paper, we reverse the usual logic. Instead of looking for variational principles of
dissipative systems, we argue that the second law can be used to derive evolution equations
for both dissipative and non-dissipative evolution. First, recent developments of nonequilibrium
thermodynamics are outlined (§2). Then the evolution equation of a single point mass is treated
from a thermodynamic point of view (§3), in the spirit of dual thermodynamic variables.
Then a more complicated example, a two-component compressible fluid, is considered, where
constraints and weak non-locality lead to the Fourier–Navier–Stokes–Cahn–Hilliard–Korteweg
equations (§4). There, a weakly non-local extension of the entropy principle is used, and one
obtains evolution equations where the time-independent part has an Euler–Lagrange form. In
the next section (§5), using a combination of the previous methods, dual variables and weak
non-locality, an inertial and dissipative extension of the classical gravity for self-gravitating
heat-conducting fluids is derived. Finally, we summarize, compare and discuss the results.

2. Gradients and internal variables in nonequilibrium thermodynamics
In classical non-relativistic irreversible thermodynamics, one calculates the entropy balance in
order to obtain constitutive functions that are compatible with the second law [15]. There,
the basic assumption is the hypothesis of local equilibrium; memory and non-local effects are
not considered. In modern theories of nonequilibrium thermodynamics, memory and non-
local effects are considered in a weak sense, with the help of internal variables and gradients,
respectively. Both aspects are reflected in methods exploiting the entropy inequality, and must
consider frame indifference and objectivity as a fundamental background requirement [16,17].

The second law, the entropy inequality, is conditional. An absolute, i.e. frame-independent,
treatment requires a four-dimensional space–time representation of the physical quantities also
in a non-relativistic case. In this work, we consider the following aspects of a more rigorous non-
relativistic formalism [18,19]:

— The entropy density and the entropy flux are both constitutive quantities; they are the
time-like and space-like components of the entropy four-vector. Therefore, the entropy
flux is to be determined according to the second law.

— Gradients are objective, reference-frame-independent quantities, because a gradient
is a non-relativistic space-like co-vector. Therefore, spatial gradients can appear in
constitutive functions with a good chance of being frame-independent. However, time
derivatives depend on the frame.

Using these simple rules, objectivity and frame independence are respected, using three-
dimensional abstract index-based calculations, and classical second law analysis without formal,
transformation rule-based analysis or a rigorous space–time formalism [19,20].

In extended thermodynamics, the dissipative fluxes are not constitutive functions. They
are basic state variables [21,22], and the evolution equations of these new fields are to be
constructed according to the requirements of the second law [23]. In general, the idea of
extending the thermodynamic state space with a new field, that of internal variables, has
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a long history [24–27]. There are many interesting applications in their thermodynamically
consistent use with particular physical examples [28–30]. Their combined use with classical
fields in nonequilibrium thermodynamics verifies the second-law-based evolution equations by
introducing thermodynamically consistent inertial, memory effects due to internal structural
changes.

There are many different methods to introduce weak non-locality in space, that is, extending
the constitutive functions with the gradients of the thermodynamic state variables, for both
classical and internal ones. Without being complete, one needs to mention the method of virtual
power [31–33], GENERIC [34–36], configurational forces [37,38] and phase-field theories [39].
All of these approaches can produce successful theories, with various levels of thermodynamic
consistency and objectivity. For example, phase-field theories introduce functional derivatives
for the new fields and then the variational techniques are combined with thermodynamic
methods.

There are some particular aspects for the correct application of weak time and space non-
locality in a thermodynamic framework.

— Internal variables are incorporated in the thermodynamic state space, i.e. the entropy
density may depend on them. The related Gibbs relation is a convenient tool in
calculations.

— The entropy density may depend on the gradients of the state variables, including
internal variables, contrary to [40].

— A field theoretical approach is preferable, that is, the densities or specific quantities
are primary in a continuum theory. That holds for the entropy, too. Consequently, the
first-order Euler homogeneity of the entropy applies for internal variables and gradient
extensions.

In the following, we demonstrate that the second law provides a constructive method to
obtain evolution equations, for both dissipative and non-dissipative situations, for internal
variables and with weakly non-local, gradient-dependent state spaces. Moreover, nonequilibrium
thermodynamics leads to surprising information for evolution in classical theories, for pure
mechanics, as well. We present three examples. First, the emergence of a Hamiltonian, that is, a
symplectic structure, with dual thermodynamic state variables is demonstrated. Then, the case of
gradient-dependent state spaces is presented with the example of two-component compressible
and diffusive Fourier–Navier–Stokes–Cahn–Hilliard–Korteweg fluids. This is a complicated, but
typical, example of the problems of phase-field methodology with variational derivatives. Our
final illustration is the derivation of equations of classical gravitation with inertia. This is a
combination of internal variables and classical fields with both gradient and memory effects.

In general, the conceptual foundation is the universality of a thermodynamic approach. We
do not intend to look for the microscopic or mesoscopic origin of the continuum fields. They
may be considered as emergent, but here it is not important. Whenever the second law is valid,
the thermodynamic treatment is uniformly applicable, also if we do not expect a statistical
background, e.g. for point masses or gravitation.

From now on, we use the abstract index notation, with i, j, k being spatial indices, denoting
the tensorial character of a physical quantity in a three-dimensional vector space without
particular coordinates [41]. Identical upper and lower indices denote contraction, according to
the summation rule.

3. Example I: thermodynamic approach to point mass mechanics
In this section, the Newtonian, Lagrangian and Hamiltonian mechanics of a single point mass
[42] is connected to nonequilibrium thermodynamics. This aspect is hidden in the traditional
textbook treatment where dissipation is a secondary aspect. However, a simple change of attitude,
a thermodynamic approach, leads to the complete dissipative version of Hamiltonian mechanics.
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(a) Pure mechanics
The Hamilton equations of a point mass are generated from a phase-space potential, called
Hamiltonian, H(xi, pi), and are given as

ẋi = ∂pi H (3.1)

and
ṗi = −∂xi H, (3.2)

with the upper dot denoting the time derivative.
A partial Legendre transformation gives the Lagrangian L(xi, ẋi) as

L(xi, ẋi) + H(xi, pi) = piẋi. (3.3)

The derivatives of this formula yield

∂ẋi L = pi, (3.4)

∂pi H = ẋi (3.5)

and ∂xi L = −∂xi H. (3.6)

The equation of motion, the Euler–Lagrange equation, follows by eliminating pi, the momentum,
from the system in order to obtain a differential equation for the position xi:

d
dt
∂ẋi L − ∂xi L = ṗi + ∂xi H = 0. (3.7)

This formula is obtained with the usual interpretation that (3.1) (and (3.5)) is the definition of
the momentum, and (3.2) is the equation of motion. A Lagrangian is convenient to perform the
elimination through Legendre transformation (3.3), without directly inverting the Hamiltonian.

Equation (3.7) is an evolution equation without dissipative terms. Dissipative terms are
secondary in the usual approach and are given by separate, additional assumptions, such as
imitating the non-dissipative mathematical structure by Rayleigh dissipation potentials. The
addition of dissipative terms requires additional concepts. Without introducing thermodynamics,
one cannot be sure whether a modification of (3.7) is dissipative or not. For instance, in an additive
damping term like βẋi, the coefficient β has a definite sign because of the second law.

(b) Pure thermodynamics
The thermodynamic construction of an evolution equation for state variables is also simple.
One assumes the existence of a concave potential, which is increasing in time. Let us observe
the direction of argumentation: One does not start from the evolution equations, but from the
potential that determines the evolution according to the thermodynamic requirements. It is
important to note that these two conditions define a thermodynamic system hereafter. In mechanics,
starting from the Hamiltonian is exceptional; in thermodynamics, starting from entropy is the
standard method. Let us denote the state variable by pi, and the potential by S; then

Ṡ(pi) = ∂pi Sṗi ≥ 0. (3.8)

Therefore, in the simplest case, when S = −p2/2m with m> 0, a linear isotropic solution of the
above inequality leads to

ṗi = − l
m

pi, (3.9)

where l> 0. This is a relaxation dynamics; the concavity of the potential (m> 0) together
with the condition (3.8) guarantee the asymptotic stability of the equilibrium, pi = 0. This is
what one expects from a thermodynamic evolution: a hot coffee cools to the temperature
of the environment; the asymptotic stability of the equilibrium is ensured. Indeed, the time-
dependent classical thermodynamics of homogeneous systems rigorously and generally satisfies
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that expectation, as proven by Matolcsi [43]. One may think that thermodynamics excludes
inertial effects, and for mechanics, or for analogous evolutions with inertia, a variational principle
is necessary, as argued e.g. in [28,44]. However, that is not so.

(c) Thermodynamics and mechanics: the embedded evolution
The entropy of the simplest thermodynamic body with a constant heat capacity, C, and internal
energy, U, is S(U) = C ln(U). Then the caloric equation of state, the relation of the internal energy
and the temperature, is U = CT. However, the internal energy is the difference between the total
energy, E, and the Hamiltonian, U = E − H(xi, pi); therefore, the entropy is a function of E, xi and
pi. These variables are the state variables of the system and the system is isolated; the total energy
is constant, and the entropy cannot decrease, independently of the dynamics prescribed for ẋi and
ṗi. Hence

Ṡ(E − H(xi, pi)) = ∂xi Sẋi + ∂pi Sṗi ≥ 0. (3.10)

If H is a twice differentiable function with continuous second derivative on a simply connected
domain, then a quasi-linear solution of this inequality can be written, in general, as

ẋi = −l11∂xi H − l12∂pi H (3.11)

and
ṗi = −l21∂xi H − l22∂pi H. (3.12)

Here, lAB is proportional to the reciprocal temperature, where CT = U = E − H(xi, pi). This is not
constant in this adiabatic situation; however, in several cases, when that particular equation of
state is valid, considering the relation of thermal and mechanical energies, a constant temperature
is a very good approximation. Regarding more precise arguments and conditions for the quasi-
linear solution of (3.10), see e.g. the appendix B in [45]. Regarding some interesting consequences
of the general dynamics with varying temperature, see [46]. Then, with these assumptions, the
conductivity tensor,

L =
(

l11 l12
l21 l22

)
, (3.13)

is not necessarily symmetric, but its symmetric part is positive definite, according to the inequality
(3.10), and therefore

l11 > 0, l22 > 0, l11l22 − (l11 + l11)2

2
> 0. (3.14)

It is convenient to split L into symmetric and antisymmetric parts, LD and LI, as

L = LI + LD =
(

0 −k
k 0

)
+
(

l11 l
l l22

)
, (3.15)

where the notation l = (l12 + l21)/2 and k = (l21 − l12)/2 is introduced. Then the third condition
in (3.14) is l11l22 − l2 > 0. If the dissipative (symmetric) part is zero, the conservation of H and
the conservation of S follow. The antisymmetric part generates non-dissipative evolution, a
symplectic dynamics. It is identical with (3.1)–(3.2) if k = 1. That choice is linked to the definition
of inertial mass.

This is a gradient dynamics, a particular case of the GENERIC framework, where the
compatibility conditions are trivial [47–49], and also like metriplectic dynamics [50]. In both cases,
the dynamics may be more general: in the case of GENERIC, with the help of two generators
[35,36]; in the case of metriplectic theory, where a metric structure is important, with the help of a
single generator, which can be the entropy alone [51].

It has been argued several times that the symplectic structure is the core of mechanics. A
Lagrangian can be calculated from a Hamiltonian, and then the classical variational principles
can be constructed. However, the Lagrangian and Hamiltonian approaches are not equivalent in
the non-dissipative case and the situation is worse for dissipative systems.
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(d) Mechanothermodynamics
Normally, in a textbook treatment, mechanics starts from the Newton equation without
dissipation. However, in a dissipative system, this start can be misleading. As we have already
mentioned, equations (3.11)–(3.12) are pure mechanical, with generalized dissipation. In order
to get an impression about the physics of this generalization, it is worth considering a specific
example, a usual Hamiltonian with kinetic and potential energies, i.e. H(xi, pi) = p2/2m + V(xi),
where V is a convex function. Therefore, the complete Hamiltonian is convex, too, and the entropy
is concave; thermodynamic stability is fulfilled. In this case, (3.11)–(3.12) can be written as

ẋi = k
m

pi − l11∂xi V − l
m

pi (3.16)

and

ṗi = −k∂xi V − l∂iV − l22

m
pi. (3.17)

Then pi can be expressed explicitly, and one obtains

pi = m
ẋi + l11∂xi V

k − l
. (3.18)

This is a strange, potential-dependent ‘momentum’. Substituting this expression into (3.17), one
derives the corresponding dissipative equation of motion:

m̂ẍi + m̂
(

l11∂xixj V + l22

m
δij

)
ẋj + ∂xi V = 0, (3.19)

where m̂ = m/(k2 + l11l22 − l2), m̂>m> 0. All coefficients are non-negative according to the
second law and the convexity of the Hamiltonian. We can see that, following the usual reasoning,
i.e. starting from the equation of motion, the separation of the dissipative and non-dissipative
parts is not straightforward. The mass increases due to dissipation and the damping is affected
by the potential. However, when non-dissipative motion is what we have in mind, then the simple
damping term in the middle of (3.19) seems to be completely satisfactory. Also, normally k �= 1 is
invisible, because inertial mass is defined by the Newton equation. With the interpretation of
dissipative terms in (3.16), the ‘phase dissipation’ is peculiar from a mechanical point of view.
However, it can be interpreted in a stochastic framework; for example, it may appear when the
position is fluctuating [52], like in the case of wave function collapse [53,54].

We have seen that inertial effects can be introduced by pure thermodynamics, and this
generalization leads to a fundamental reinterpretation of the concepts and expectations for the
simplest mechanical systems, such as a point mass in an external potential. But aside from the
thermodynamics of a point mass, one thing is clear. In order to get Hamiltonian dynamics, one
does not need a variational principle; the second law with dual variables will do the job, and if
entropy is conserved, then the emergent dynamics is not dissipative.

4. Example II: phase fields, Fourier–Navier–Stokes–Cahn–Hilliard–Korteweg
equations

Classical phase-field models, the Allen–Cahn (or Ginzburg–Landau, model A) and the Cahn–
Hilliard (model B) equations were not obtained from a thermodynamic treatment [39,45]. As we
have already mentioned, there are several different methods to derive them, with or without
variational derivatives [9,45,55–58]. The Cahn–Hilliard equation is exceptionally challenging for
rigorous derivation, because of the higher space derivatives [59]. In this section, we investigate a
two-component compressible heat-conducting fluid with diffusion. Using variational principles,
it is not easy to realize the balances as thermodynamic constraints, because of the higher-order
derivatives in the state space, and the non-trivial contributions to the pressure [60]. Here, we give
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a simple, but complete, treatment, using the Gibbs relation as a starting point. We identify the
entropy flux with the method of separation of divergences [15,59,61,62].

(a) Basic balances
A two-component fluid with component densities ρ1, ρ2 and velocities vi

1, vi
2 will be characterized

by the density ρ, the barycentric velocity vi, the concentration c and the diffusion flux ji. They are
defined as

ρ = ρ1 + ρ2, vi = ρ1v
i
1 + ρ2v

i
2

ρ1 + ρ2
, c = ρ1

ρ
, ji = ρ1(vi

1 − vi). (4.1)

The balances of mass and concentration are

ρ̇ + ρ∂iv
i = 0 (4.2)

and
ρċ + ∂ij

i = 0, (4.3)

where the dot denotes the substantial time derivative and ∂i is the nabla operator. The balance of
momentum, the Cauchy equation, and the balance of internal energy are

ρv̇i + ∂jP
ij = 0 (4.4)

and
ρ ė + ∂iq

i = −Pij∂ivj, (4.5)

where Pij is the pressure tensor and qi is the heat flux.
The basic fields of the system are the internal energy, the density, the velocity and the

concentration. In order to get a closed system of equations, one must derive the constitutive
functions for the diffusion flux ji, the pressure Pij and the heat flux qi. These relations can be
determined with the help of the entropy inequality.

Our thermodynamic state variables are the internal energy, the density and the concentration.
The specific entropy is a function of these fields and also depends on the concentration gradient,
i.e. s(e, ρ, c, ∂ic), which is required to obtain the necessary couplings. The Gibbs relation introduces
the intensive thermodynamic quantities

de = T ds − p dv + μdc + Zi

ρ
d∂ic. (4.6)

That is, the partial derivatives of the specific entropy are

∂es = 1
T

, ∂ρs = − p
ρ2T

, ∂cs = −μ
T

and ∂∂ics = − Zi

ρT
, (4.7)

where T is the temperature, v= 1/ρ is the specific volume, p is the thermostatic pressure, μ stands
for the chemical potential and Zi represents the derivative of the entropy by the concentration
gradient. Zi is introduced respecting the extensivity of the entropy. Now the entropy production
can be calculated from the time derivative of the entropy considering the balances (4.2), (4.3) and
(4.5) as constraints, then separating the surface and volumetric effects. This is a short, simple and
straightforward calculation

ρ ṡ(e, ρ, c, ∂ic) = 1
T
ρ ė − p

ρT
ρ̇ − ρμ

T
ċ − Zi

T
(∂ic)̇

= −∂i

[
qi − μji − Zi∂kjk/ρ

T
+ ji

ρ
∂k

(
Zk

T

)]

+ qi∂i
1
T

− ji∂i

[
μ

T
− 1
ρ
∂k

(
Zk

T

)]
− ∂ivj

T

[
Pij − pδij − Zi∂ jc

]
. (4.8)
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Table 1. Entropic representation of the thermodynamic fluxes and forces of Fourier–Navier–Stokes–Cahn–Hilliard–Korteweg
fluids.

thermal diffusive mechanical

fluxes qi ji Pij − pδ ij − Zi∂ j c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

forces ∂i

(
1
T

)
−∂i

(
μ

T
− 1
ρ
∂k

(
Zk

T

))
−∂ivj

T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On the right-hand side of equation (4.8), the first term is identified as the divergence of the
entropy flux and the second one is the entropy production. One can identify the thermodynamic
fluxes and forces according to table 1. That can be considered as an entropic representation,
because the gradients of the entropic intensives (1/T, −μ/T, −Zi/T) appear everywhere in the
expression. It is notable that the flux of thermal interaction is the heat flux, in spite of the modified
entropy flux expression. The linear relation between the fluxes and forces in isotropic materials
leads to the following constitutive equations:

qi = λ∂i

(
1
T

)
− χ∂i

(
μ

T
− 1
ρ
∂k

(
Zk

T

))
,

ji = χ∂i

(
1
T

)
− ζ∂i

(
μ

T
− 1
ρ
∂k

(
Zk

T

))

and Pij = pδij + Zi∂ jc − 2η∂〈ivj〉 − ηb∂kv
kδij.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

Here, the conductivity coefficients λ, χ and ζ in the entropy representation are the thermal
conductivity, the cross-coupling coefficient and the thermodynamic diffusion coefficient,
respectively. The cross-coupling coefficients are equal, according to Onsager reciprocity. In (4.9),
∂〈ivj〉 denotes the symmetric (deviatoric) part of the velocity gradient, and η and ηb are the shear
and bulk viscosities, respectively. Let us remark that in isotropic materials the pressure tensor is
symmetric since the entropy depends only on the length of the concentration gradient vector, that
is, on

√
∂ic∂ ic; therefore Zi is proportional to ∂ic. The non-negativity of the entropy production

requires the following inequalities:

λ> 0, χ > 0, ζ > 0, λζ − χ2 ≥ 0, η > 0, ηb > 0. (4.10)

It is remarkable that, for single-temperature mixtures, a different, reasonable flux–force
representation is obtained writing the entropy balance in the following, equivalent form:

ρ ṡ + ∂i

[
qi − μji − (Zi∂kjk − ji∂kZk)/ρ

T

]

=
(

qi − μji − Zi∂kjk − ji∂kZk

ρ

)
∂i

1
T

− ji

T
∂i

[
μ− ∂kZk

ρ

]

− ∂ivj

T

[
Pij − pδij − Zi∂ jc

]
≥ 0. (4.11)

Based on the last line of the above expression, one can identify the thermodynamic fluxes and
forces again. This choice is called the energy representation. It is notable that the entropy flux equals
the thermal flux over the temperature. Recognizing that the entropy production is proportional
to the reciprocal temperature, a system of fluxes and forces is given in table 2. These are identical
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Table 2. Thermal representation of the thermodynamic fluxes and forces of Fourier–Navier-Stokes–Cahn–Hilliard–Korteweg
fluids.

thermal diffusive mechanical

fluxes qi − μji − Zi∂k jk − ji∂kZk

ρ
ji Pij − pδ ij − Zi∂ j c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

forces −∂iT
T

∂i

(
μ− ∂kZk

ρ

)
−∂ivj

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with that from [63]. In isotropic materials, the linear relation between the fluxes and forces results
in the following constitutive equations for qi, ji and Pij, respectively:

qi − μji − Zi∂kjk − ji∂kZk

ρ
= −λ̂ ∂iT

T
− χ̂∂i

(
μ− ∂kZk

ρ

)
,

ji = χ̂
∂iT
T

− ζ̂ ∂i

(
μ− ∂kZk

ρ

)

and Pij = pδij + Zi∂ jc − 2η∂〈ivj〉 − ηb∂kv
kδij,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.12)

where the coefficients λ̂, χ̂ and ζ̂ are seemingly different from the previous ones.

(b) Equivalence of representations
It is frequently argued that the various flux–force representations are not equivalent [64]. In our
case, the viscosities are the same in the two representations, but the fluxes and forces, and also
the coefficients of thermodiffusion, look rather different. However, the (4.8) and (4.11) entropy
balances are the same, and with the general quasi-linear solution of the inequality—as in our
previous example—the coefficients are state-dependent. Then, if the entropy flux does not change,
a straightforward calculation gives a unique relation between the representations. For example,
in the case of simple diffusion, without the Cahn–Hilliard extension, Zi ≡ 0, and one obtains

λ̂= λ+ ζμ2, χ̂ = χ − ζμ and ζ̂ = ζ . (4.13)

Therefore, the representations are equivalent, and the reciprocity is preserved. Moreover, if the
inequalities in (4.10) of the entropic representation are fulfilled, then similar inequalities are
valid in the energy representation, too. However, the coefficient inequalities that guarantee the
non-negative entropy production in (4.11) are not sufficient to get (4.10), in particular, the first
inequality.

(c) Cahn–Hilliard equation
The Cahn–Hilliard equation is obtained if the density, the internal energy and the velocity fields
are homogeneous and there is a linear relation between the diffusion flux and force:

ji = −ζ∂ i

[
μ

T
− 1
ρ
∂k

(
Zk

T

)]
= −ζ∂ i

[
∂cs − 1

ρ
∂k∂∂kc(ρs)

]
. (4.14)

It is clear that the right-hand side of the equation is proportional to the gradient of the
functional derivative of the specific entropy only if the density is constant. Then, substituting this
equation into the concentration balance, one obtains the Cahn–Hilliard equation. This is a simple
explanation of the mentioned differences between the variational derivation, the Lowengrub–
Truskinovsky model [60] and the thermodynamic methods, analysed carefully in [63].
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For phase transition models, the concavity of the entropy and the proper convexity relations
for the free energy are important requirements. This property ensures the stability of equilibria,
and the basin of attraction is related to simply connected concave regions. With additional
considerations for boundary conditions, the total entropy is a good candidate to be a Lyapunov
functional of equilibria, as indicated in [65].

5. Example III: inertial gravitation
Recently, it was shown that a single scalar internal variable, when additively separated from the
internal energy, leads to a dissipative extension of classical gravitation [66]. Now, in our third
example, we extend that calculation and introduce dual internal variables in order to explore a
theory of gravitation with inertia.

We consider a single-component fluid; therefore the balances of mass and energy, (4.2) and
(4.5), are the constraints for the entropy balance. Two scalar fields are introduced, ϕ and ψ . Our
basic assumption is that the internal energy u is the difference between the total energy and the
energies of the gravitating matter and field:

u = e − ϕ − ∂iϕ∂
iϕ

8πGρ
− ψ2

2K
. (5.1)

Here, G is the gravitational constant and ϕ is the gravitational potential. It is subtracted
from the specific internal energy, and the square gradient of ϕ represents the energy of the
gravitational field [67]. Additive separation of the internal variables from the energy leads to
energy interpretation. The last quadratic term is responsible for inertial effects; K is an inertial
coefficient, as usual in variational principles. Then the specific entropy is a function also of u and
the specific volume v = 1/ρ. The Gibbs relation is

de = T ds +
(

p
ρ2 − ∂iϕ∂

iϕ

8πGρ2

)
dρ + dϕ +

(
∂iϕ

8πGρ

)
d∂ iϕ + ψ

K
dψ . (5.2)

Similarly as before, the calculation of the entropy balance is

ρ ṡ + ∂i

[
1
T

(
qi + 1

4πG
ϕ̇∂ iϕ

)]

=
(

qi + ϕ̇

4πG
∂ iϕ

)
∂i

(
1
T

)
+ ϕ̇

4πGT

(
∂k∂

kϕ − 4πGρ
)

− ρ

KT
ψψ̇ −

[
Pij − pδij − 1

4πG

(
∂ iϕ∂ jϕ − 1

2
∂kϕ∂

kϕδij
)]

∂ivj

T
≥ 0. (5.3)

The corresponding fluxes and forces are shown in table 3. Both the mechanical and thermal
thermodynamic forces have changed due to the presence of gravitation. There is a contribution

to the pressure, Pij
grav = (1/4πG)(∂ iϕ∂ jϕ − 1

2∂kϕ∂
kϕδij), too. The first term, the thermal interaction,

is a product of vectors; the last term, the mechanical one, is a product of second-order tensors.
The scalar second and the third terms determine the evolution equations for the gravitational
potential and for the second scalar field, ϕ and ψ , respectively. Therefore, in isotropic materials,
cross-effects are possible between the scalar part of the pressure and the scalar fields. Hence the
linear constitutive equations are

qi + ϕ̇

4πG
∂ iϕ = −λ∂iT

T
, (5.4)

ϕ̇ = l1

(
∂i∂

iϕ

4πG
− ρ

)
− l12ρ

ψ

K
− l13∂kv

k, (5.5)

ψ̇ = l21

(
∂i∂

iϕ

4πG
− ρ

)
− l2ρ

ψ

K
− l23∂kv

k, (5.6)
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Table 3. Thermodynamic fluxes and forces of self-gravitating fluidswith gravitational inertia. Pijgrav is the gravitational pressure.

thermal gravitational mechanical gravoinertial

fluxes qi + ϕ̇

4πG
∂ iϕ ϕ̇ Pij − pδ ij − Pijgrav ψ̇

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

forces ∂i

(
1
T

)
1
T

(
∂k∂

kϕ

4πG
− ρ

)
−∂ivj

T
−Kρψ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pi
i − 3p + ∂iϕ∂

iϕ

8πG
= l31

(
∂i∂

iϕ

4πG
− ρ

)
− l32ρ

ψ

K
− l3∂kv

k (5.7)

and Pij − Pk
k
δij

3
− 1

4πG

(
∂ iϕ∂ jϕ − 1

3
∂kϕ∂

kϕδij
)

= −η
(
∂ ivj+ ∂ jvi − 2

3
∂kv

kδij
)

. (5.8)

Here, l3/3 = ηb is the bulk viscosity and η is the shear viscosity. The classical Newtonian
gravitation is obtained if there is no gravitation-related dissipation, that is, the thermodynamic
force of gravitation is zero, that is, the Poisson equation is valid and l12, l13, l31 and l32 are zero. In

this case, the gravitational pressure has the following remarkable property: ∂jP
ij
grav = ρ∂ iϕ. Let us

observe the contribution of the dissipative terms in (5.6) and (5.7), but without the coupling with
divergence of velocity, that is

ϕ̇ = l1

(
∂i∂

iϕ

4πG
− ρ

)
− l12ρ

ψ

K
(5.9)

and

ψ̇ = l21

(
∂i∂

iϕ

4πG
− ρ

)
− l2ρ

ψ

K
, (5.10)

where l1 > 0, l2 > 0 and l1l2 − (l12 + l21)2/4> 0, according to the second law. Eliminating the
second field, ψ , one obtains the following differential equation:

Kρϕ̈ − Kρl1
d
dt

(
∂ i

iϕ

4πG
− ρ

)
− L

(
∂ i

iϕ

4πG
− ρ

)
+ l2ϕ̇

= Kρl1
d
dt

(
∂ i

iϕ

4πG
− ρ̇

l1
− ρ

)
− LK

(
∂ i

iϕ

4πG
− l2

L
ϕ̇ − ρ

)
= 0. (5.11)

This is the governing equation for the dissipative, massive Newtonian gravitation. The non-
dissipative case is obtained if the transport matrix is antisymmetric, i.e. l1 = l2 = 0 and l12 = −l21 =
a. In this case, (5.11) reduces to the wave equation, as expected:

K4πG
a2 ρϕ̈ − ∂ i

iϕ − 4πGρ = 0. (5.12)

6. Summary and conclusion
In this paper, we have surveyed the capabilities of modern thermodynamics to construct
evolution equations reflecting memory and non-local phenomena. The focus was on the evolution
equations of ideal processes, which are typically constructed from variational principles. The
demonstrative examples of the previous sections considered pure memory, pure non-local and
a mixed memory and non-local situations. In every case, the second law was applied to obtain
the evolution equations and non-dissipative processes emerged in the case of zero entropy
production.

In §3, we have shown that Hamiltonian dynamics of a point mass can be reproduced
in a thermodynamic framework: instead of starting from a Lagrangian, one can get the
symplectic form of Hamiltonian mechanics and also the dissipative extension, both with direct
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thermodynamic arguments. Some dissipative effects are unexpected and surprising from a
pure mechanical point of view. In §4, the example of a two-component Fourier–Navier–Stokes–
Cahn–Hilliard–Korteweg fluid demonstrated thermodynamic methods in the case of a weakly
non-local continuum. The simplest classical method of divergence separation was applied, with
a straightforward generalization of the Gibbs relation for deriving the Cahn–Hilliard equation.
This equation is typically constructed with a combination of variational and thermodynamic
principles. Here, the balances of mass and energy are constraints for the entropy inequality. The
traditional method of nonequilibrium thermodynamics reproduced the same set of equations that
have corrected the variational approach of Lowengrub & Truskinovsky [60] and were obtained
by rigorous arguments of rational thermodynamics [63].

In §5, we have shown a combined utilization of dual variables and divergence separation to
get both memory and non-local equations by constructing a dissipative theory of Newtonian
gravitation with inertial effects. It is remarkable that the wave equation of the gravitational
potential was only a part of the non-dissipative limit of the theory: the scalar evolution equation
of the gravitational potential can be coupled to the scalar part of the mechanical interaction, to
the spherical part of the stress field.

In every example we have given some particular predictions, some new aspects due to
the construction method and to the thermodynamic approach. These examples demonstrate
that nonequilibrium thermodynamics can substitute variational principles and construct both
non-dissipative and dissipative parts of the evolution equations without any further ado. The
Hamilton principle emerges for the non-dissipative part. For phase fields, where only the spatial
part of a variational principle is necessary, the substitution is complete.

At the end, let us outline the Hamilton variational principle for a scalar field φ in non-
relativistic space–time with a first-order weakly non-local density. This is constructed from a
Lagrangian, L(φ, ∂tφ, ∂iφ), and based on the next formal procedure, the ‘variation’ of the action
functional, the integral of the Lagrangian at a compact V × [t1, t2] space–time domain:

δS(φ) = δ

∫
t

∫
V

L(φ, ∂tφ, ∂iφ) dt dV =
∫

t

∫
V
δL(φ, ∂tφ, ∂iφ) dt dV

=
∫

t

∫
V

[
∂φL − ∂t(∂∂tφL) − ∂i(∂∂iφL)

]
δφ dt dV

+
∫

V
∂∂tφLδφ dV

]t2

t1

+
∫

t

∮
∂V
∂∂iφLδφ dt dAi = 0. (6.1)

Then one concludes that the following Euler–Lagrange equation is valid:

∂φL − ∂t(∂∂tφL) − ∂i(∂∂iφL) = 0. (6.2)

When properly formulated it is a differentiation of S on a Banach space of functions that disappear
at ∂V × {t1, t2}, at a boundary of the space–time domain. There is an affine space behind, with
natural boundary conditions fixed with the last two integrals of (6.1). The Banach space derivative
is zero, because of the assumed extremum property, the Euler–Lagrange equation (6.2) is a
necessary condition.

As a physical principle, it is a disaster: the Lagrangian is coming out of the blue, the action
is not an extremum in several physical theories, initial value problems are not included, most
of the fields in physics are measures and not functions, etc., considering only some aspects of
the mathematical formulation. Moreover, in most of the classical, everyday physics, dissipative
processes are excluded; evolution equations for dissipative processes cannot be generated using
this variational principle without any further ado.

One can remedy several of the mentioned problems: there are more general function spaces
than Banach, initial value problems can be considered, some dissipative processes can be added.
As a tool, it is useful; however, as a principle, it is compromised. The limited validity of the
approach cannot be denied.
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Up to now, attempts to find a principal approach for constructing evolution equations for
dissipative processes have been based on well-established methods for non-dissipative processes.
We were looking for extensions and modifications of the variational principle (6.1) preserving
some elements of the formal method and the idea of the extremum. In this paper, we argue that
one can start from the other end and assume an inequality instead of an equality. Interestingly
and importantly, several methods based on the analysis of this inequality result in solutions in an
Euler–Lagrange form. This observation enables us to formulate a research programme. One can
postpone the decision whether the fields are emergent or not and what kind of microscopic and
submicroscopic composition of the material can lead to the inequality. Instead, we may assume
that entropy, like a Lagrangian, is the generating potential of the evolution of the fields and deal
with the consequences.

This programme is already running, mostly unconsciously, in the various branches
of nonequilibrium thermodynamics. Any methods that construct evolution equations with
thermodynamic methods are contributing. We have already mentioned extended thermo-
dynamics, GENERIC, conservation–dissipation formalism, steepest entropy descent, virtual
power and internal variables [21,22,35,36,68–71]. It is very successful in classical, non-relativistic
situations where dissipation is apparent.

There are also some conceptual consequences. First of all, it is a unification. Our evolution
generator extremum principle, the selection rule for the laws of Nature, is not independent
any more; it is of thermodynamic origin. Thermodynamic, but not statistical; the axioms are
related to the stability structure, the existence of a concave and increasing potential. Is the
second law elevated to a first principle level, or are the first principles better understood as
emergent? We prefer the first interpretation: the rule is to select the stable materials with
the entropy as a Lyapunov functional of the equilibrium. Stability is clearly a selection rule;
unstable materials survive only under special conditions. The second interpretation denies the
existence of first principles, e.g. for theories like gravitation [72,73]. If everything is emergent,
then processes without dissipation are exceptional. Then energy does not leak towards the ever
existing microlevel, it is somehow insulated. The fact that the two interpretations are practically
the same is a disturbing consequence. It may be reasonable to postpone the decision until more
is known about the performance of this possible unification, e.g. until electrodynamics is derived
from nonequilibrium thermodynamics.

If everything were to be dissipative, non-dissipative evolution arises as a particular limit.
However, in most of the fundamental theories, it is definitely not an approximation. We believe
that it is an inherent property of physical phenomena; we consider the corresponding equations
identically fulfilled. Let us recall, for example, gravitation. As far as we know, gravitation is not
dissipative. That is true, but that is not a contradiction.

— First, this is always an experimental question. There are more and more precise
experiments that measure the validity of equivalence principles of inertial and
gravitational masses and other experiments that check the validity of Lorentz invariance
[74]. In these cases, most of our theories assume equivalence; violation of Lorentz
covariance is not expected. Still, it is always necessary to validate our most fundamental
assumptions, too.

— Second, what is the reason for the existence of ideal, non-dissipative evolution at various
levels of length scales? Atomic, hadronic and quark levels are seemingly independent
and apparently non-dissipative. Then a theory in which stability of the material is the
guiding idea provides a practical and deep explanation: the various ideal levels are
stabilized due to physical processes. We are far from understanding the details here [75],
but renormalization is definitely a dissipative method [76,77].

— There is also a third, very practical, point here: it is easier to solve dissipative equations
than non-dissipative ones. Therefore, a dissipative extension can be a tool to design
powerful numerical procedures [75,78].
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