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Abstract

Photosynthesis has become a major trait of interest for cereal yield improvement as breeders appear to have reached the 
theoretical genetic limit for harvest index, the mass of grain as a proportion of crop biomass. Yield improvements afforded 
by the adoption of green revolution dwarfing genes to wheat and rice are becoming exhausted, and improvements in bio-
mass and radiation use efficiency are now sought in these crops. Exploring genetic diversity in photosynthesis is now pos-
sible using high-throughput techniques, and low-cost genotyping facilitates discovery of the genetic architecture underlying 
this variation. Photosynthetic traits have been shown to be highly heritable, and significant variation is present for these 
traits in available germplasm. This offers hope that breeding for improved photosynthesis and radiation use efficiency in 
cereal crops is tractable and a useful shorter term adjunct to genetic and genome engineering to boost yield potential.
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Introduction: supply, demand, and the  
challenges ahead

The challenges of sustainably supplying sufficient food to a 
burgeoning world population, predicted to exceed 9 billion 
by 2050, have been well documented (FAO 2009; Crist et al., 
2017). Apart from the rise in global consumption, we are faced 
with diminishing arable land through degradation, changes 
in food preferences as living standards rise across Asia and 
Africa, and, importantly, the largely negative impacts of climate 
change and extreme weather events on agricultural production 
(Dawson et al., 2016). However, focusing on the needs of global 
agricultural production out to 2050 runs the risk of compla-
cency in our research and crop breeding goals as it is likely that 
a major imbalance between supply and demand in the global 
cereal grain market, such as was seen in 2008, will occur long 

before 30 years have passed (FAO: The state of food insecurity 
in the world 2011; http://www.fao.org/3/i2330e/i2330e04.
pdf). Indeed, global reserves of cereal grain are again low as a 
proportion of annual global demand and may be precipitously 
so (http://www.fao.org/worldfoodsituation/csdb/en/).

Recent climate modelling reported by the International 
Panel on Climate Change (IPCC) is now geographically fine 
grained enough to allow us to predict not only global increases 
in average temperature and the impact on agriculture, but also 
how this maps onto major cereal-producing regions globally 
(Elbehri et al., 2017; Arneth et al., 2019). Models also predict in-
creases in the frequency of catastrophic weather events and how 
these will translate into crop losses through heat stress, drought, 
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flood, frost, etc. (Arneth et  al., 2019). The impact of climate 
change on wheat yields from 1990 to 2015 was recently mod-
elled for Australia (Hochman et al., 2017) and found to have 
been responsible for a 27% decline in yield potential in rainfed 
environments, despite significant advances in yield resilience 
made by breeders during this period. If this effect accelerates 
and is exacerbated by extreme weather events, the current 1% 
annual improvement in wheat yield potential (Fischer et  al., 
2014) will not even keep pace with these detrimental effects 
over the next decade in dry, hot environments, not only in the 
developing world but also in our major cereal grain-exporting 
regions. A more than doubling of our annual yield progress is 
required in the case of all the globally important cereals, and 
the search for new ‘frontier traits’ to achieve this is now a major 
breeding focus (Furbank et al., 2019a).

The ‘green revolution’ and improving 
photosynthesis

The spectacular yield improvements seen in cereals in the 
1960s and 1970s and the high annual increases in yield poten-
tial in wheat and rice achieved in the subsequent decades has 
recently declined (Parry et al., 2011; Furbank et al., 2019a). It is 
now widely accepted that the breeding strategies of the green 
revolution based on improvements in harvest index and grain 
number and largely driven by adoption of dwarfing genes 
(Fig. 1) have reached a plateau.

Genetic potential for harvest index in many elite wheat and 
rice genotypes has reached the theoretical limit of ~0.6 (60% 
of the plant biomass is harvestable grain; Foulkes et al., 2011). 
Since the yield equation comprises only harvest index and 
biomass as factors, there has recently been a major focus on 
improving wheat and rice biomass without sacrificing harvest 
index (Parry et al., 2011; Furbank et al., 2019a), most readily 
achievable by improvements in radiation use efficiency (RUE) 
via increased photosynthetic capacity and efficiency. Since the 
2008 food crisis, many hundreds of millions of dollars has now 
been invested in research to improve photosynthetic perform-
ance in model plants and crops, by both transgenic and non-
transgenic approaches.

Candidate gene engineering approaches

Photosynthesis is one of the most intensively studied biochem-
ical processes in plants. Decades of biochemistry and biophysics 
of mechanisms and processes have been followed by gene sup-
pression work in transgenic plants to ‘titrate’ out levels of key 
enzymes and determine the limitations to photosynthetic 
flux afforded by these steps in C3 and C4 photosynthesis (e.g. 
Hudson et  al., 1992; Furbank et  al., 1996; Price et  al., 1998; 
Harrison et al., 2001; von Caemmerer et al., 2005). Modelling 
has been used extensively to elucidate these limitations to flux 
under a range of environmental conditions (von Caemmerer, 
2000). The contribution of the leaf-level models derived from 
Farquhar et al. (1980) in guiding these experiments has been 
invaluable in providing a quantitative, mathematical lens with 

which to examine impacts of gene expression, enzyme activity, 
and protein level on leaf photosynthetic physiology. Together 
with systems models (Zhu et al., 2007) and incorporated into 
field crop simulations (Wu et al., 2016, 2019; Yin et al., 2017), 
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Fig. 1. The Green Revolution and global cereal yields. (A) A farmer 
examining a pre-semi-dwarf wheat crop in 1915 (source: ‘Wheat growing 
in Australia’ McCarron, Bird & Co, Melbourne, Australia; 1915). (B) Effect 
of various dwarfing genes on plant stature in near isogenic lines of wheat 
(sourced from the John Innes Centre image archives). (C) Declining annual 
yield progress from breeding in the three major cereal crops prior to the 
2008 food crisis (FAO, 2009).
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modelling continues to guide our strategies for candidate gene 
selection for manipulation and transgenic plant analysis. Targets 
for engineering-based approaches have included Rubisco im-
provement by directed evolution (Wilson et al., 2018), increased 
expression of Rubisco (Salesse-Smith et  al., 2018), reduc-
tion of photorespiration by CO2-concentrating mechanisms 
(reviewed in von Caemmerer et  al., 2012; Long et  al., 2016) 
and photorespiratory bypasses (South et al., 2019; Shen et al., 
2019), overexpression of enzymes important in regeneration 
of ribulose-1,5-bisphosphate (RuBP) such as sedoheptulose-
bisphosphatase (Lefebvre et  al., 2005; Driever et  al., 2017), 
modification of photoprotection (Kromdijk et al., 2016), and 
overexpression of the thylakoid cytochrome b6f complex for 
ATP production (Simkin et al., 2017; Ermakova et al., 2019a). 
Modification of mesophyll conductance and stomatal con-
ductance to provide better access of CO2 to Rubisco has also 
been explored as an engineering target using proposed CO2 
porins (reviewed in Groszmann et al., 2017; Condon, 2020).

All these approaches have also been recently reviewed (Simkin 
et  al., 2019) and are the focus of major national and inter-
national consortium efforts (e.g. ARC Centre of Excellence 
for Translational Photosynthesis, https://photosynthesis.org.
au/; C4 Rice Project, https://c4rice.com/; and Realising 
Improvements in Photosynthetic Efficiency or RIPE, https://
ripe.illinois.edu/). However, while modelling predicts that these 
modifications alone and in combination could have quantum 
effects on photosynthetic performance in crops, as yet only a 
few of these genetically modified traits have been tested in the 
field in cereals (e.g. Shen et al., 2019) or indeed in any crops 
apart from tobacco. Recently, interpretation of phenotypes and 
field performance of transgenic tobacco has also been contro-
versial (Evans, 2019; Fischer et al., 2019). Given the challenges 
of field translation of genetically modified photosynthetic traits, 
is there significant genetic variation in photosynthesis in our 
existing cereal germplasm collections to breed for large in-
creases in biomass and yield? Are these traits heritable and stable 
and what are the genetics underpinning such variation?

Genome to phenome: mining allelic 
variation

The plummeting costs of genome and transcriptome sequencing 
means that burgeoning collections of cereal germplasm can be 
cheaply genotyped, and in many cases high-quality genome 
re-sequence data are available (Wang et  al., 2018; Langridge 
and Waugh, 2019; Milner et  al., 2019). Coupled with the 
high level of domain knowledge available to identify candi-
date genes in photosynthetic improvement, this provides an 
opportunity to mine allelic variation in photosynthetic genes 
(Furbank et al., 2019a, b; Fig. 2) and determine their import-
ance. Several initiatives have been established across the globe 
in wheat, rice, and barley to capture the genetic diversity of 
both current and historic/heirloom varieties and wild rela-
tives or genome donors in the case of wheat. In wheat, most 
notable of these are the CIMMYT activities under the Seeds 
of Discovery program (https://seedsofdiscovery.org/) and the 
efforts of the Leibniz Institute for Crop Breeding (IPK) to 

carry out Illumina sequencing of a large proportion of their 
barley and wheat germplasm collection (https://bridge.ipk-
gatersleben.de).

In rice, the International Rice Research Institute (IRRI) 
have developed a large sequenced diversity panel of indica and 
japonica rice genotypes with diverse pedigrees and geographic 
origins: the 3K population, currently being extended to in-
clude 10 000 entries (Wang et al., 2018; http://snp-seek.irri.
org/). Maize germplasm collections and genotyping data are 
perhaps the best developed and have been utilized for many 
years (reviewed in Romay, 2018). In sorghum, the first C4 grass 
to undergo full genome assembly, genetic resources are also 
building, with genetic material dating from pre-domestication 
to current elite lines (Mace et al., 2013; Boyles et al., 2019).

While the genetic resources now exist in a variety of crops 
to examine allelic variation in all candidate genes/proteins 
known to be important in controlling photosynthetic flux, 
Rubisco has been the focus of most efforts to date.

Exploring the Triticeae tribe for variation in 
Rubisco catalysis

CO2 assimilation within key C3 crops is often limited by the 
catalytic activity of Rubisco (von Caemmerer, 2000; reviewed in 
Sharwood, 2017). Rubisco is a bifunctional enzyme that can ei-
ther fix substrate CO2 or oxygen to substrate RuBP (Sharwood, 
2017). Carboxylation of RuBP is the productive reaction of 
Rubisco that results in formation of 3-phosphoglycerate that 
is used for the synthesis of carbohydrate backbones, which 
are then utilized for plant growth and productive yield, 
whereas oxygenation is unfavourable because of the produc-
tion of 2-phosphoglycolate that must be recycled through the 
photorespiratory pathway (Bauwe et al., 2010). This process con-
sumes energy and releases previously fixed CO2 (Sharkey, 1988). 
Therefore, Rubisco is regarded as an inefficient catalyst, with a 
catalytic cycle of 2–3 carboxylations per second, a meagre cata-
lytic efficiency, and poor specificity for CO2 (Sharwood, 2017). 
In addition, Rubisco requires the assistance of Rubisco activase 
(RCA) that is required to maintain and modulate enzymatic 
activity through metabolic repair of the activity that removes 
inhibitory sugar phosphates (Mueller-Cajar, 2017). These in-
clude the misfiring product xylulose bisphosphate (XUBP), the 
nocturnal inhibitor carboxyarabinitol-1-phosphate (CA1P), and 
substrate (Parry et al., 2008). Surprisingly, RCA is thermolabile 
within C3 crops, with activity dropping significantly as temper-
atures exceed 35 °C (Crafts-Brandner and Salvucci, 2000). To 
circumvent Rubisco catalytic inefficiencies, terrestrial plants de-
vote significant amounts of leaf nitrogen (N) to synthesize large 
amounts of Rubisco to ensure appropriate CO2 assimilation. 
However, this has burdened agriculture with the high use of 
N fertilizers to ensure sufficient Rubisco is synthesized for as-
similating carbon for growth and yield. Therefore, Rubisco and 
RCA are two primary targets for improving CO2 assimilation 
by ameliorating catalysis to improve both photosynthetic N use 
efficiency and photosynthetic water use efficiency.

Screens of in vitro Rubisco catalytic parameters among ter-
restrial plants (C3 and C4) and algae have revealed substantial 
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diversity in Rubisco catalysis and identified versions better 
suited to current and predicted future climate scenarios (Galmés 
et al., 2014; Orr et al., 2016; Sharwood et al., 2016a; Young et al., 
2016; Heureux et al., 2017). Three catalytic parameters are re-
quired for modelling to assess performance. These are: (i) the 
Michaelis constant for CO2 in air (Kc

air); (ii) carboxylation speed 
(kcat

c); and (iii) the specificity for CO2 as opposed to O2 (Sc/o) 
(Sharwood, 2017). Until recently, little information was known 
about the diversity of Rubisco catalysis within the Triticeae 
tribe. Analysis of 25 species with the tribe demonstrated diver-
sity of Rubisco catalysis, with variation observed in kcat

c, Kc
air, 

and Ko (the Michaelis constant for oxygen) (Fig. 3A–C; (Prins 
et  al., 2016). Interestingly, Triticum species showed improved 
carboxylation efficiency at 21% O2 compared with Aegilops re-
latives (Fig. 3D; Prins et al. (2016). Understanding the source of 
this change, probably variation in the sequence of Rubisco small 

subunits, will provide key information to further improve wheat 
Rubisco catalysis.

Further exploration of the Triticeae tribe is required to 
fully assess diversity in Rubisco catalysis. Identifying catalytic 
switches in the Rubisco large and small subunits will open 
up new opportunities for improving wheat CO2 assimilation. 
However, it is evident in Fig. 3 that C4 Rubisco provides solu-
tions to improve the current wheat forms. The kcat

c and carb-
oxylation efficiency (kcat

c/Kc
air) of C4 Rubisco outperform 

those of wheat. Comparison of Rubisco specificity is difficult 
as Prins et al. (2016) used a different technique for measuring 
Sc/o from that for C4 plants presented. Nevertheless, it is evi-
dent that maize Rubisco provides improved CO2 assimilation 
when compared at 25 °C (Sharwood et al., 2016b).

While substantial catalytic diversity exists within the Rubisco 
superfamily of enzymes, more interrogation of catalytic diversity is 
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Fig. 2. Genome to phenome and back: identification of photosynthetic traits for integration into breeding programmes or gene technologies. Analysis 
of photosynthetic CO2 assimilation from the canopy and leaf level can be achieved through rapid phenotyping techniques (see Furbank et al., 2019a, b). 
These techniques enable rapid determination of photosynthetic parameters that help select germplasm for detailed analyses. At the canopy level, LIDAR 
is used for non-destructive biomass determination, drones or unmanned aerial vehicles are used for imaging crop canopies which can include RGB 
cameras for crops coverage, and thermal imaging is used for canopy temperature, which can be utilized for screening germplasm for differences in water 
use efficiency. At the leaf level, tools such as hyperspectral reflectance can be used to estimate electron transport capacity and Vcmax, in addition to leaf 
N and leaf mass per area (Silva-Perez et al., 2018). Tools such as MultispecQ (Kuhlgert et al., 2016) and SPAD provide surrogates for leaf N content, with 
the former measuring electron transport and non-photochemical dissipation of incoming light energy. Determining the underpinning biochemistry and 
gene sequence diversity is requisite to deploy traits crucial for improving CO2 assimilation.
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required. Efforts to include Rubisco as a breeding target have been 
limited due to the labour-intensive measurements of Rubisco ca-
talysis. High-throughput surrogates for Rubisco capacity and cata-
lytic properties measured on intact leaves offer hope of tractable 
screening methods, and these are discussed in the following sections.

Genetic diversity in cereal crop 
photosynthesis

High-throughput direct measurement of carbon assimilation 
presents a large technical challenge, even using so-called ‘rapid’ 
gas analysis techniques (e.g. Stinziano et al., 2017). Exploring 
genetic diversity for photosynthetic traits in germplasm col-
lections and large structured mapping populations of cereals 
has long been considered a laborious and almost an intractable 
task (Parry et al., 2011; Furbank et al., 2019a, b). Single point 

measurements of assimilation rate on flag leaves of spring and 
winter wheat have been seen to have both a positive and nega-
tive correlation with yield and year of release (Murthy and 
Singh, 1979; Evans, 1993; Reynolds et al., 1994, 2000; Fischer 
et al., 1998; Fischer et al., 2010; Sadras et al., 2012; Gaju et al., 
2016; Tang et al., 2017). There is of course the complication in 
such studies of which leaf and at which developmental stage to 
measure and how to compare germplasm with vastly different 
phenology (Parry et al., 2011). Obtaining gas exchange data in 
the field is slow, with stomatal limitation often complicating 
the measurement (Condon et  al., 2004; Feng et  al., 2018). 
While even more time-consuming than assimilation measured 
at ambient CO2, CO2 response curves or ‘A versus Ci’ curves 
potentially provide a better estimate of photosynthetic traits as 
they allow extraction of estimates of Rubisco amount and kin-
etic efficiency (Vcmax) and electron transport capacity (J) using 
the modelling frameworks discussed above (Farquhar et  al., 
1980; Silva-Perez et al., 2018, 2019). Given the time constraints 
for measurement, a limited number of studies have been done 
with diversity panels of wheat using gas exchange, with few of 
these done in the field or incorporating leaf structural traits.

Figure  4 summarizes the most recent of these published 
data (Driever et al., 2014; Jahan et al., 2014; Carmo-Silva et al., 
2017; Silva-Perez et  al., 2018, 2019). Across elite germplasm 
(including historic germplasm sets), there appears to be sub-
stantial genetic variation in the modelled parameters reflecting 
Rubisco capacity (Vcmax) and photosynthetic electron trans-
port (J) (Fig.  4). In the larger data sets of Silva-Pérez et  al. 
(2020) and Carmo-Silva et  al. (2017), genetic variation in J 
appeared to be larger than in Vcmax, but this was not the case 
in the smaller germplasm set of Jahan et al. (2014). Heritability 
of these gas exchange-derived traits can be quite high (broad-
sense heritabilities of 0.31–0.76 have been reported for A in 
winter wheat grown in the UK; Carmo-Silva et al., 2017) and 

Fig. 3. Exploring Rubisco catalytic diversity within Triticeae and C4 plants. 
Variation in key Rubisco catalytic parameters from Triticeae and compared 
with plant C4 Rubisco. Parameters include the carboxylation speed, kcat

c, the 
Michaelis constants for CO2 and O2 and carboxylation efficiency (kcat

c/Kc
air). 

Rubisco catalytic data for the Triticeae tribe were replotted from Prins 
et al. (2016) into box plots alongside C4 Rubisco. Kc

air was calculated for 
Triticeae Rubisco using the formula Kc

air (μM)=Kc(1+O/Ko), where Kc and Ko 
are the Michaelis constants for CO2 and oxygen, respectively, and O is the 
atmospheric O2 concentration—252 μM. The C4 Rubisco parameters were 
replotted from Jordan and Ogren (1983); Kubien et al. ( 2008); Whitney et al. 
(2011); and Sharwood et al. (2016a, b). In each box plot, the black square 
and the horizontal bar indicate the mean. The lower and upper edge of each 
box indicate the interquartile (25–75%) range of the values reported. The 
whiskers extend to 1.5 times the interquartile range.

Fig. 4. Genetic variation in wheat for (A) Rubisco activity (Vcmax) and (B) 
electron transport rate (J). Vcmax and J for 11 wheat genotypes measured 
in young plants grown in a controlled-environment growth cabinet (Jahan 
et al., 2014), 64 winter wheat genotypes grown in the field in the UK 
(Carmo-Silva et al., 2017), and 74 spring wheat genotypes measured in a 
glasshouse (only high N treatment shown) and field in Australia and Mexico 
(Silva-Perez et al., 2018, 2020).
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for spring wheats grown in Mexico and Australia, heritability 
of modelled parameters Vcmax and J were also as high as 0.7 
(Silva-Pérez et  al., 2020). These data suggest that photosyn-
thetic traits are genetically robust enough to breed with and 
that substantial variation is present in elite material and po-
tentially even greater variation in landraces and wild relatives.

In rice, several studies have been carried out on diverse 
germplasm to investigate genetic variation in A from gas ex-
change. In a collection of 20 diverse japonica and indica geno-
types, light-saturated A at ambient CO2 concentration varied 
by >40% from lowest to highest genotypes (Jahn et al., 2011). 
However, low heritability of A observed in this study (0.17) is 
indicative of the challenges in using a single point assimilate rate 
to find the genetic architecture underlying photosynthetic traits.

High-throughput phenomics: accelerating 
germplasm screening from organs 
to canopy

Hyperspectral reflectance

As discussed above, high-throughput surrogates for photo-
synthetic traits traditionally derived from gas exchange are a 
priority because: (i) the large scale of experiments necessary 
to screen germplasm diversity sets and mapping populations 
proves too costly; (ii) time of day and seasonal variation affect 
trait expression, compressing time available for measurements; 
and (iii) measurements may need to be made on several leaves/
plant organs at different developmental stages in the crop life 
cycle to obtain a comprehensive analysis. To obtain accurate 

mapping of photosynthetic traits in a structured population, 
such as a recombinant inbred set with high-density genetic 
maps usually requires in excess of 150 lines grown with repli-
cation, in the field, preferably across multiple seasons and often 
multiple locations (Collard et al., 2005). Given that leaf-level 
measurements can require between two and six replicates per 
field plot, even at a single developmental stage, this would 
mean that with 3-fold replication at both the genotype and 
technical level. a minimum of 1350 individual measurements 
must be made. If multiple leaf classes at several stages of devel-
opment are added to the experiment, the phenotyping rapidly 
becomes unachievable in a reasonable amount of time, particu-
larly if time of day effects are to be avoided. For genome-wide 
association panels, the size of the experiment may increase 
to 1000 germplasm entries if gene-level resolution is desired 
(Ingvarsson and Street, 2011), exacerbating the problem.

Recent advances in machine learning coupled with optical 
sensing systems at the leaf and canopy level offer a potential 
solution to this issue. Leaf and canopy spectral reflectance 
measurements can now be made using affordable visible/
near infrared spectrometers or more costly full range visible, 
NIR, SWIR spectrometers, enabling the collection of many 
hundreds of wavelengths from below 400  nm to 2500  nm. 
Predictions of leaf traits from spectral reflectance data are made 
using machine learning to generate statistical models between 
every wavelength of reflected light from leaves and the trait of 
interest measured with traditional methods (termed a ‘training 
set’). These models are then either validated on another set of 
germplasm or the training set is divided into a training and val-
idation set for testing (Silva-Perez et al., 2018).

This approach has resulted in prediction of leaf traits re-
lated to photosynthesis such as leaf N, phosphorus, mass per 
area, and photosynthetic traits such as A, J, and Vcmax in plants 
ranging from trees to annual C3 and C4 crops (e.g. Serbin 
et al., 2012; Ainsworth et al., 2014; Singh et al., 2015; Yendrek 
et al., 2017; Silva-Perez et al., 2018). This technique has re-
cently been extended to predictions of respiration rate in 
wheat (Coast et al., 2019) and field evaluation of transgenic 
plants with altered photosynthesis (Meacham-Hensold et al., 
2019). The attraction of hyperspectral reflectance models is 
that the collection of spectra can take <20 s per leaf and does 
not require any equilibration of the leaf in the sensor. There 
are, however, obstacles to the widespread use of a machine 
learning to examine genetic variation in crop photosynthetic 
traits as acquiring the data necessary to build a training set 
requires many hundreds or even thousands of measurements 
using the older, slower traditional methods. If training sets are 
not sufficiently large, containing a wide range of germplasm 
and even different leaf classes/developmental stages and en-
vironments, spurious ‘overfitting’ occurs and the predictive 
power of models is diminished for leaves which fall outside 
the panel used to generate the model (see Heckmann et al., 
2017; Coast et al., 2019).

Chlorophyll fluorescence

While direct measurement of carbon fixation in high 
throughput is problematic, estimation of photosynthetic 

Fig. 5. Rapid screening of linear electron flow (LEF) in wheat using 
chlorophyll fluorescence. Measurements of LEF were taken with three 
different MultispeQ sensors (Kuhlgert et al., 2016) between 09.00 h and 
14.00 h on the same, youngest, fully expanded leaf on a subset (76 lines) 
of the Vavilov collection and 10 commercial wheat varieties. The box plot 
shows the spread of LEF values in both sets while the individual points 
represent the averages for individual lines coloured by the average of the 
SPAD values simultaneously measured with MultispeQ. In each box plot, 
the black square and the horizontal bar indicate the mean. The lower and 
upper edge of each box indicate the interquartile (25–75%) range of the 
values reported. The whiskers extend to 1.5 times the interquartile range.
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electron transport capacity and related leaf-level efficiencies can 
be tractable in high throughput using chlorophyll fluorescence 
techniques without the use of models or proxies (reviewed 
in Maxwell and Johnson, 2000; Murchie and Lawson, 2013). 
Compact, commercial pulse amplitude-modulated chlorophyll 
fluorescence (PAM) systems are available (Cessna et al., 2010; 
Kuhlgert et  al., 2016) which apply a brief saturating flash of 
light via a high-intensity LED, in the light or dark, allowing 
calculation of either the photosynthetic electron transport rate 
(ETR or +) or the intrinsic light-harvesting efficiency of PSII 
(dark-adapted Fv/Fm). NPQ (non-photochemical quenching, 
resulting primarily from dissipation of energy as heat) can also 
be calculated (Maxwell and Johnson, 2000).

Deploying PAM at canopy level in a field crop presents dif-
ficulties in both obtaining a uniform saturating flash and in 
interpreting data from the complex 3D structure of the canopy. 
For canopy-level measurements, non-imaging fluorescence 
sensors or light-induced fluorescence transients (LIFTs) which 
apply a series of ‘flashlets’ to a spot of the canopy up to a few 
centimetres wide may be useful for field phenotyping (Keller 
et al., 2019), or imaging sensors for sun-induced fluorescence 
(SIF) mounted on drones, manned aircraft, or even satellites 
may be used to generate high-throughput phenotyping data 
(Zhang et al., 2018; Camino et al., 2019; Furbank et al., 2019b).

Aerial and satellite remote sensing using chlorophyll fluores-
cence has so far been utilized mainly to study natural vegetation 
and ecosystems or for horticulture with tree species (Furbank 
et  al., 2019b) and is only recently being used for exploring 
photosynthetic variation in crops (Camino et al., 2019).

In contrast, leaf-level chlorophyll fluorescence has been used 
to explore diversity in chloroplast electron transport and, to a 
limited degree, the genetics behind this variation

Wheat cultivars more tolerant to heat stress have been iden-
tified based on higher Fv/Fm from dark-adapted, detached 
leaves from a diversity panel of 41 lines of different origins 
(Sharma et al., 2015). Although commercial ‘Imaging PAM’ sys-
tems and hand-held devices are available for the estimation of 
chlorophyll-based parameters, they have been costly and have 
had limited application to high-throughput field phenotyping.

The development of new microelectronics and sensors has 
led to the design of hand-held instruments amenable for larger 
screenings. For example, the MultisepQ sensor can rapidly 
measure several fluorescence-based photosynthetic param-
eters and other physical leaf traits in field situations at a low 
cost (Kuhlgert et al., 2016), such as SPAD, linear electron flow 
(LEF), and PSII quantum yields (Kuhlgert et  al., 2016). The 
MultispeQ sensor has been used successfully to assess the ef-
fects of abiotic stresses (i.e. heat and drought) in Phaseolus 
(Traub et al., 2018) and cowpea (Mwale et al., 2017), and char-
acterization of photosynthetic traits in potato (Prinzenberg 
et  al., 2018) and transgenic tobacco plants with alternative 
electron transport (Gómez et al., 2018). This system also fea-
tures an open platform for metadata annotation, robust data 
acquisition, and easy sharing of information.

To investigate the utility of the MultispeQ sensor in a cereal 
crop, we screened a subset of the pre-breeding ‘Vavilov’ wheat 
population representing the genetic diversity of the panel 
(Riaz et al., 2017) and 10 commercial wheat varieties. A 4-fold 

difference between the highest and lowest LEF values was de-
tected (GME et al., unpublished). Both Vavilov and commercial 
checks spread over a similar range of LEF, between 20 µmol e 
m–2 s–1 and 80 µmol e m–2 s–1. The mean LEF for Vavilov was 
slightly higher and there were few lines with higher LEF than 
commercial wheats. In addition, concurrent measurements of 
SPAD with the same sensor demonstrated a dynamic response 
of LEF to N content mostly in the Vavilov lines, with commer-
cial varieties presenting higher N. High-throughput screening 
for leaf photosynthetic-related traits using sensors such as 
MultispeQ can be useful to identify new diversity in photo-
synthetic capacity and efficiency in breeding programmes or 
during surveys of diversity panels at relatively low cost.

Photosynthesis by wheat spikes can provide up to 25% of 
total grain carbohydrate during grain filling, and this contri-
bution could be higher under stressful conditions. It is antici-
pated that genetic variability for the spike photosynthesis trait 
exists, but phenotyping this photosynthetic capacity in this 
organ is challenging due to their complex structure and to 
the unknown capacity for re-fixation of carbon respired from 
the developing grain. The latter makes traditional gas exchange 
difficult to interpret because it measures net CO2 uptake by 
the spike. Moreover, and although gas exchange chambers 
for 3D organs such as spikes may be custom-built (Sanchez-
Bragado et al., 2014; Fortineau and Bancal, 2018), screening of 
individual wheat spike photosynthesis by gas exchange in the 
field is not practical for high-throughput phenotyping

Imaging of chlorophyll fluorescence using PAM of intact or 
detached ears offers an alternative to estimate photosynthetic 
capacity of wheat spikes. The contribution of photosynthesis 
and other energy dissipation processes to ETR (a surrogate for 
photosynthetic capacity) can be monitored by measuring the 
quenching of chlorophyll fluorescence over a range of light 
intensities. A mathematical model (von Caemmerer, 2000) can 
then be fitted to the ‘light response curve’ of ETR to calcu-
late Φ, the efficiency of light capture; θ, qualitative ‘curvature 
factor’; and Jmax, maximum potential electron transport rate. 
Jmax is widely used as a measure of leaf ‘light use capacity’ analo-
gous to the modelled parameter Vcmax as a metric of ‘Rubisco 
capacity’ (Fig. 6).

However, this technique based on a commercially available 
PAM fluorometer is not scalable to proximal remote-sensing 
buggies or to drones, and thus not applicable to canopy-based 
measurements in the field. Alternatively, hyperspectral im-
aging sensors mounted on movable platforms would be scal-
able to field-based application. Machine learning algorithms 
can deconvolute the hyperspectral signal from wheat leaves to 
estimate photosynthetic parameters obtained by gas exchange 
measurements (e.g. Silva-Perez et al., 2018). Similarly, training 
a statistical model for hyperspectral prediction of wheat spike 
ETR derived from PAM could be possible. For example, the 
light response curve of measured ETR with Imaging PAM 
could be used as a training set and combined with reflect-
ance spectra from hyperspectral imaging of spikes to build pre-
dictive models for all key chlorophyll fluorescence parameters 
(Jmax, θ, and Φ) using statistical approaches such as partial least 
squares regression, random forest, a support vector machine, or 
neural networks. The combination of hyperspectral imaging 
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and existing methods to detect spikes using image analyses 
with deep learning (Hasan et  al., 2018) or neural networks 
(Qiongyan et  al., 2017) could be instrumental in identifying 
genetic diversity in wheat spike photosynthesis.

Phenome to genome: QTLs and the genetic 
architecture of photosynthesis traits

Establishing allelic variation in genes known to encode im-
portant proteins in photosynthesis (genome to phenome) re-
lies upon pre-existing knowledge of these candidates (Fig. 2). 
Using high-throughput phenomics to generate trait associ-
ations with genomic regions can identify completely unknown 
genes affecting photosynthetic performance. Understanding 
the genetic architecture of photosynthetic performance can 
identify quantitative trait loci (QTLs) or markers which are 
useful breeding tools for marker-assisted selection or, if fine 
grain genetic maps and re-sequence data are available, single 
nucleotide polymorphisms (SNPs) can be identified in candi-
date genes which can be used to understand genetic and bio-
chemical mechanisms and drive gene editing and transgenic 
approaches.

Despite promising data on genetic diversity and heritability 
of photosynthetic traits, there are surprisingly few examples 

of QTL mapping of these parameters in wheat, given its im-
portance globally. There have, however, been several studies 
targeted to photosynthesis-related traits such as stress toler-
ance, canopy temperature, stomatal conductance, and transpir-
ation efficiency (e.g. Mason et al., 2013; Rebetzke et al., 2013). 
Recently, Molero et  al. (2019) explored the genetic basis of 
biomass accumulation and RUE in wheat by a genome-wide 
association study (GWAS). A panel of 150 elite spring wheat 
genotypes including many landrace and synthetically derived 
lines were examined using more traditional approaches such as 
measuring yield components and biomass accumulation over 
time combined with estimated intercepted radiation. Marker–
trait association identified 94 SNPs significantly associated 
with yield, agronomic, and phenology-related traits along with 
RUE and final biomass (BM_PM) at various growth stages 
that explained 7–17% of phenotypic variation. Common SNP 
markers were identified for grain yield, BM_PM, and RUE 
on chromosomes 5A and 7A. While the density of the genetic 
map was not sufficient to fine-map and identify single candi-
date genes, several QTLs encompassed genes involved in pro-
cesses associated with photosynthesis such as reactive oxygen 
detoxification and photoprotection of PSII.

In rice, several QTL studies have been carried out mapping 
measurements of A with QTLs found on chromosomes 3, 4, 
5, 6, 8, and 11 (Teng et al., 2004; Adachi et al., 2011, 2019; Gu 

Fig. 6. Hyperspectral reflectance imaging and machine learning for predicting photosynthetic traits in wheat spikes. (A) PAM maximum fluorescence 
image of a wheat spike showing six regions of interest. The three parameters which can be extracted from a model of the response of ETR to light 
intensity are: Φ, efficiency of light capture; Jmax, the electron transport ‘capacity’; and θ, a qualitative ‘curvature factor’. ETR is calculated from chlorophyll 
fluorescence images. (B) Typical light–response curve for individual regions of interest. (C) Average reflectance spectra from hyperspectral imaging for the 
six regions in (A) and (B).
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et al., 2012). Many of these QTLs account for only a small pro-
portion of variation or are dependent on genetic background 
(Adachi et  al., 2019). Consequently, only a small number of 
these loci have been fine-mapped and causative genic SNPs 
identified which underpin genetic variation for A in rice. Most 
notably, GREEN FOR PHOTOSYNTHESIS, originally 
thought to be associated with Rubisco carboxylation efficiency, 
has now found to be a determinant of leaf thickness, chloro-
phyll content, and canopy chlorophyll distribution (Takai et al., 
2013; Hirotsu et al., 2017), and Car8, a transcription factor af-
fecting photosynthetic capacity (Adachi et  al., 2017), is also 
involved in control of flowering time and duration. The com-
plex interactions between flowering time, phenology, tillering, 
N partitioning, and photosynthetic traits add to the difficulty 
of finding robust trait associations, and sophisticated statistical 
treatments such as deep learning (Zou et al., 2019) may be ne-
cessary to tease apart these confounding factors.

Photosynthetic capacity and leaf nitrogen 
content

Silva-Pérez et  al. (2020), in a study exploring genetic diver-
sity in wheat for photosynthetic traits, introduce the concept 
of photosynthetic capacity (Pc) and photosynthetic efficiency 
(Peff, i.e. Vcmax, or J per unit leaf N) to describe the drivers of 
variation in modelled leaf-level traits. It has been widely re-
ported that in cereal crops Rubisco amount and activity are 
closely related to N nutrition and leaf N content per unit area 
(Evans, 1983, 1989; reviewed in Evans and Clarke, 2019). It 
has also been reported that a reduction in flag leaf size, as-
sociated with the introduction of the Rht dwarfing genes to 
green revolution wheats, increased N and photosynthetic cap-
acity on a leaf area basis in subsequent varieties (Bishop and 
Bugbee, 1998). Leaf N content is also important in cereals, as 
a large proportion of grain protein is derived from leaf protein 
remobilized during senescence (see Evans and Clarke, 2019). 
There is concern that improvements in photosynthetic cap-
acity may require increased agronomic N fertilizer use over 
and above that already required to realize the gains of the green 
revolution genotypes (Parry et al., 2011).

Figure 7 shows the relationship between leaf N and Vcmax 
on an area basis in diverse wheat genotypes (data from Silva-
Pérez et al., 2020). Clearly, the amount and activity of Rubisco 
are related to leaf N, particularly when N supply is restricted 
(open squares in Fig. 3), but, at higher leaf N values more rele-
vant to agronomic N application levels, a wide range of Vcmax 
values were obtained across the genotypes tested. Similar re-
sults are also found for J (Silva-Pérez et al., 2020). Given the 
high heritability of these modelled parameters in wheat (Silva-
Pérez et  al., 2020 and references therein), either the catalytic 
efficiency of Rubisco or the electron transport efficiency is 
superior in some wheat genotypes or the partitioning of leaf 
N to these protein components in leaves is different between 
genotypes. These two options cannot be separated with the 
data available but, clearly, photosynthetic capacity per unit leaf 
N (Peff) has a strong genetic component and there is consid-
erable variation in wheat. Given the robust models available 

to predict these parameters from leaf hyperspectral reflectance 
data (Silva-Perez et al., 2018), it should be possible to screen 
large diversity sets and mapping populations to understand 
and exploit the underlying genetic control, and this work is 
underway in the IWYP consortium (see https://iwyp.org/
funded-projects/).

Source/sink regulation: feedback or 
feedforward?

It has frequently been pointed out that improvements in 
photosynthetic performance will only be translated into im-
proved grain yield if ‘partitioning’ between source and sink and 
associated signalling processes are accounted for (reviewed in 
Reynolds et al., 2012). Indeed, it has long been a point of con-
jecture among crop physiologists as to whether cereal yields are 
source or sink limited (Parry et al., 2011; Reynolds et al., 2012). 
Experiments with free air CO2 enrichment of a variety of crop 
species, while often showing increases in yield due to elevated 
photosynthetic activity, also frequently show sink strength-
mediated feedback limitation and limited impact on yield, 
thought to be due to negative effects of sugar signalling on 
photosynthetic gene expression, particularly Rubisco and leaf 
N levels (Ainsworth and Long, 2005). Various reports over the 
last 20 years have indicated strong feedback links between sink 
and source capacity, but the mechanisms for this signalling are 
complex (Wingler, 2018; Paul et al., 2018). While sucrose itself 
is something of a weak signal for sugar feedback on leaf pro-
cesses, recent evidence suggests that the signalling metabolite 

Fig. 7. Diversity of Rubisco content (Vcmax25) per unit of nitrogen per leaf 
area in 74 spring wheat genotypes measured in different environments 
and growing stages. EV and BYP are two different collections of wheat 
genotypes grown in glasshouse conditions with two nitrogen levels (–N, +N). 
BYP and CA are two different wheat collections of wheat genotypes grown 
in the field in Australia (Aus3) and in Mexico (Mex1). See Silva-Pérez et al., 
2020) for experimental details. In the x and y margins, a violin plot is shown 
representing the distribution of Narea and Vcmax, respectively. EV, early vigour 
set; BYP, high yielding set of wheat genotypes in Australia. (C) High yielding 
set of wheat genotypes from CIMMYT measured after anthesis. A and B 
designations at the end of the genotype acronyms refer to the plant growing 
stages at the time of the measurements, A, after anthesis, B, before anthesis.

https://iwyp.org/funded-projects/
https://iwyp.org/funded-projects/
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trehalose-6-phosphate (T6P) may perform this role and also 
affect phloem transport processes via regulation of the SWEET 
membrane transporters (Paul et al., 2018).

While sugar feedback could be an impediment to realization 
of increased yield from photosynthetic improvement, there is 
also evidence of feedforward effects of photosynthetic perform-
ance on sink development. In wheat, the final size of the ear and 
floret number is determined early in development when the 
inflorescence is still within the sheath (Reynolds et  al., 2009). 
Supply of photoassimilate at this stage and at flowering can 
strongly influence floret number, floret fertility, and final grain 
number (Fischer, 1985; Reynolds et  al., 2005; Broberg et  al., 
2019). The coordination between sink and source capacity at 
this developmental stage may be why it is difficult to separate the 
contribution of photosynthesis from sink strength when exam-
ining the basis for historic yield improvement (see Furbank et al., 
2019a). Such coordination may also provide hope that increased 
photosynthetic capacity and efficiency could actually translate to 
improved yield by feedforward effects on sink capacity.

Translation of photosynthetic performance 
to yield and resilience on farm

Current large investments in research for improved crop photo-
synthetic performance have varying timelines for delivery of 
new cereal varieties to farmers. Improved tools for phenotyping 
photosynthesis could identify material for crossing which can 
then be utilized in breeding programmes almost immediately, 
but understanding the genetic architecture of photosynthesis, 
and finding QTLs and causative SNPs in new gene targets 
requires appropriate diversity sets or biparental populations 
and then creation of near isogenic lines or gene-edited ‘allele 
mimics’ to demonstrate causality. This may reasonably be ex-
pected to take 3–5 years for the results of field-based activities 
to be available to crop breeders, assuming genetic material is in 
place. Deployment of genetically modified traits, once proto-
typed in model systems, may take even longer after careful val-
idation in multiple environments and in multiple transgenic 
events. Complex multigene pathway engineering, while be-
coming rapidly more tractable with synthetic biology and gene 
editing (for C4 rice, see Ermakova et al., 2019b), would require 
10 years plus research and then pre-breeding before delivery to 
breeders as a trait. While a population of 10 billion people on 
earth seems some way off, there is definitely no time to waste.
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