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Germany, 2 Centre for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
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Abstract

State-of-the-art machine learning (ML) artificial intelligence methods are increasingly lever-

aged in clinical predictive modeling to provide clinical decision support systems to physi-

cians. Modern ML approaches such as artificial neural networks (ANNs) and tree boosting

often perform better than more traditional methods like logistic regression. On the other

hand, these modern methods yield a limited understanding of the resulting predictions. How-

ever, in the medical domain, understanding of applied models is essential, in particular,

when informing clinical decision support. Thus, in recent years, interpretability methods for

modern ML methods have emerged to potentially allow explainable predictions paired with

high performance. To our knowledge, we present in this work the first explainability compari-

son of two modern ML methods, tree boosting and multilayer perceptrons (MLPs), to tradi-

tional logistic regression methods using a stroke outcome prediction paradigm. Here, we

used clinical features to predict a dichotomized 90 days post-stroke modified Rankin Scale

(mRS) score. For interpretability, we evaluated clinical features’ importance with regard to

predictions using deep Taylor decomposition for MLP, Shapley values for tree boosting and

model coefficients for logistic regression. With regard to performance as measured by Area

under the Curve (AUC) values on the test dataset, all models performed comparably: Logis-

tic regression AUCs were 0.83, 0.83, 0.81 for three different regularization schemes; tree

boosting AUC was 0.81; MLP AUC was 0.83. Importantly, the interpretability analysis dem-

onstrated consistent results across models by rating age and stroke severity consecutively

amongst the most important predictive features. For less important features, some differ-

ences were observed between the methods. Our analysis suggests that modern machine

learning methods can provide explainability which is compatible with domain knowledge

interpretation and traditional method rankings. Future work should focus on replication of

these findings in other datasets and further testing of different explainability methods.
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Introduction

Machine learning (ML) techniques are state-of-the-art in predictive modeling in fields like

computer vision and autonomous navigation [1]. Increasingly, these tools are leveraged for

clinical predictive modeling and clinical decision support, where clinical values are used to

predict a clinical status, e.g. a diagnosis, outcome or risk [2,3]. Here, newer machine learning

techniques—we will refer to them as modern machine learning techniques in this work—

including artificial neural nets (ANN), especially deep learning (DL), and ensemble models

such as tree boosting have often shown higher performance than traditional machine learning

techniques such as linear or logistic regression, e.g. [4–8].

However, a common criticism of these modern techniques is that while they might increase

model performance they do not provide the possibility to explain the resulting predictions [9].

In contrast, traditional techniques allow explanations by various means and this approach has

been the backbone of explainable clinical predictive modeling to date [10]. The necessity of

interpretable ML systems are of particular concern in the medical domain. An explainable AI

system is essential to provide: 1) Interpretation and safe check of the acquired results during

development [11]. 2) Better assessment of safety and fairness of medical products, especially

regarding bias, during the regulatory process [12]. 3) Domain knowledge supported interpre-

tation leading to increased trust by the physicians, other healthcare professionals, and patients

[12]: Some argue that black box approaches are unacceptable for clinical decision support

from the physician´s point-of-view [13] and from the patient’s point-of-view [14]. Thus, cur-

rently, researchers and developers are facing an unfortunate trade-off: either to use methods

with potentially higher performance or to use methods providing explainability to comply

with ethical and regulatory requirements [9].

Fortunately, interpretability methods tailored to modern machine learning algorithms have

emerged lately, therefore potentially allowing high performance and explainable models. For

one, in the last few years several techniques have been developed to open the most notorious

black box, namely artificial neural networks and provide explainable models [11]. Moreover,

tree boosting provides high performance clinical predictive modeling and also allows the cal-

culation of feature importance and ranking, e.g. Lundberg et al [15]. However, to our knowl-

edge, these approaches have not yet been compared to the traditional methods in terms of

interpretability for clinical predictive modeling.

In the present work, we thus compared the above mentioned two modern ML methods,

ANNs and tree boosting, to traditional methods with regard to explainability. We chose a well-

characterized stroke clinical outcome paradigm. Here, available clinical features such as age, the

severity of the stroke or information about treatment are used to predict the 3 months post-stroke

outcome. Many replications in the past have established main factors driving the prediction,

namely age and stroke severity, e.g. [16–19]. Thus, within this paradigm, modern machine learn-

ing explanations can be interpreted against a baseline. Concretely, we used a multilayer percep-

tron (MLP) with deep Taylor decomposition as an example for an explainable ANN approach

[20], the CATBOOST algorithm with Shapley Additive exPlanations (SHAP) values as an example

for explainable tree boosting [15] and compared performance and explainability with different

versions of (regularized) logistic regression for a binary outcome (GLM, LASSO, and Elastic Net).

Methods

Patients and clinical metadata pre-processing

In a retrospective analysis, patients with acute ischemic stroke from the 1000plus study were

included [21]. The study was approved by the institutional ethics committee of Charité
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Universitätsmedizin Berlin in accordance with the Helsinki declaration and all patients gave

written informed consent. Patients were triaged into receiving iv-tissue-plasminogen-activator

(tPA) for thrombolysis therapy or conservative therapy. The modified Rankin Scale (mRS),

representing the degree of disability or dependence in the daily activities, was assessed for each

patient 3 months post-stroke via a telephone call. The available database consisted of 514

patients who received imaging at 3 imaging time points. Of these, 104 were lost-to-follow-up

and had no mRS values. 1 patient had to be excluded due to values outside of the possible

parameter range. Moreover, 95 patients had to be excluded due to infratentorial stroke and no

visible diffusion-weighted imaging (DWI) lesions. Specific further inclusion criteria of our

sub-study were a ratio of at least 1 to 4 for binary variables (absence/presence) and no more

than 5% missing values resulting in the final number of 314 patients and the following clinical

parameters for the predictive models: age, sex, initial NIHSS (National Institute of Health

Stroke Scale; measuring stroke severity), history of cardiac disease, history of diabetes mellitus,

presence of hypercholesterolemia, and thrombolysis treatment. For a summary of the patients’

clinical features and their distribution, see Table 1.

Data accessibility

Data cannot be shared publicly because of data protection laws imposed by institutional ethics

committee guidelines. Data might be available from the institutional ethics committee of Char-

ité Universitätsmedizin Berlin (contact via ethikkommission@charite.de) for researchers who

meet the criteria for access to confidential data. The code used in the manuscript is available

on Github (https://github.com/prediction2020/explainable-predictive-models).

Outcome prediction supervised machine learning framework

In a supervised machine-learning framework, the clinical parameters (Table 1) were used to

predict the final outcome of stroke patients in terms of dichotomized 3-months post-stroke

mRS, where mRS � {0,1,2} indicates a good outcome (i.e. class label for a given observation i)
and mRS � {3,4,5,6} indicates a bad outcome (i.e. class label for a given observation i). The

applied dichotomization resulted in 88 positive (i.e. bad outcome) and 226 negative (i.e. good

outcome) classes.

Feature multicollinearity

Importantly, methods for feature ranking can be influenced by feature multicollinearity. Par-

ticularly, Beta weights in regression analysis can be erroneous in case of multicollinearity

Table 1. Summary of the clinical data.

Clinical information Value

Median age (IQR) 72 (15)

Sex (Females/ Males) 196 / 118

Median initial NIHSS (IQR) 3 (5)

Cardiac history (yes/ no) 84 / 230

Diabetes mellitus (yes/ no) 79 / 235

Hypercholesterolemia (yes/ no) 182 / 132

Thrombolysis (yes / no) 74 / 240

The table summarizes the distribution of the selected clinical data covariates acquired in the acute clinical setting.

NIHSS stands for National Institutes of Health Stroke Scale; IQR indicates the interquartile range.

https://doi.org/10.1371/journal.pone.0231166.t001
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[22,23] and certain applications of feature importance calculation for tree boosting are simpli-

fied under the assumption of feature independence. To ensure an unbiased comparison of the

models interpretability we estimated multicollinearity of the features using the variance infla-

tion factor (VIF) [24]. The chosen features in the analysis demonstrated negligible multicolli-

nearity with VIFs < 1.91 (Age: 1.15; Sex: 1.91, NIHSS: 1.28; Cardiac history: 1.33; Diabetes:

1.36; Hypercholesterolemia: 1.74; Thrombolysis: 1.50). This makes our stroke outcome para-

digm particularly suited to compare explainability.

Predictive modeling and Interpretability

In this study, machine-learning (ML) methods were applied to predict the final outcome based

on clinical data. In the context of tabular data as in the given study, the interpretability of the

resulting models corresponds to a rating of feature importance. The interpretability frame-

works suggested in this study are tailored to the models and therefore indicate the relative con-

tribution of the features to the respective model prediction. The different ML algorithms and

the corresponding interpretability derivations are described as follows.

Traditional (linear) ML frameworks. 1. Generalized Linear Model (GLM). GLM is a gen-

eralization of linear regression that allows for a response to be dichotomous instead of contin-

uous. Hence the model predicts the probability of a bad outcome (vs. good outcome) based on

a set of explanatory variables according to the following relation:

PðO ¼ 1j�XÞ ¼
1

1þ e�
X

i
bixi

where PðO ¼ 1j�XÞ is the probability for a bad outcome (O = 1) given the vector of correspond-

ing covariates �X .

β stands for model parameterization. The objective function for the optimization problem

is defined by maximum likelihood estimation (MLE):

Jð�bÞ ¼ ln
YN

i¼1
PðOi ¼ 1j�Xi;

�bÞ

where Jð�bÞ stands for the objective function for the given model parametrization, PðOi ¼

1j�Xi;
�bÞ is the predicted outcome probability for the given covariates �Xi and model parametri-

zation β and N is the number of observations. In this formulation, this special case of a GLM is

also known as logistic regression.

2. Lasso. Lasso, standing for least absolute shrinkage and selection operator, provides the L1

regularized version of GLM. An L1 penalization of the model parametrization reduces overfit-

ting of the model and is applied by the addition of the L1 regularization term to the objective

function:

JLð�bÞ ¼ Jð�bÞ þ ak�bk

where JLð�bÞ stands for the Lasso objective function and α is the scaling factor hyperparameter.

3. Elastic Nets. Similarly to Lasso, elastic net provide a regularized variate of the GLM. Here

two types of regularization terms are added to the objective function that provide L1 and L2

penalization of the model parametrization respectively:

JENð�bÞ ¼ Jð�bÞ þ ak�bk þ gk �b
2
k

where JENð�bÞ stands for the elastic nets objective function and α and γ are the scaling factors

hyperparameters.
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For the three linear models, the interpretability of the models was deduced using the

resulted model parametrization. Hence, the rating of the features was derived by the values of

the model coefficients β. As outlined above, this is sufficient since our features do not exhibit

collinearity [23].

Modern (nonlinear) ML frameworks. 4. Tree boosting (CatBoost). Tree boosting solves

the described classification problem by producing a prediction model as an ensemble of weak

classification models, i.e. classifiers. As an ensemble method, the algorithm builds many weak

classifiers in the form of decision trees and then integrates them into one cumulative predic-

tion model to obtain better performance than any of the constituent classifiers. The prediction

is then given using K additive functions:

PðO ¼ 1j�XÞ ¼
XK

k¼1

fkð�XÞ; fk 2 F

where F ¼ ff ðxÞ ¼ wqðxÞgðq : Rm!T;w�RTÞ is the space of regression trees. Here q denotes

the structure of each tree and T is the number of leaves in the tree. Each f(x) represents an

independent tree structure q and leaf weights w. The output of the regression trees is a contin-

uous score represented by wi for leaf i. Each observation is classified using each constituent

tree to the corresponding leafs and the outcome prediction PðO ¼ 1j�XÞ is finally calculated as

the cumulative sum of scores of the corresponding leafs. The objective function for optimiza-

tion constitutes of the convex loss function, here chosen as logistic function, and a regulariza-

tion component:

JcðφÞ ¼
X

i

lðy0i; yiÞ þ
X

k

OðfkÞ

where the convex loss is given by:

lðy0i ¼ PðO ¼ 1j�XÞ; yiÞ ¼
�
XN

i¼1
wiðyilogðy

0

iÞ þ ð1 � yiÞlogð1 � y
0

iÞÞ
XN

i¼1
wi

which is the logistic loss and the regularization component is given by:

Oðf Þ ¼ gT þ
1

2
lkwk2

where ω are the model weights penalized through L2 normalization and T is again the number

of leaves in the tree. Here φ represents the corresponding model parametrization. In this study

we used the CATBOOST module to implement the tree boosting model allowing to success-

fully integrate both numerical and categorical features [25].

In the context of tree boosting models, SHapley Additive exPlanations (SHAP) values con-

struct a robust unified interpretability framework, breaking down the prediction to show the

impact of each input feature [15]. The SHAP values attribute to each feature the average

change in the model prediction when that feature is integrated to the model. It calculates a

marginal contribution of the feature by averaging over every possible sequence in which that

feature could have been introduced to make the prediction. This allows for calculating the con-

tribution of the feature to the final decision irrespective of in which order it was used in the

decision tree. The Shapley value of an input feature i for a single observation is calculated as
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follows:

�i ¼
X

S�Ffig

jSj!ðjFj � jSj � 1Þ!

jFj!

h
fS[ figðxS[ figÞ � fSðxSÞ

i

where F is the set of all input features, |F| representing its size. S represents any subset of input

features that was introduced to the model before feature i, and |S| is the size of that subset. The

second factorial in the nominator then gives the size of the remaining subset of input features

that will succeed feature i. The final multiplicative factor quantifies the difference in the model

prediction when feature i is introduced.

Finally, the overall rating of the feature contribution to the model is then achieved by aver-

aging the SHAP values over all observations.

5. MLP. A multilayer perceptron (MLP) is a type of feedforward artificial neural network

that is composed of connectionist neurons, also known as perceptrons, in a layered structure.

An MLP architecture is constructed of 3 components: 1) an input layer to receive the informa-

tion 2) an output layer that makes a decision or prediction about the input and 3) one or more

hidden layers that allow for feature extraction and modeling of the covariates dynamics using

nonlinear transformations. According to the universal approximation theorem, an MLP with

one hidden layer can approximate any function [26].

Here the model prediction is given by:

PðO ¼ 1j�XÞ ¼ f ðg
�
a gð�XÞ
� ��

Þ

where f ðxkÞ ¼
expðxkÞ

X

cexpðxcÞ
is the (softmax) output layer activation, k is the predicted class and c is

any of the possible classes for prediction. denotes the hidden layer activation function where

M represents the number of nodes in the layer.

The core objective function utilized for the MLP model was binary cross-entropy:

JmðφÞ ¼ �
1

N

XN

i¼1

yi log ðy
0

iÞ þ ð1 � yiÞ log ð1 � y
0

iÞ

where φ represents the corresponding model parametrization. Regularization of the model

was entailed using: 1) L1 regularization, i.e. linear penalization of the model parametrization

2) dropout, i.e. random drop of nodes at each stage of the training process with a probabilistic

rate DR and consecutive weighting of each of the nodes’ output with (1-DR) in the prediction

inference to yield the expected value of the output.

Explainability techniques for ANNs can be grouped into two categories: gradient-based

methods such as saliency [27] and backward propagation methods such as deconvolution [28],

guided backpropagation [29], SmoothGrad [30] and layer-wise relevance propagation (LRP)

[31]. Saliency is a simple technique that for a given data point identifies the most relevant

input features to which the output is most sensitive. The advantage of saliency is the simplicity

of the method application. However, it comes with the disadvantage of limited capability to

provide explainability, due to its relation to local differential effects only. In comparison, back-

ward propagation methods make use of the graph structure of neural networks by mapping

the prediction backwards along each layer using a set of predefined rules and thus can provide

better explanations to what made the network arrive at a particular decision [11]. Amongst

these methods, LRP provides the advantage of introducing a conservation property during the

propagation of relevance values and has shown an excellent benchmark performance [32]. For

a specific set of rules, the LRP can be seen as computing a Taylor decomposition of the
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relevance at a layer onto its predecessor. This is called deep Taylor decomposition and has

been proposed by Samek et al. as the method of choice for the backpropagation rule in LRP

[11].

Deep Taylor decomposition is an interpretation of layer-wise relevance propagation when

the parameters α and β in the propagation rule are set accordingly [20,31]. These parameters

regulate the contribution of positive and negative connections between neurons to the rele-

vance calculation. With α = 1 and β = 0, the relevance projected from a neuron k onto its input

neuron j can be written by the following simpler rule which is equivalent to a first order Taylor

decomposition:

rj k ¼
ajwþjkX

j
ajwþjk

rk

where aj is the activation of neuron j and wjk+ is the positive weight between neurons j and k.

Summing rj k over all neurons k to which neuron j contributes to yields the following propa-

gation rule:

rj ¼
X

k

ajwþjkX

j
ajw

þ
jk

rk

All neuron relevance values are propagated layer-wise using this rule from the final output

layer until the input, providing the input features with final relevance values.

The overall features importance was calculated as the weighted average of the observations

with relation to the confidence of prediction:

Rðf Þ ¼
1

N

XN

i¼1

yiriðf Þ

with yi ¼ yi � PðO ¼ 1j�XiÞ þ ð1 � yiÞð1 � PðO ¼ 1j�XiÞÞ where R(f) is the normalized feature

rating and ri(f) is the feature contribution for the given MLP model for observation i using

deep Taylor decomposition calculated by the propagation rule presented above.

Models training and validation

The data were randomly split into training- and test sets with a corresponding 4:1 ratio. Mean/

mode imputation and feature scaling using zero-mean unit variance normalization based on

the training set was performed on both sets. To target class imbalance the training set was ran-

domly sub-sampled to yield uniform class distribution. The models were then tuned using

10-folds cross-validation. The whole process was repeated 50 times (shuffles). Table 2 provides

a summary of the tuned hyperparameters for each model.

Performance assessment

The model performance was tested on the test set using receiver-operating-characteristic

(ROC)-analysis by measuring the area-under-the-curve (AUC). The performance measure

was taken as the median value over the number of shuffles.

Interpretability assessment

The absolute values of the calculated feature importance scores were normalized, i.e. scaled to

unit norm, in order to provide comparable feature rating across models: For each sample

(each of the 50 shuffles) the calculated importance scores were rescaled to be confined within
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the range [0,1] with their sum equal to one. Then, for each feature the mean and standard devi-

ation over the samples (shuffles) were calculated and reported as the final rating measures.

Results

Performance evaluation

All models demonstrated comparable performance for 3 months dichotomized mRS predic-

tion as measured by AUC values on the test set: GLM 0.83, Lasso 0.83, Elastic Nets 0.81, Tree

boosting 0.81 and MLP 0.83. While Catboost showed the highest performance, the difference

to the other models was very small. For a graphical representation of the models performance

on the training and test sets please see Fig 1.

Interpretability analysis

The interpretability analysis demonstrated consistent results across models in terms of the

strongest and established predictors: All explainable models rated age and initial NIHSS con-

sistently amongst the most important features. For less important features, results were more

varied. The most similar ratings were obtained between the Elastic net and the tree boosting

model. The lowest variance amongst feature importance was found for the MLP model. A

graphical representation of the results can be found in Fig 2.

Discussion

In the present work, we have used a well-characterized clinical stroke outcome prediction par-

adigm to compare the ability of modern and traditional machine learning methods to provide

explainability of their predictions. In the context of the presented study, both types of ML

methods (artificial neural nets and tree boosting) showed comparable performance and similar

interpretability patterns for the most important predictors. We corroborated that modern

Table 2. Summary of hyperparameters tuning.

Model Hyperparameter Range

LASSO C (inverse of regularizer

multiplier)

0.10, 0.12, 0.15, 0.18, 0.21, 0.26, 0.31, 0.37, 0.45, 0.54, 0.66, 0.79, 0.95, 1.15,

1.39, 1.68, 2.02, 2.44, 2.95, 3.56, 4.29, 5.18, 6.25, 7.54, 9.10,10.9, 13.3, 16.0,

19.3, 23.3, 28.1, 33.9, 40.9, 49.4, 59.6, 72.0, 86.9, 105, 126, 153, 184, 222,

268, 324, 391, 471, 569, 687, 829, 1000

Elastic

net

L1 ratio 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,

0.8, 0.85, 0.9, 0.95

Alpha 0.00001, 0.00004, 0.00016, 0.0006, 0.0025, 0.01, 0.04, 0.16, 0.63, 2.5, 10

CatBoost Tree depth 2, 4

Learning rate 0.03, 0.1, 0.3

Bagging temperature 0.6, 0.8, 1.

L2 leaf regularization 3, 10, 100, 500

Leaf estimation iterations 1, 2

MLP Number of hidden neurons 5, 10, 15, 20

Learning rate 0.001, 0.01

Batch size 16, 32

Dropout rate 0.1, 0.2

L1 regularization ratio 0.0001, 0.001

The table details the hyperparameters and corresponding range that were tuned for each model in the cross-

validation process.

https://doi.org/10.1371/journal.pone.0231166.t002
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Fig 1. Graphical representation of the model performance results. The graph illustrates the performance of the different

models evaluated on the training (blue) and test (orange) sets: generalized linear model (GLM), Lasso, Elastic net, Tree Boosting

and multilayer perceptron (MLP). The markers show the median AUC over 50 shuffles and the error bars represent interquartile

range (IQR). All models showed a similar median AUC around 0.82. The largest difference in performance between training and

test set, indicating potential overfitting, was observed for the Catboost model.

https://doi.org/10.1371/journal.pone.0231166.g001

Fig 2. Graphical representation of the feature importance. The figure illustrates the features rating derived from the model-tailored interpretability methods

for generalized linear model (GLM), Lasso, Elastic net, Catboost and multilayer perceptron (MLP). All models rated age and initial NIHSS consistently

amongst the most important features. For less important features, results were more varied. For logistic regression techniques the results are given in weights,

for Catboost in Shap(ley) values and for MLP in deep Taylor values that were normalized to the range [0,1]. The bar heights represent means and error bars

represent standard deviation over samples (shuffles).

https://doi.org/10.1371/journal.pone.0231166.g002
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techniques are not necessarily black boxes, but are able to provide a reliable assessment of fea-

ture importance comparable to their traditional counterparts for clinical prediction models.

In contrast to other domains, models in healthcare require higher levels of safety given that

patients’ life and health is at stake [33]. Here, the explainability of the predictions is a highly

important criterion to enable it. Unfortunately, explainability in the modeling context is an ill-

defined term that can also have other meanings and several other terms such as interpretability

and transparency are in use [34]. A comprehensive overview is beyond the scope of the current

work, but we would like to introduce two examples. Doran et al. define interpretability as

methodological explainability, e.g. the weights of a linear regression algorithm, in contrast to

comprehensibility which is a symbolic representation of an output [35]. This view focuses on

different users. Interpretability methods can aid developers in the development process, e.g. as

a means to find and avoid mistakes. Comprehensible explainability on the other hand refers to

how the results are presented to the user in the final product. In healthcare, the users are

healthcare professionals with very limited understanding of the technical background of pre-

diction models. Thus, the exact nature of this presentation must be determined—on a case by

case basis—for each product. In some cases, more technical presentations as also shown in Fig

2 might suffice. For others, it might be necessary to translate the rankings into easier to under-

stand formats, e.g. categories (“very important” vs. “important” vs “unimportant”). To deter-

mine these characteristics is the domain of User experience/User interface (Ux/Ui) analysis,

where a thorough testing with users must be performed. This view defines interpretability as a

sub-category of explainability. This view defines interpretability as a sub-category of explain-

ability. Others see a distinction. Rudin defines interpretability as an attribute of a method, i.e. a

method which inherently provides information about feature importance, such as the weights

of linear regression [36]. Explainability on the other hand describes a model which is used to

approximate the original model to derive a surrogate interpretability. Such methods can be tai-

lored to one specific original black box algorithm, or can be generalized like the LIME algo-

rithm [37]. We would like to stress that no standardization of these terms currently exists.

Thus, in the presented work, explainability is mainly examined from a clinical point-of-view,

highlighting the ability of humans to understand which clinical features drive the prediction.

This is important, as a major goal of clinical predictive modeling is the development of clinical

decision support systems (CDSS) aiding healthcare professionals in their clinical decision

making, predicting diagnoses, risks, and outcomes [2,3]. Here, it is important to keep in mind

that the requirements for CDSSs go far beyond the model performance [33]. It is established

that CDSSs for the clinical setting need to exhibit proven safety [13]. A crucial part of the safety

assessment of ML/AI products is to understand why they do what they do, but, more impor-

tantly, to understand why and when they might not do what is intended. This is important in

the light of the increasing awareness of potential biases in models used for healthcare discrimi-

nating based on for example sex and gender or ethnicity [38]. Another reason is automation

bias—an established cognitive bias—where users tend to believe what a machine is outputting

without reflecting on the output [2]. Providing model explainability might mitigate this bias.

Thus, it is very likely that future regulatory requirements, e.g. by European MDR and US FDA,

will include requests for explainability [39]. Here, our results are highly encouraging. Modern

ML methods that are able to provide the potentially highest performance can be combined

with methods of explainability and the results are comparable to the established methods for

traditional techniques. Thus, researchers and developers are no longer faced with the potential

trade-off between lower performance vs. explainability.

However, not only regulatory bodies will require explainability. From the physician point-

of-view, black-box approaches might be unacceptable [13,33]. Clinical guidelines for CDSS

may therefore profit from explainable predictions. While it has been argued that we have
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accepted similar uncertainty in medical decision making to date and accuracy alone can be

sufficient [40], we would argue that explainability is a must-have when it can be added without

limiting the accuracy, as our results suggest. Nonetheless, explainability is a supportive tool

and is not a substitute for rigorous clinical validation of any CDSS[40].

We have focused in our work on two promising techniques, namely artificial neural nets

and tree boosting. ANNs have shown highly promising results in several areas of healthcare

such as medical imaging, information extraction from medical texts and electronic health rec-

ords, and combining several types of input into one predictive model [5]. Also tree boosting

has shown high performance across several medical domains [41]. Tree boosting algorithms

are also much easier to train than artificial neural nets and their performance is quite immune

to feature scaling and collinearity issues. Another major advantage of tree boosting in health-

care is scalability [42] and thus it is also suited for big data analytics, for example data mining

from electronic health records (EHR). Here, tree boosting can achieve comparable perfor-

mance to deep learning techniques [43]. As evidenced by the above, tree boosting and ANNs

represent very versatile and well performing modern ML algorithms in healthcare. Thus, our

work is of high practicality for future research and for clinical decision support development.

The main focus of our work was the comparison of explainability in a well-characterized

prediction paradigm and not a comparison of performance. It is not surprising that both the

traditional and the modern ML methods achieved comparable performance in our dataset.

Given the simplicity of the classification problem and the limited dataset, traditional methods

are sufficient to capture the relationship of the features to the prediction and complex methods

may easily result in overfitting. It is, however, important to note that interpretability without a

certain performance level is meaningless: A randomly classifying classifier cannot provide reli-

able feature importance. If, however, the performance of modern ML methods were consider-

ably higher and the methods´ explainability were to be more reliable, it cannot be determined

whether this increase resulted due to a better explainability method or due to a performance

increase. Thus, the simplicity of the paradigm we chose is well suited to compare explainabil-

ity, as the performance is comparable and feature ratings provide a straight-forward result that

can be assessed against domain knowledge. Had the performance varied considerably, inter-

pretation of the rankings might have been severely impaired. With regard to our explainability

analysis, several more observations are noteworthy. As there is no gold-standard to interpret

rankings it can only be performed against domain-knowledge and through replication studies.

While we know from previous studies that age, NIHSS and thrombolysis are important predic-

tors to predict stroke outcome (with age and NIHSS being the two strongest) [16–19], it is cru-

cial to include the specifics of the dataset into the interpretation. The median NIHSS of the

sample was only 3 and only around 31% of patients received thrombolysis, meaning that many

of the patients had smaller—less serious—stroke events. As a consequence, the potential effect

of thrombolysis is limited in our sample. Thus we would—like in the above mentioned previ-

ous works—expect that age and NIHSS drive the prediction. And indeed, all rankings gave

these two very high importance, with the exception of the GLM ranking they were the two

most important predictors. The ranking of the lesser predictors, however, varied relatively

strongly. Interestingly, elastic net provided the ranking which is most similar to the one pro-

vided by tree boosting. From a domain perspective, the most reliable and complete ranking

was provided by the tree boosting model, ranking age and NIHSS unequivocally on top, with

thrombolysis being slightly more important than the other features. While the MLP gave age

and NIHSS the expected high importance, it ranked the presence of diabetes similarly strong.

A similar ranking for diabetes can also be observed in the logistic regression models. Although

diabetes is known to be an important predictor for bad stroke outcome [44], a feature impor-

tance score that is at a similar level as age is unexpected. Another striking difference is the high
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relative importance given to sex by the logistic regression models, which is absent in the rank-

ings provided by the modern methods. Taken together, we observed promising consistent

findings, where all methods corroborated the importance of age and NIHSS for stroke out-

come prediction. At the same time, we saw distinct differences for diabetes and sex which can-

not be explained sufficiently at the current time point. In light of these findings, we certainly

do not claim that the explanations provided by the modern methods should be taken without

further validation. Our work established that rankings can be obtained for modern machine

learning methods and that these rankings are compatible with clinical interpretation, especially

regarding the main predictors. The differences between the rankings, however, must be the

subject of further research. Here, it must be mentioned that for ANNs multiple other methods

than Taylor decomposition exist, which should also be further tested in the future—a task

which was beyond the scope of the current work.

Given the aforementioned trade-off between performance and explainability, a distinction

between traditional and modern techniques seems justifiable. It carries with it, however, the

risk that modern methods are overhyped and used where traditional techniques might per-

form best. As our results suggest that also modern techniques provide explainability, we would

argue that this distinction is irrelevant. Once all important methods for clinical predictive

modeling provide validated feature importance we should simply choose the method which

seems best suited for the prediction task at hand. We believe that this will greatly facilitate the

development of clinical decision support systems.

Our work has several limitations. First, we used only one dataset. Here, our results are

promising, but clearly more analyses are warranted to compare rankings provided by modern

ML methods with rankings provided by traditional ML methods. Second, to allow comparison

with traditional methods, we used a paradigm that utilizes only clinical values. We encourage

future works evaluating explainability provided for other data modalities such as imaging.

Conclusions

For the first time, we established in an empirical analysis on clinical data that modern machine

learning methods can provide explainability which is compatible with domain knowledge

interpretation and traditional method rankings. This is highly encouraging for the develop-

ment of explainable clinical predictive models. Future work should validate the explainability

methods, further explore the differences between them, and test different predictive modeling

frameworks including multiple modalities.
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