Table 2. Summary of hyperparameters tuning.
Model | Hyperparameter | Range |
---|---|---|
LASSO | C (inverse of regularizer multiplier) | 0.10, 0.12, 0.15, 0.18, 0.21, 0.26, 0.31, 0.37, 0.45, 0.54, 0.66, 0.79, 0.95, 1.15, 1.39, 1.68, 2.02, 2.44, 2.95, 3.56, 4.29, 5.18, 6.25, 7.54, 9.10,10.9, 13.3, 16.0, 19.3, 23.3, 28.1, 33.9, 40.9, 49.4, 59.6, 72.0, 86.9, 105, 126, 153, 184, 222, 268, 324, 391, 471, 569, 687, 829, 1000 |
Elastic net | L1 ratio | 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 |
Alpha | 0.00001, 0.00004, 0.00016, 0.0006, 0.0025, 0.01, 0.04, 0.16, 0.63, 2.5, 10 | |
CatBoost | Tree depth | 2, 4 |
Learning rate | 0.03, 0.1, 0.3 | |
Bagging temperature | 0.6, 0.8, 1. | |
L2 leaf regularization | 3, 10, 100, 500 | |
Leaf estimation iterations | 1, 2 | |
MLP | Number of hidden neurons | 5, 10, 15, 20 |
Learning rate | 0.001, 0.01 | |
Batch size | 16, 32 | |
Dropout rate | 0.1, 0.2 | |
L1 regularization ratio | 0.0001, 0.001 |
The table details the hyperparameters and corresponding range that were tuned for each model in the cross-validation process.