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Abstract

Background—Although analysis of cardiac magnetic resonance (CMR) images provides 

accurate and reproducible measurements of left ventricular (LV) volumes, these measurements are 

usually not performed throughout the cardiac cycle because of lack of tools that would allow such 

analysis within a reasonable timeframe. A fully-automated machine-learning (ML) algorithm was 

recently developed to automatically generate LV volume-time curves. Our aim was to validate 

ejection and filling parameters calculated from these curves using conventional analysis as a 

reference.

Methods—We studied 21 patients undergoing clinical CMR examinations. LV volume-time 

curves were obtained using the ML-based algorithm (Neosoft), and independently using slice-by-

slice, frame-by-frame manual tracing of the endocardial boundaries. Ejection and filling 

parameters derived from these curves were compared between the two techniques. For each 

parameter, Bland-Altman bias and limits of agreement (LOA) were expressed in percent of the 

mean measured value.

Results—Time-volume curves were generated using the automated ML analysis within 2.5 ± 0.5 

min, considerably faster than the manual analysis (43 ± 14 min per patient, including ~10 slices 

with 25–32 frames per slice). Time-volume curves were similar between the two techniques in 

magnitude and shape. Size and function parameters extracted from these curves showed no 

significant inter-technique differences, reflected by high correlations, small biases (< 10%) and 

mostly reasonably narrow LOA.

Conclusion—ML software for dynamic LV volume measurement allows fast and accurate, fully 

automated analysis of ejection and filling parameters, compared to manual tracing based analysis. 

The ability to quickly evaluate time-volume curves is important for a more comprehensive 

evaluation of the patient’s cardiac function.
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1. Introduction

To date, most cardiac parameters derived from cardiovascular magnetic resonance (CMR) 

images are obtained using manual measurements, including chamber volumes that rely on 

tracing of endocardial boundaries. Automated identification of cardiac chambers followed 

by accurate measurements without time-consuming and experience-dependent user input 

would be a major development in clinical cardiac imaging. Over the past decades, several 

techniques geared toward automation of CMR analysis have been reported with mixed 

results [1–4]. With the recent surge of artificial intelligence approaches, such as machine 

learning (ML) [5–10], a novel ML-based CMR technique was developed to automatically 

detect left ventricular (LV) boundaries and thus allow fully automated measurements of LV 

volume not only at end-systole and end-diastole, but for every frame throughout the cardiac 

cycle.

This approach allows, in addition to automated measurement of commonly used indices of 

LV function, such as ejection fraction (EF), quantification of dynamic volume changes that 

can be used to obtained potentially clinically valuable information regarding 

pathophysiology of disease, especially as it relates to changes in diastolic function and 

remodeling [11–16]. Despite the growing understanding of such dynamic indices, their use 

has been mostly limited to research studies, because their derivation required dedicated tools 

for off-line analysis that was time-consuming to a degree that hindered its use in clinical 

routine. The new ML approaches offer an opportunity for a more comprehensive evaluation 

of LV function, based on several parameters of ejection/filling, such as ejection and filling 

rates or percent ejection or filling at certain phases of the cardiac cycle, that are currently not 

used clinically. This study was designed to test this new automated algorithm by comparing 

LV time-volume curves and parameters of ventricular size and function derived from them to 

those obtained using conventional CMR volumetric analysis based on manual tracing of the 

LV endocardial boundaries.

2. Methods

2.1. Population

We prospectively studied 21 consecutive patients (age 53 ± 18, 13 females, BSA 1.9 ± 0.2 

m2) undergoing clinical CMR examinations for various indications. Patients with pacemaker 

or defibrillator leads, significant arrhythmias or incomplete datasets were excluded. This 

study complied with ethical standards, was approved by the Institutional Review Board and 

each patient signed an informed consent.

2.2. Study design

LV time-volume curves were obtained from CMR cine images using a ML-based algorithm, 

and independently using frame-by-frame hand tracing of short-axis stacks in the same 

datasets. Analysis was performed by an experienced reader with level III CMR training, who 

was blinded to all prior measurements. Time curves obtained using the automated ML-based 

analysis and the manual methodology were automatically analyzed to derive LV volumes 

and ejection/filling parameters.
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2.3. Image acquisition

CMR imaging was performed using a 1.5-T system (Achieva, Philips Healthcare) with a 5-

channel cardiac coil. Steady-state free precession dynamic gradient-echo sequence with 

retrospective ECG gating and parallel imaging sensitivity encoding during ~5 second breath-

holds (TR 2.9 ms, TE 1.5 ms, flip-angle 60°, and temporal resolution ~3040 ms) was used to 

obtain cine loops of 6-mm thick short-axis slices with 2-mm gaps and 2.0 × 2.0-mm in-plane 

spatial resolution from above the mitral valve to below the LV apex. The resultant frame rate 

varied between 25 and 32 frames per cardiac cycle.

2.4. ML image analysis

Automated analysis was performed using the SuiteHEART software (Neosoft, Pewaukee, 

WI), which uses a ML-based approach to measure LV volumes frame-by-frame throughout 

the cardiac cycle. The initial segmentation process identifies anatomical features, including 

LV cavity, and creates contours, which are fit into these anatomical structures. This ML 

algorithm utilizes training information from contours validated by experts in a large number 

of images [17]. With this training information, the ML algorithm effectively learns where an 

expert user would position boundaries between structures in actual clinical images, resulting 

in robust contour identification even on images of suboptimal quality, where less 

sophisticated approaches are likely to produce unsatisfactory results [17]. Using this 

approach, LV time-volume curves were derived by applying the method of disks to each 

consecutive frame of the cardiac cycle. No manual editing of endocardial boundaries was 

performed in this study, although the software allows such editing if deemed necessary.

2.5. Manual image analysis

The same CMR images were analyzed conventionally using QMass software (Medis, 

Leiden, Netherlands). Analysis included tracing of the circumference of the LV cavity that 

appeared surrounded by myocardial tissue from LV base to the apical tip of the LV cavity. 

Long-axis views were used to confirm the basal and apical slices. Manual boundary tracing 

was performed frame-by-frame throughout the cardiac cycle, while including the papillary 

muscles and trabeculae in the LV cavity. LV time-volume curve were generated by 

calculating LV volume for each frame, using the method of disks. With the average of 10 

slices with 25–30 frames per slice, the total number of manual tracings was 250–300 per 

patient.

2.6. Analysis of time-volume curves

LV time-volume curves obtained using the two techniques (ML and manual tracing) were 

analyzed using Microsoft Excel worksheet that was designed to calculate several LV volume 

and timing parameters. The various phases of the cardiac cycle were detected using peaks 

and troughs of the volume curve and its time-derivative, which first underwent temporal 

smoothing using weighted averaging in a moving 3-point window. The resultant LV ejection 

and filling metrics included: end-diastolic and end-systolic volumes (EDV, ESV), ejection 

fraction (EF), volume at 50% ejection time (ET), volumes at 25, 50 and 75% filling time 

(FT), volume at diastasis, rapid and atrial filling volumes (RFV and AFV) (Fig. 1).
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2.7. Statistical analysis

For each calculated parameter, comparisons between automated and manual techniques 

included paired two-tailed student’s t-tests, linear regression with Pearson correlation 

coefficients and Bland-Altman analyses to assess the bias and limits of agreement (LOA, 

namely 2SD around the mean). For each parameter, bias and LOA were expressed in percent 

of the mean measured value, in order to put the magnitude of the differences in perspective 

of what is measured. Values of p < 0.05 by t-tests were considered significant.

3. Results

The ML algorithm was successfully applied to all datasets, and the time needed to generate 

time-volume curves was significantly shorter (2.5 ± 0.5 min per patient), compared to 

manual frame-by-frame tracing of every slice from base to apex (43 ± 14 min, p < 0.0001).

Fig. 2 shows an example of short-axis images of the left ventricle from base to apex with 

endocardial boundaries automatically detected by the ML algorithm side-by-side with those 

manually traced for comparison. Fig. 3 shows an example of LV time-volume curve and its 

time-derivative, obtained using the automated ML-based technique and manual tracing, 

where notably, the curves are very similar in their shape and magnitude. LV time-volume 

curves clearly differentiated systolic contraction from the biphasic filling with the rapid 

active LV relaxation separated by diastasis from the slower passive LV filling driven by atrial 

contraction. Importantly, the time-derivative curve clearly depicted peaks and troughs that 

were easy to detect despite the signal noise. This included a first peak corresponding to the 

maximum rate of systolic contraction, followed by zero crossing, indicating the end of 

systole, and then followed by two troughs: the first reflecting peak rate of rapid filling during 

active ventricular relaxation and the second corresponding to peak passive filling driven by 

atrial contraction.

These features of the curves allowed the determination of the cardiac cycle phases and 

derivation of the above dynamic indices of LV ejection and filling. Table 1 shows the 

summary of LV ejection and filling parameters measured by the automated ML algorithm 

and by manual tracing. None of the measured parameters showed significant inter-technique 

differences. The Table also shows the results of the detailed analysis of inter-technique 

agreement for the LV parameters, including correlation coefficients and Bland-Altman 

biases and LOA for all measured parameters. Generally, ML-derived indices were in good 

agreement with the manual reference technique, as evidenced by high correlations and small 

biases (≤10% of the measured values for all indices, and ≤ 5% for 14/16 of them). Of note, 

however, the LOA were rather wide for some of the parameters relying on the time 

derivatives, e.g. rapid and atrial filling volumes and volume fractions, indicating 

considerable inter-technique differences in individual subjects in these particular parameters.

4. Discussion

The emergence ML techniques in cardiac imaging will undoubtedly have major impact on 

how we diagnose and manage patients with cardiovascular disease. Specifically, in CMR 

imaging, ML-based algorithms promise to provide automated chamber measurements that 
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are accurate, improve efficiency, and are likely to yield clinically relevant information that 

has the potential to aid with diagnosis and evaluate prognosis in individual patients. In this 

study, an automated ML algorithm was used to demonstrate that: 1) ML can measure LV 

volume throughout the cardiac cycle, lending itself to automated analysis of potentially 

clinically meaningful ejection/filling parameters, and 2) these measurements are accurate, 

when compared to conventional CMR analysis, but require considerably less time. These 

findings indicate that incorporation of ML into daily practice of CMR analysis of LV size 

and function in the near future may be a realistic expectation.

The concept of computer aided diagnosis is not new within the realm of cardiac imaging in 

the context of nuclear stress testing, where automated quantification of myocardial perfusion 

is routinely used to facilitate the interpretation of images. Recent advances in machine 

learning, such as deep learning and advanced convolutional neural network architectures 

have revolutionized the performance of tasks such as image classification and segmentation. 

These developments have enabled computer programs to learn complex relationships or 

patterns from empirical data and generate accurate decisions [18]. Unlike chest radiography 

or even computed tomography, which usually require interpretation of static images, CMR 

images are dynamic. As a consequence, the incorporation of artificial intelligence and ML 

into CMR has been lagging behind. Nevertheless, the recent decade has witnessed 

significant efforts geared toward the realization of the potential of ML algorithms for 

analysis of CMR images. However, previous applications of ML were limited in their ability 

to accurately assess ventricular volume throughout the cardiac cycle.

Recent technological developments in artificial intelligence, such as ML and deep learning 

techniques, have facilitated the development of a new, fully-automated algorithm for 

dynamic quantification of LV size and function, which until recently might have seemed 

unrealistic. Our current study focused on a new ML algorithm that yields LV volume curves 

and allows analysis of potentially useful indices of LV ejection/ filling parameters that 

cannot be derived from static volume measurements at select phases of the cardiac cycle. 

This is similar to the recently developed ML-based dynamic LV analysis from 3D 

echocardiographic images [19], except the latter requires manual editing of endocardial 

boundaries, which was not part of the current CMR study. The additional parameters of LV 

ejection/filling may become part of future more comprehensive analysis of LV function, 

which may be particularly useful in the evaluation of patients with diastolic dysfunction. Our 

study was designed to test the accuracy of this methodology, by comparing the automatically 

derived indices to the reference derived from curves obtained using conventional manual 

analysis. This study showed that the automatically derived dynamic LV ejection/filling 

indices agreed well with the above reference. It is true that the agreement between the ML-

derived parameters and the manual reference values was not perfect, as reflected by non-zero 

biases. However, the biases were ≤ 5% of the measured value for the majority of parameters, 

which is similar to or even below intrinsic inter-measurement variability and likely not 

clinically significant. The relatively wide limits of agreement indicate that differences can be 

large at times in individual patients, mostly as a result of differences in boundary detection 

in the basal slices, where the differentiation between ventricular and atrial cavities may be 

challenging. These differences can probably be minimized by manual corrections of the 

automatically determined boundaries, which the software provides an opportunity for. Such 
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corrections were not part of our study, which was designed to test the feasibility and 

accuracy of the fully automated approach.

Not surprisingly, the ML technique was considerably faster than the conventional analysis, 

due to its automated nature. In fact, it is conceivable that this algorithm could provide 

accurate measurements when used in the background, before a cardiologist even starts 

reviewing the patient’s images.

4.1. Future directions

CMR is a multi-parametric technique capable of providing a large variety of information 

beyond cine imaging. In addition to more completely assessing dynamic changes in chamber 

size over the cardiac cycle, it is conceivable that in the future ML may also be useful to 

identify perfusion defects on stress perfusion images or to detect the presence of myocardial 

damage on late gadolinium enhancement images [10,20,21]. Such applications of ML could 

help harmonize the variation in image interpretation that currently exists.

4.2. Limitations

Our sample size was small, which raises the question whether insufficient statistical power 

was the reason for our measurements not being significantly different between techniques. 

However, our detailed analysis of inter-technique agreement, which included linear 

regression and Bland-Altman analyses, showed good correlation and only small biases for 

most parameters, even if limits of agreement were rather wide for some of the indices, 

suggesting that in some patients the agreement was not perfect. Further studies are needed to 

further validate this new methodology. Specifically, this is important for patients with more 

complex cardiac anatomy.

Additionally, ejection and filling indices were calculated in this study using custom Excel 

worksheet from time-volume curves and their time-derivative curves, which had varying 

degrees of signal noise. Because small changes in volumes are amplified in the derivative 

curves, their random nature might have affected the calculated parameters. Additional 

algorithmic refinements are needed to improve the confidence in the accuracy of the derived 

functional parameters.

5. Conclusions

In this study, we demonstrated that a new ML-based approach to analysis of CMR images 

allows fully automated, dynamic measurement of LV volume throughout the cardiac cycle, 

lending itself to accurate derivation of potentially useful ejection and filling indices, which 

characterize LV function more comprehensively than the traditional, isolated end-systolic 

and end-diastolic volumes and ejection fraction. Importantly, the automated nature of this 

analysis offers a pathway to solving the workflow limitations and may eventually result in 

integration of the additional parameters into clinical practice. One may anticipate that 

following further validation of such techniques, physicians will be starting their evaluation 

of clinical CMR examinations with an array of automatically measured functional 

parameters, that they will see with the images as part of their diagnostic interpretation.
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Abbreviations

AFV atrial filling volume

CMR cardiovascular magnetic resonance

EF ejection fraction

EDV, ESV end-diastolic and end-systolic volumes

ET ejection time

FT filling time

LV left ventricular

ML machine learning

RFV rapid filling volume
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Fig. 1. 
Analysis of left ventricular volume-time curves, resulting in dynamic ejection and filling 

parameters: end-diastolic and end-systolic volumes (EDV, ESV) and stroke volume (SV), 

volume at 50% ejection time (ET), volumes at 25, 50 and 75% filling time (FT), volume at 

diastasis (DIA), rapid filling volume (RFV) and atrial filling volume (AFV).
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Fig. 2. 
Example of end-systolic short-axis images from left-ventricular base to apex with 

endocardial boundaries traced manually (left) and detected automatically by the machine 

learning algorithm (right).
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Fig. 3. 
Example of left ventricular volume-time curves (dark-blue, thick lines) and their time-

derivatives (light-blue, thin lines), obtained in one study subject using the two analysis 

techniques: manual tracing (left), and machine learning (right). See text for details. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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