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Vascular endothelial growth factor (VEGF) contributes to
blood-retinal barrier (BRB) dysfunction in several blinding eye
diseases, including diabetic retinopathy. Signaling via the
secreted protein norrin through the frizzled class receptor 4
(FZD4)/LDL receptor–related protein 5– 6 (LRP5– 6)/tetraspa-
nin 12 (TSPAN12) receptor complex is required for develop-
mental vascularization and BRB formation. Here, we tested the
hypothesis that norrin restores BRB properties after VEGF-in-
duced vascular permeability in diabetic rats or in animals intra-
vitreally injected with cytokines. Intravitreal co-injection of
norrin with VEGF completely ablated VEGF-induced BRB per-
meability to Evans Blue-albumin. Likewise, 5-month diabetic
rats exhibited increased permeability of FITC-albumin, and a
single norrin injection restored BRB properties. These results
were corroborated in vitro, where co-stimulation of norrin
with VEGF or stimulation of norrin after VEGF exposure
restored barrier properties, indicated by electrical resistance
or 70-kDa RITC-dextran permeability in primary endothelial
cell culture. Interestingly, VEGF promoted norrin signaling
by increasing the FZD4 co-receptor TSPAN12 at cell mem-
branes in an MAPK/ERK kinase (MEK)/ERK-dependent
manner. Norrin signaling through �-catenin was required for
BRB restoration, but glycogen synthase kinase 3 �/� (GSK-
3�/�) inhibition did not restore BRB properties. Moreover,
levels of the tight junction protein claudin-5 were increased
with norrin and VEGF or with VEGF alone, but both norrin
and VEGF were required for enriched claudin-5 localization
at the tight junction. These results suggest that VEGF simul-
taneously induces vascular permeability and promotes
responsiveness to norrin. Norrin, in turn, restores tight junc-

tion complex organization and BRB properties in a
�-catenin– dependent manner.

Müller cells (1–3) and endothelial cells (4) of the developing
retina express norrin that contributes to proper angiogenesis
and the formation of the blood-retinal barrier (BRB)2 (5). Nor-
rin is a secreted 131-amino acid protein from the cysteine-knot
growth factor superfamily that includes transforming growth
factor � (6) and utilizes the wingless/integrated (Wnt) signaling
pathway. Norrin forms a dimer that binds to the N-terminal
extracellular cysteine-rich domain of the frizzled class receptor
4 (FZD4) and the �-propeller domains of the low-density lipo-
protein receptor–related protein 5/6 (LRP5/6) co-receptor (7),
activating the �-catenin canonical signaling pathway. In addi-
tion, the co-activator tetraspanin 12 (TSPAN12) binds and sta-
bilizes FZD4 receptor at the cell membrane and enhances nor-
rin-induced, but not Wnt-induced, �-catenin signaling (8 –10).
The canonical pathway of FZD4 signaling involves �-catenin–
mediated transcriptional regulation. The APC destruction
complex, formed by adenomatosis polyposis coli (APC), axin,
protein phosphatase 2a, casein kinase 1�, and glycogen syn-
thase kinase 3�/� (GSK-3�/�), phosphorylates and targets
�-catenin for ubiquitination and proteosomal degradation.
Norrin-binding FZD4 receptor complex inactivates the APC
degradation complex and inhibits GSK-3�/� kinase, stabilizing
�-catenin, which migrates to the nucleus and promotes gene
transcription (reviewed in Ref. 11).

Mutations in norrin and its receptors may cause a spectrum
of inherited exudative retinopathies. Mutations in the norrin
gene (NDP) cause an X-linked retinal dysplasia on the severe
end of the spectrum that presents with congenital or early
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hypovascularization disorders, referred to as familial exudative
vitreopathy (FEVR), are caused by mutations in the genes
encoding for norrin receptor FZD4 (16 –18), co-receptors LRP5
(19 –21) and TSPAN12 (16, 17, 23, 24), the signaling molecule
�-catenin (25, 26), and some norrin mutations (27). The hypo-
vascular phenotype observed in both Norrie and FEVR dis-
eases has been recapitulated in knockout mice models of
norrin or the FZD4 receptor complex (1, 5, 8, 28 –34), in
which retinal vascular growth, mural cell recruitment, endo-
thelial differentiation, and barrier properties are affected as a
consequence of a low Sox7, Sox17, and Sox18 gene expres-
sion (35) or due to an increased expression of the Wnt sig-
naling inhibitor APCDD1 (APC down-regulated 1 protein)
(36). Importantly, these retinas show high retinal vascular
permeability that correlates with reduced border immuno-
staining of the tight junction protein claudin-5 and increased
expression of the transcytosis marker PLVAP, a phenotype
that can be reversed by the expression of stabilized �-catenin
(5). Together, these data indicate a requirement of norrin
signaling through �-catenin in deep capillary angiogenesis,
BRB formation and maintenance.

Loss of norrin or TSPAN12 in mouse retina reveals a pheno-
type that resembles some of the pathological features of dia-
betic retinopathy. Retinas from mice with norrin gene deletion
showed formation of cystoid edema, neovascularization, and
inflammation (37), whereas endothelium-specific loss of
TSPAN12 induces cystoid edema formation and basement
membrane collagen IV deposition (29). Other studies sug-
gest that norrin (38) and �-catenin (39) increase in diabetes
as determined in retinal sections of post-mortem human
eyes, whereas in Akita mice and streptozotocin (STZ)-in-
duced diabetic rats, both animal models of diabetes,
�-catenin, and LRP5/6 were elevated (39). Nevertheless, the
role of norrin signaling during diabetic retinopathy is not
completely understood.

The release of cytokines, including vascular endothelial
growth factor (VEGF), contributes to the pathophysiology of
diabetic retinopathy through the disruption of the BRB (40). At
a molecular level, it is known that VEGF signaling through pro-
tein kinase C� promotes occludin phosphorylation, which
results in disorganization of the retinal endothelial tight junc-
tion complex and vascular dysfunction (41–43). However, lim-
ited studies have investigated restoration of the retinal endo-
thelial barrier after VEGF-targeted disruption. The role of
norrin signaling in BRB formation suggests that it may have the
potential to restore BRB properties after induced retinal vascu-
lar permeability. Here, we demonstrate that VEGF and norrin
interact in regulating barrier properties. VEGF induces perme-
ability but simultaneously primes norrin signaling by pro-
moting TSPAN12 co-receptor localization at the cell mem-
brane. Subsequent norrin signaling promotes claudin-5
organization at the cell border and BRB restoration. This
response is demonstrated in two in vivo models of BRB loss
and in a cell culture model, thus supporting the potential of
norrin as a therapeutic option to restore the BRB in diseases
such as diabetic retinopathy.

Results

Norrin restores BRB properties in vivo

To determine the ability of norrin to counteract VEGF-in-
duced BRB dysfunction, retinal permeability to Evans Blue dye
was determined in rat retinas, 24 h after their intravitreal (IVT)
injection with 40 ng of norrin or 50 ng of VEGF or with the
co-injection of the two cytokines, VEGF/norrin. Control rats
(vehicle-injected) showed an average of 2.5 �l/g/h of accumu-
lated dye, and all conditions were normalized to this value. We
have found that permeability in response to norrin injection
was not different from control values, whereas, as expected,
retinas injected with VEGF showed a significant increase in the
accumulation of Evans Blue dye. Strikingly, the simultaneous
injection of VEGF/norrin completely ablated the VEGF effect
(Fig. 1A), thus indicating that norrin can inhibit VEGF-induced
leakiness in the retina.

To determine whether norrin is able to restore BRB proper-
ties, we also performed permeability assays in diabetic rats.
After 5 months of STZ-induced diabetes, rats were treated with
an IVT injection of vehicle in right eyes (OD) or 40 ng of norrin
in left eyes (OS), and permeability was measured 24 h later by
determining the retinal accumulation of intravenously injected
FITC-BSA. Nondiabetic rats (control) injected with vehicle
showed a 15.5-�l/g/h average of dye accumulation, and this was
used for data normalization. Similar permeability to FITC-BSA

Figure 1. Norrin restores blood-retinal barrier permeability in vivo. A,
Evans Blue accumulation in rat retinas with an IVT injection of vehicle, 40 ng of
norrin, 50 ng of VEGF, or both (VEGF/norrin) for 24 h; n � 8 –16. B, FITC-BSA
accumulation in rat retinas of control (nondiabetic) or STZ-induced diabetic
rats that were treated after 5 months with an IVT injection of vehicle or 40 ng
of norrin for 24 h; n � 15–17. p values were calculated by one-way ANOVA,
followed by Tukey’s post hoc test (A) or t test analysis (B). Error bars, S.D.
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was found in control rat eyes injected with norrin (Fig. 1B).
Notably, diabetic rats had higher permeability of FITC-BSA,
and this was completely restored to the control levels by norrin
injection. Together, these results demonstrate the ability of
norrin to restore BRB properties in two rat models of vascular
dysfunction.

Norrin rescues VEGF-induced permeability in bovine retinal
endothelial cells (BREC)

We further corroborated norrin effect in a primary culture of
BREC. Cells were grown until confluence for 24 h and BRB
formation was induced for the next 48 h with medium supple-
mented with 1% serum and 100 mM hydrocortisone (Fig. 2A).
Subsequently, BREC monolayers were stimulated with vehicle,
40 ng/ml norrin (N), 50 ng/ml VEGF (V), or norrin together
with VEGF (VEGF/norrin), and real-time measurements of
trans-endothelial electrical resistance (TEER) (Fig. 2B) or diffu-
sive permeability of 70-kDa RITC-dextran (Fig. 2C) were deter-
mined. All monolayers reached TEER values above 3,500 ohms
(Fig. 2A) before stimulation, and data were normalized to time
0 baseline for each sample. In dextran flux assays, control
monolayers had an average diffusive permeability (Po) of 1.5 �
10�6, and all conditions were normalized to this control value.
Our results show that VEGF induced a reduction of TEER of
�40% of the control value from 24 to 72 h and a 2-fold increase
in the permeability of 70-kDa RITC-dextran by 72 h, whereas
basal levels were not affected by norrin stimulation. The addi-
tion of both VEGF/norrin simultaneously led to an initial loss of
TEER over the first 24 h, followed by complete barrier restora-
tion by 72 h and complete restoration of dextran flux to control
values at 72 h. These results indicate that norrin restores BRB
properties after 24 h of VEGF stimulation.

To better understand the requirement of VEGF activation in
norrin-induced BRB restoration, BREC monolayers were pre-
stimulated with norrin and then with VEGF 24 h later (N � V)
or prestimulated with VEGF and then norrin 24 h later (V � N).
As shown in Fig. 2 (D and E), prestimulation with norrin failed
to prevent the VEGF-induced permeability to dextran,
although the effect on TEER appeared attenuated by 48 –72 h
with a reduction of only 15% of control. However, when norrin
was added 24 h after the addition of VEGF, norrin promoted
barrier restoration measured both by TEER and dextran per-
meability. This effect of norrin restoration after VEGF addition
was demonstrated to be dose-responsive (Fig. 2F). Because 40
ng/ml was enough to recover BRB properties in vivo and in
vitro, we choose 40 ng/ml norrin as a working concentration for
all other experiments. Together, these results indicate that nor-
rin is able to restore the endothelial barrier properties after
VEGF-induced permeability.

VEGF signaling facilitates TSPAN12 membrane localization

TEER results and dextran flux experiments indicate that nor-
rin increases barrier properties only after VEGF stimulation,
suggesting a requirement for VEGF signaling for norrin action
in the endothelial cells. To evaluate this possibility, we deter-
mined whether VEGF regulates the expression of norrin recep-
tor FZD4 or the LRP5 and TSPAN12 co-receptors. BREC
monolayers were stimulated as indicated and qRT-PCR was

performed to assess mRNA content. As shown in Fig. 3A, VEGF
alone or norrin stimulation 24 h after VEGF (V � N), signifi-
cantly increased TSPAN12 mRNA at 48 and 72 h, whereas
FZD4 or LRP5 mRNA content was not significantly affected
(Fig. S1, A and B). However, this increase occurred later than
the observed VEGF/norrin recovery of TEER (Fig. 2B). There-
fore, we next examined TSPAN12 protein content and localiza-
tion. BREC monolayers were separated into fractions based on
centrifugation using a compartmental protein extraction kit.
Cell fractionation was demonstrated to selectively isolate mark-

Figure 2. Norrin reverses and restores barrier properties after VEGF-
induced permeability of BREC monolayers. A, B, D, and F, real-time TEER
measurements; n � 4 –7. A, sample experiment showing TEER values in ohms.
First vertical line, start of experiment in MCDB-131 with 1% FBS and hydrocor-
tisone (HC); second line, the addition of hydrocortisone; third line, the addition
of VEGF or vehicle; fourth line, the addition of norrin or vehicle. B, D, and F,
average of multiple TEER experiments normalized to t � 0. C and E, flux to
70-kDa RITC-dextran (Po), measured 72 h after last stimuli and over 4 h; n �
12–16. BREC were stimulated with vehicle (control, C), 40 ng/ml norrin (N), 50
ng/ml VEGF (V), or their combination. In B and C, both VEGF and norrin (V/N)
were added at t � 0; in D and E, norrin stimulation was at t � 0 and VEGF at
24 h (N�V), or VEGF at t � 0 and norrin at 24 h (V�N). F, dose-response of
norrin added 24 h after VEGF with TEER measurements. p values were calcu-
lated using two-way (B, D, and F) or one-way (C and E) ANOVA, followed by
Tukey’s post hoc test. The top lines in B, D, and F indicate the time points
where there was a significant difference from 24 to 72 h, comparing the indi-
cated monolayers with control or VEGF conditions. Monolayers stimulated
only with VEGF were different from control at all time points. Error bars, S.D.
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ers: GAPDH in the cytoplasmic fraction, histone H3 in the
nuclear fraction, and EGFR in the membrane fraction (Fig. 3B).
Whole-cell lysates demonstrate the detection of TSPAN12 at
the predicted molecular mass (35 kDa) and an additional band
around 37 kDa (Fig. 3C). The total content of both bands was
not affected by the addition of norrin and/or VEGF (Fig. 3D).
However, in cell fractionation studies, VEGF and VEGF/norrin
promoted TSPAN12 accumulation at the membrane fractions,
particularly for the 37 kDa band. TSPAN12 also demonstrated
a slight but significant increase in the cytosol with the addition
of VEGF or VEGF/norrin together.

Experiments suggest that VEGF increases TSPAN12 mem-
brane content through translational control. Inhibition of pro-
tein synthesis with the addition of cycloheximide (CHX) was

sufficient to prevent the VEGF-induced accumulation of
TSPAN12 at the membrane (Fig. 3, E and F), whereas the pres-
ence of lysosome or proteasome inhibitors (hydroxychloro-
quine sulfate (Chl) or lactacystin (Lac), respectively) had no
additional effect. Because TSPAN12 mRNA was not altered by
VEGF at this time point (Fig. 3A) and the increase in protein
was inhibited by the protein synthesis inhibitor, the results sug-
gest that VEGF regulates TSPAN12 translation. Moreover,
VEGF effect was specific for TSPAN12 because the content of
FZD4 or LRP5/6 receptors in cytosol or membrane fractions
was not significantly affected (Fig. S1, C and D).

The VEGF effect on TSPAN12 membrane content depended
on MEK/ERK signaling. The specific MEK kinase inhibitor
U0126 was added 30 min before VEGF addition, and cell frac-

Figure 3. VEGF facilitates norrin signaling by the induction of TSPAN12 expression and localization at the membrane. A, qRT-PCR of TSPAN12 after the
addition of vehicle (C), norrin (N), VEGF (V) or both (V/N) for 12, 24, 48, and 72 h or VEGF for the first 24 h and norrin for the next 24 or 48 h (V�N; 48 and 72 h total).
All samples were normalized to control (C) for 12 h; n � 4 – 6. B, representative image of lysates of BREC monolayers stimulated as indicated and then separated
in cytosolic, nuclear, and membrane cell fractions, followed by blotting with antibodies against GAPDH, histone H3, and EGFR. C, BREC stimulated for 24 h were
separated into cytoplasmic or membrane fractions and processed for Western blotting and the detection of TSPAN12. D, quantification of TSPAN12 content in
cell fractions; n � 7– 8. E, Western blotting of TSPAN12 on cell fractions of BREC monolayers preincubated with the protein synthesis inhibitor CHX (6 �g/ml)
for 2 h before the addition of VEGF, the lysosome inhibitor hydroxychloroquine sulfate (Chl; 25 �M), or the proteasome inhibitor lactacystin (Lac; 5 �M) for 24 h.
E, quantification of independent experiments; n � 8. p values were calculated by one-way ANOVA, followed by Tukey’s post hoc test. Error bars, S.D.
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tions were isolated. As expected, U0126 completely blocked
ERK phosphorylation in response to VEGF. Further, the MEK
inhibitor prevented VEGF-induced TSPAN12 accumulation at
the membrane (Fig. 4, A and B). These results were further
corroborated by immunostaining the extracellular portion of
TSPAN12 in nonpermeabilized and permeabilized BREC
monolayers (Fig. 4C). Again, VEGF increased the amount of
TSPAN12 exposed to the cell surface that was detected with a

specific antibody against the extracellular regions of TSPAN12,
and this effect was prevented by U0126 (Fig. 4D).

Inhibiting TSPAN12 membrane localization prevented nor-
rin barrier restoration after VEGF. TEER measurements
revealed that prestimulation of BREC with U0126 does not pre-
vent VEGF-induced permeability, and, in fact, U0126 alone
decreased barrier properties at about 50 h (Fig. 4E). However,
MEK/ERK signaling inhibition, which prevented VEGF-in-
duced increase in TSPAN12 membrane content, completely
ablated the ability of norrin to restore barrier properties after
VEGF (Fig. 4E). Together, these results suggest that VEGF
primes norrin signaling by inducing TSPAN12 accumulation at
the membrane, in a mechanism dependent on MEK/ERK sig-
naling, and that over time, VEGF and norrin together induce
TSPAN12 expression.

Norrin signaling through �-catenin is required to restore BRB
properties

We also evaluated whether norrin activation of the Wnt/�-
catenin signaling pathway is required for barrier restoration in
BREC. First, we demonstrated that stimulation of endothelial
cells with norrin did not alter VEGF signaling (Fig. S2). Next, we
examined the Wnt signaling pathway by measuring �-catenin
stabilization and nuclear translocation after norrin signaling by
blotting for total �-catenin in whole-cell lysates and cell frac-
tions. As shown in Fig. 5 (A and B), VEGF/norrin together pro-
moted �-catenin stabilization and increased total �-catenin
content. This was reflected in significantly increased �-catenin
in both the cytosol and nuclear fractions after VEGF/norrin
co-stimulation (Fig. 5, C and D). Axin2 mRNA was quantified as
a target of �-catenin signaling (Fig. 5E). Norrin alone was suf-
ficient to increase axin2 mRNA at 24 h, which was maintained
for 72 h, revealing intact norrin signaling in the BREC. Interest-
ingly, co-stimulation with VEGF and norrin demonstrated an
inhibitory effect on norrin-induced axin2 mRNA expression
despite the observation that accumulation of �-catenin in the
nuclear fraction was strongest under these conditions, suggest-
ing that VEGF may affect axin2 mRNA content in a mechanism
separate from �-catenin stabilization. Collectively, these results
indicate that norrin activates canonical Wnt signaling in BREC
and that VEGF and norrin together promote �-catenin stabili-
zation and nuclear translocation, consistent with VEGF-in-
duced TSPAN12 plasma membrane localization promoting
norrin signaling.

To assess whether the canonical Wnt/�-catenin signaling
pathway is required to restore BRB properties in BREC, we used
XAV-939, a potent tankyrase inhibitor that promotes axin sta-
bilization and subsequently �-catenin degradation. Axin2
mRNA content was used as a measure of �-catenin signaling
activity, and XAV-939 stimulation reduced axin2 mRNA as
expected (Fig. S3A). TEER measurements of BREC monolayers
stimulated with VEGF, followed by the addition of XAV-939 at
24 h (VEGF�XAV-939) (Fig. 6A), showed that loss of �-catenin
signaling further reduced barrier properties of VEGF-stimu-
lated monolayers. Moreover, in BREC stimulated with VEGF
for 24 h, followed by the simultaneous addition of XAV-939 and
norrin (VEGF�XAV-939/norrin), the ability of norrin to
restore barrier properties was reduced.

Figure 4. VEGF effect on norrin signaling depended on MEK/ERK1/2 sig-
naling. A–D, BREC monolayers were preincubated for 30 min with a specific
inhibitor of MEK/ERK1/2 (U0126, 10 �M) followed by the addition of VEGF for
24 h (U0126�V). A and B, TSPAN12 (cell fractions), phospho and total ERK
(whole cell lysates) were quantified by Western blot; n�6 . C, BREC monolay-
ers were processed for the immunostaining of TSPAN12 extracellular region
(green), ZO-1 (magenta), and Hoechst (blue). Some monolayers were not per-
meabilized to detect TSPAN12 localization only at the membrane, and some
monolayers were permeabilized as controls; scale bar � 10 �m. D, quantifi-
cation of total green fluorescence staining from nonpermeabilized monolay-
ers. Two images per coverslip were taken from at least three independent
experiments with 2–3 coverslips/condition. E, TEER of BREC stimulated with
vehicle (Control), VEGF, U0126, VEGF for the first 24 h and then norrin
(VEGF�Norrin; V�N), U0126 for 30 min and then VEGF at t � 0 (U0126�VEGF),
or U0126 � VEGF followed by the addition of norrin at 24 h
(U0126�VEGF�Norrin); n � 4 – 6. p values were calculated by one-way (B and
D) or two-way (E) ANOVA, followed by Tukey’s post-hoc test. The top lines in E
indicate the time points where there was a significant difference from 24 to
72 h, comparing the condition indicated at the left with control or V � N. All
VEGF-stimulated monolayers were significantly different from control. Error
bars, S.D.
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To determine whether �-catenin activation is sufficient to
restore barrier properties after VEGF-induced permeability,
the GSK-3�/� inhibitor BIO was tested. Fig. S3B reveals that
BIO addition increased �-catenin signaling, as observed by
axin2 mRNA expression; however, inhibition of GSK-3�/�
with BIO not only failed to restore VEGF-induced permeability
(Fig. 6B), BIO also disrupted the barrier more than VEGF alone
and completely blocked norrin’s restorative effect. Further,
dextran flux assays showed that BIO-stimulated cells had sim-
ilar permeability to control monolayers (Fig. 6C), and consis-
tent with TEER results, the addition of BIO before, after, or at
the same time as VEGF was unable to rescue the VEGF-induced
permeability. When BIO and XAV-939 were added alone, both
had little effect on TEER until �48 h, when they began to
decrease the barrier properties modestly (Fig. S3C). These data
reveal the requirement of �-catenin signaling in norrin-in-
duced BRB restoration; nevertheless, �-catenin stabilization by
GSK-3�/� inhibition in BREC monolayers is insufficient and, in
fact, detrimental for barrier restoration.

The restoration of BRB properties after VEGF is an effect
specific to norrin but not Wnt signaling

TSPAN12 is a co-receptor that enhances norrin-induced but
not Wnt-induced �-catenin signaling (8 –10). To test the spec-
ificity of norrin signaling on the restoration of VEGF-induced
permeability, FZD4 receptor was activated in BREC monolay-
ers with the addition of Wnt3a and Wnt5a ligands. Measure-
ments of axin2 mRNA (Fig. 7A and Fig. S4A) or phosphoryla-

tion of JNK (Fig. 7 (B and C) and Fig. S4 (B and C)) in BREC
revealed that Wnt3a is able to activate both canonical/�-
catenin and noncanonical/JNK signaling, whereas Wnt5a only
promoted JNK phosphorylation. We tested the ability of Wnt
ligands to restore TEER, and we found that Wnt3a or Wnt5a
alone at 100 ng/ml did not have any effect on TEER as com-
pared with control monolayers (Fig. 7D). When Wnt3a and
Wnt5a were added together with VEGF, separately (VEGF/
Wnt3a or VEGF/Wnt5a) or in combination (VEGF/Wnt3a/
Wnt5a), there was little effect on VEGF-induced permeability,
unlike norrin, which restored barrier properties. Interestingly,
higher concentrations (200 ng/ml) of Wnt3a or Wnt5a alone
decreased basal TEER (Fig. S4D) and, together with VEGF (Fig.
S4E), had a greater effect on permeability. Together, these
results suggest that restoration of BRB properties after VEGF is
an effect specific for norrin signaling through FZD4 and again is
consistent with the requirement of TSPAN12 membrane local-
ization after VEGF.

VEGF up-regulates claudin-5 expression, but only norrin
promotes its localization at cell contacts

Claudin-5 is largely restricted to the vascular endothelium
and contributes to blood-brain barrier properties (44). Previous
development studies reveal that norrin signaling promotes
increased claudin-5 in retinal endothelial cells (5). Because tight
junction protein expression and organization at the cell border
may both be regulated, the effect of VEGF and norrin on the
expression and organization of claudin-5 was examined. We

Figure 5. Norrin and VEGF promote �-catenin stabilization. Lysates of BREC stimulated with vehicle (C), norrin (N), VEGF (V), or both (V/N) for 72 h were
blotted for phospho-�-catenin Ser-33/Ser-47/Thr-41 and total protein (n � 5) (A and B) or separated in cytosolic, nuclear, and membrane cell fractions (C and
D), followed by blotting with antibody against total �-catenin (n � 7). E, qRT-PCR of axin2 from BREC stimulated as indicated; n � 5–11. All samples were
normalized to control (C), 12 h. p values were calculated by one-way ANOVA, followed by Tukey’s post hoc test. Error bars, S.D.
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found that the addition of norrin in combination with or after
VEGF increased the amount of claudin-5 mRNA at 72 h (Fig.
8A). Surprisingly, VEGF alone or in combination with norrin
was able to increase claudin-5 protein (Fig. 8, B and C). How-
ever, because VEGF increases the permeability of BREC mono-
layers, we then examined the localization of claudin-5 by
immunostaining. Fig. 8 (D and E) demonstrates that the addi-
tion of VEGF for 72 h yielded reduced border staining of clau-

din-5 as determined by masked scoring of confocal images.
Importantly, the discontinuous borders between endothelial
cells (arrows) were reduced after the addition of VEGF/norrin.
Together, these data suggest that VEGF promotes claudin-5
expression, but norrin induces the BRB properties by the orga-
nization of claudin-5 specifically at the cell borders.

Discussion

In retinal vascular development, angiogenesis concludes
with maturation of the BRB. But in retinal pathologies, the fac-
tors that control BRB maintenance become unbalanced with
increased VEGF expression (45). The role of norrin signaling
has been studied in some models of retinopathies (reviewed in
Ref. 46); however, little was known about the interaction
between VEGF and norrin signals. Following the paradigm of
vascular development, we tested the hypothesis that norrin may
act to restore BRB after VEGF. Indeed, our in vivo experiments
demonstrate that norrin can completely prevent and restore
BRB function in two models of vascular dysfunction. These
studies suggest potential novel treatment paradigms for
patients with diabetic retinopathy or other retinal vascular dis-
eases driven by VEGF-induced permeability, which focus on
restoration of proper vascular function rather than prevention
of further damage through binding VEGF.

The importance of the TSPAN12 co-activator in norrin sig-
naling has recently emerged (8, 29). Gene deletion studies of
TSPAN12 demonstrate reduced retinal capillary development
and loss of barrier properties in adult mice with a phenotype
similar to aspects of humans with diabetic retinopathy, includ-
ing increased solute accumulation and cystoid edema (29).
Consistent with the role of TSPAN12 as a co-activator for nor-
rin signaling through FZD4, the studies described herein sug-
gest a novel mechanism in which VEGF primes endothelial cells
to respond to norrin by regulating the specific expression of
TSPAN12 through translational control and by inducing its
membrane accumulation in a MEK/ERK-dependent manner.
This in turn promotes FZD4 response to norrin and subsequent
�-catenin activation. VEGF also promotes an increase in clau-
din-5 content that organizes at tight junctions in response to
norrin signaling. Together, these studies emphasize the impor-
tance of norrin signaling through FZD4 receptor and TSPAN12
co-receptor. Because there is ongoing research examining the
use of antibodies against TSPAN12 in angiogenesis (47, 48), it is
important to understand the specific role of norrin receptor
molecules in retinal barrier biology.

Previous research has demonstrated that the expression of
constitutively active �-catenin largely reverses the retinal
developmental defect of norrin gene deletion (5, 49). The cur-
rent study supports a requirement for �-catenin for barrier res-
toration because reduction of �-catenin activity with tankyrase
inhibitor impeded the ability of norrin to promote barrier prop-
erties. Further, activation of �-catenin signaling induced by
norrin and VEGF co-stimulation revealed increased localiza-
tion of �-catenin at the nuclear fractions. However, despite the
ability of norrin to promote �-catenin signaling, norrin alone
failed to improve barrier properties compared with control
monolayers. In addition, GSK-3�/� inhibition leading to acti-
vation of the �-catenin pathway, as measured by axin2 mRNA,

Figure 6. �-Catenin inhibition prevents norrin-induced restoration of
TEER, but GSK-3�/� inhibition is not sufficient to reverse VEGF-induced
permeability in BREC monolayers. A, TEER of BREC stimulated with vehicle
(Control), VEGF (V), VEGF � norrin at 24 h (V�N), VEGF � XAV-939 (1 �M) at
24 h (VEGF�XAV), or VEGF followed by XAV-939 and norrin together at 24 h
(VEGF�XAV/Norrin); n � 4 –5. B, TEER of BREC monolayers stimulated with
vehicle (Control), VEGF, VEGF � norrin at 24 h, VEGF � BIO (0.2 �M) at 24 h
(V�B), or VEGF followed by BIO and norrin together at 24 h (VEGF�BIO/Nor-
rin); n � 4 –5. C, permeability of 70-kDa RITC-dextran (Po) of BREC monolayers
stimulated with vehicle (C), VEGF (V), BIO (B), or BIO and VEGF together (V/B)
for 72 h or stimulated with BIO (72 h total) and then VEGF for the last 48 h
(B�V) or stimulated with VEGF (72 h total) before BIO for the last 48 h (V�B);
n � 10 –11. p values were calculated using two-way (A and B) or one-way (C)
ANOVA, followed by Tukey’s post hoc test. The top lines in A and B indicate the
time points where there was a significant difference from 24 to 72 h, compar-
ing the condition indicated at the left with control, VEGF, or V � N. All VEGF-
stimulated monolayers were significantly different from control. Error bars,
S.D.
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failed to reverse VEGF-induced permeability. Wnt3a also pro-
moted a robust axin2 expression without altering barrier prop-
erties, and its combination with Wnt5a only slightly improved
TEER when it was added with VEGF but failed to completely
restore VEGF-induced permeability like norrin. Collectively,
the current research reveals a required role for �-catenin in
norrin-induced barrier restoration after VEGF and suggests
that norrin provides a specific signal beyond the canonical
�-catenin pathway that is required for BRB restoration. Fur-
ther, while in the brain, Wnt3a (50), Wnt7a/Wnt7b (51–58),
and norrin (49) ligands regulate blood-brain barrier integrity
with redundancy; in the retina, these Wnt ligands only have a
small contribution (10), suggesting that, distinct from the brain,
the retinal vascular barrier properties are largely regulated by
norrin/FZD4/TSPAN12 signaling.

Interestingly, the current studies demonstrate that VEGF,
while promoting endothelial permeability, simultaneously
primes the endothelial cells for response to norrin for barrier
restoration. In addition to increasing TSPAN12 at the cell
membrane, VEGF promoted �-catenin stabilization and clau-
din-5 accumulation. This is consistent with a previous report
demonstrating that VEGF can promote S-nitrosylation of
�-catenin by endothelial nitric oxide synthase, resulting in a

decreased interaction with VE-cadherin, thus promoting
�-catenin accumulation at the cytoplasmic and nuclear frac-
tions in bovine aortic endothelial cells (59). Moreover, previous
studies demonstrated that �-catenin activation increases clau-
din-3 (50) and claudin-5 (60) expression in the brain and retina,
respectively. Here, VEGF alone increased claudin-5 protein
content, but the greatest amount of claudin-5 mRNA and pro-
tein was obtained in the presence of VEGF and norrin together.
Studies exploring claudin-5 regulation describe a mechanism in
which VE-cadherin promotes AKT (also known as protein
kinase B or PKB) phosphorylation on Thr-308 that induces
FoxO1 (forkhead box protein O1) activation, �-catenin accu-
mulation, and claudin-5 expression. A similar mechanism
involving �-catenin accumulation may explain the VEGF or
combined norrin and VEGF induction of claudin-5 expression.

Because VEGF promoted an increase in both TSPAN12
membrane protein content and total claudin-5 protein without
altering mRNA, the data suggest that VEGF has translational
control of these proteins, potentially through MEK/ERK signal-
ing. Although other mechanisms might be involved as well, the
activation of MAPK through growth factor stimulation has
been demonstrated to control translation (61, 62). Here, we
have found that MEK/ERK signaling was required for the pro-

Figure 7. Wnt3a and Wnt5a do not restore barrier properties after VEGF. Activation of canonical �-catenin signaling (A) was corroborated by qRT-PCR of
axin2 (n � 7–10), and the activation of the noncanonical JNK pathway by Wnt (B and C) was assessed by the phosphorylation of JNK (n � 6), whereas changes
in barrier properties were evaluated by TEER measurements (D) (n � 6 –14). BREC were stimulated with vehicle (Control), VEGF, norrin Wnt3a (100 ng/ml), Wnt5a
(100 ng/ml), or their combination. p values were calculated by one-way (A–C) or two-way (D) ANOVA, followed by Tukey’s post hoc test. The top lines in D
indicate the time points where there was a significant difference, comparing the condition indicated at the left with VEGF or VEGF/norrin. All VEGF-stimulated
monolayers were significantly different from control, Wnt3a, or Wnt5a. Error bars, S.D.
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motion of TSPAN12 membrane accumulation and for norrin-
induced BRB properties, thus suggesting a novel potential
mechanism that can be the focus of future research.

Norrin promotes BRB formation by the induction of tight
junction organization. In retinal endothelial cells of norrin,
FZD4, LRP5, or TSPAN12 knockout mice, the fenestration
marker PLVAP was increased, whereas claudin-5 staining at
the cell border was decreased (5, 10, 29, 31, 49, 63, 64), thus
indicating that in the absence of norrin signaling, both paracel-
lular and transcellular routes are compromised. In addition,
recent studies using siRNA suggest that PLVAP contributes to
VEGF-induced permeability (65). However, preliminary stud-
ies in BREC revealed no observable changes in PLVAP by fluo-
rescent immunostaining after VEGF addition, and no further
studies on this protein were carried out. Conversely, here we
have found that VEGF increased claudin-5 protein expression,
but the border organization was decreased after VEGF com-
pared with control. However, when both VEGF and norrin sig-
naling were activated, claudin-5 was observed localized at the
cell borders. The mechanisms by which VEGF/norrin together

promote claudin-5 translocation are currently unknown and
will be the focus of future research.

Recent publications also suggest a role of norrin in hypoxia
response. Norrin ablation decreases expression of proangio-
genic transcription factors, such as Sox7, Sox17, and Sox18 (35),
or VEGF-dependent expression of hypoxia-inducible factor
(66), resulting in early specific loss of retinal ganglion cells
(RGC) (67). Interestingly, in an oxygen-induced retinopathy
model, Wnt3a, Wnt7a, and Wnt10a, but not norrin, are ele-
vated (33), and norrin injection promotes revascularization of
the hypoxic area in a mechanism dependent on insulin-like
growth factor 1 expression (67–70), resulting in RGC survival
(71). Together, these studies reveal the relationship of VEGF
and angiogenic factors with norrin during hypoxia-driven
angiogenesis.

Norrin may also provide nonvascular benefit. In a model of
RGC damage, norrin was able to increase the numbers of optic
nerve axons and perikarya of surviving RGC (72). Additionally,
norrin signaling through �-catenin and endothelin-2 can pro-
tect photoreceptors from light damage (73). In the brain, norrin

Figure 8. Norrin and VEGF both increase the expression of claudin-5, but only norrin promotes its localization at cell contacts. BREC stimulated with
vehicle (control, C), norrin (N), VEGF (V), both (V/N), or norrin after VEGF (V�N) for 12, 24, 48, and 72 h were processed for qRT-PCR with specific primers for
claudin-5; n � 5– 6 (A). All samples were normalized to control (C) for 12 h. B and C, Western blotting of claudin-5 (Cl-5); n � 5– 6. D, immunostaining of claudin-5
in BREC stimulated at 72 h; n � 3. Arrows point to typical sites of tight junction disruption; scale bar, 10 �m. E, quantification of four images per experiment by
masked scoring combined from three individuals. Data show the frequency of claudin-5 loss at the cell contacts ranked in five categories, where 100%
corresponds to completely lost. p values were calculated by one-way ANOVA, followed by Tukey’s post hoc test. Error bars, S.D.
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protects the blood-brain barrier integrity in a rat model of sub-
arachnoid hemorrhage (74), and by activating FZD4 signaling,
it can reduce the preneoplasic lesions of medulloblastoma (75).

Overall, our results demonstrate that VEGF both induces
retinal vascular permeability and simultaneously primes endo-
thelial cells to respond to norrin, which can subsequently pro-
mote BRB properties. These studies support the potential of
norrin to be used as a therapeutic option for the treatment of
VEGF-related pathologies, including diabetic retinopathy.

Experimental procedures

In vivo studies

All animals were treated in accordance with the Association
for Research in Vision and Ophthalmology (ARVO) Statement
on the Use of Animals in Ophthalmic and Visual Research and
the guidelines established by the University of Michigan Insti-
tutional Animal Care and Use Committee. Male Long–Evans
rats (Charles River Laboratories, Wilmington, MA) weighting
200 –250 g were anesthetized with ketamine/xylazine (66.7 and
6.7 mg/kg of body weight, respectively), to receive an IVT injec-
tion of vehicle (0.1% BSA/PBS � 4 mM HCl), 50 ng of rat recom-
binant VEGF (diluted in 0.1% BSA/PBS) (R&D Systems (Min-
neapolis, MN), 564-RV), and/or 40 ng of recombinant human
norrin (diluted in 4 mM HCl) (R&D Systems, 3014-NR) per eye.
Evans Blue retinal permeability was assessed 24 h after injec-
tion, as reported previously (76). Briefly, 45 mg/kg body weight
of Evans Blue dye (Sigma–Aldrich, E-2129) was injected via
femoral vein, and after 2 h, 0.3 ml of blood was drawn from the
vena cava to obtain plasma. Rats were then perfused with warm
saline at 66 ml/min for 2 min via the left ventricle; retinas were
harvested and dried overnight in a SpeedVac vacuum concen-
trator (Savant, Thermo Fisher Scientific); and the dye was
extracted with formamide (Sigma-Aldrich, 47671) at 70 °C
overnight. Dye concentrations in retina extracts and plasma
samples were determined by absorbance at 620 and 740 nm
using the FLUOstar Omega microplate reader (BMG Labtech
Inc., Cary, NC).

Diabetes was induced in male Long–Evans rats by the intra-
peritoneal injection of STZ (65 mg/kg, 10 mM sodium citrate
buffer, pH 4.5; Sigma-Aldrich, S0130). 3 days later, blood glu-
cose levels were measured, and rats with �250 mg/dl were con-
sidered diabetic. After 5 months, rats received an IVT injection
of vehicle (4 mM HCl) in right eyes or 40 ng of norrin in left eyes,
and 24 h before the retinal permeability assay with 100 mg/kg
body weight FITC-BSA (Sigma-Aldrich, A9771), exactly as
described (77). Briefly, FITC-BSA accumulation in the retina
was measured following the Evans Blue procedure, except the
dye was extracted with 1% Triton-PBS by overnight shaking in
an incubator (New Brunswick Scientific, Edison, NJ), and its
accumulation was measured using the FLUOstar Omega fluo-
rescence spectrophotometer (485-nm excitation and 520-nm
emission).

The retinal permeability data were expressed as microliters
of plasma equivalent/g dry retina weight/h of circulation (�l/g/
h). The amounts of dye (Evans Blue or FITC-BSA) extracted
from the retina were normalized with the plasma levels of dye

from each animal and the dry weight of each retina and then
divided by the circulation time.

Primary BREC culture

Primary BREC preparations used for in vitro studies were
grown as described previously (78). Briefly, electrical cell-sub-
strate impedance–sensing (ECIS) chambers, Transwell�
inserts, 60-mm Petri dishes, or plastic coverslips were coated
with 1 �g/cm2 of fibronectin bovine plasma (Sigma-Aldrich,
F1141) for 1 h at room temperature. BREC from passage 2– 8
were grown until confluence at 37 °C in MCDB-131 complete
medium (Sigma–Aldrich, M8537) with 10% fetal bovine serum
(FBS) (HycloneTM, Thermo Fisher Scientific, Sh30071.03) and
supplemented with 10 ng/ml EGF (Sigma–Aldrich, E9644), 0.1
mg/ml EndoGro (Vec Technologies Inc. (Rensselaer, NY),
EG-5), 0.045 mg/ml heparin (Thermo Fisher Scientific, H19), 8
�g/ml Tylosin (Sigma-Aldrich, T3397), and 0.01 ml/ml antibi-
otic/antimycotic (Gibco, Thermo Fisher Scientific, 15240062).
Then medium was changed to MCDB-131 with 1% FBS and 100
mM hydrocortisone (Sigma-Aldrich, H0888) for an additional 2
days. At this point, cells were stimulated as indicated under
“Results” with the recombinant human proteins: VEGF165
(293-VE), norrin (3014-NR), Wnt3a (5036-WN), or Wnt5a
(645-WN) (R&D Systems) diluted in 0.1% BSA/PBS, except for
norrin, which was diluted in 4 mM HCl and/or with BIO (3194),
XAV-939 (3748), U0126 (1144) (Tocris Bioscience, Bristol,
UK), cycloheximide (2112S) (Cell Signaling, Danvers, MA),
hydroxychloroquine sulfate (H1306) (Tokyo Chemical Indus-
try Co., Ltd.), or lactacystin (70980) (Cayman Chemical, Ann
Arbor, MI), which were diluted in DMSO. All control mono-
layers were stimulated with the volume equivalent to drug or
protein diluents (vehicle) used in each experiment.

TEER and solute flux

TEER measurements were performed at 4,000 Hz once every
hour, using the ECIS Z-� system. 45,000 BREC were plated in
8-well chamber slides (Applied Bio Physics Inc. (Troy, NY),
8W10E�) equipped with two sets of 20 circular 250-�m diam-
eter gold-plated active electrodes (79). These are located on
interdigitated fingers among a substrate area of 0.8 cm2, and
400 �l of medium was used per well.

Measurements of solute flux were carried out 72 h after last
stimuli and over 3.5 h, using 10 �M 70-kDa RITC-dextran
(Sigma-Aldrich, R9379). 1 � 105 cells/well were grown on
12-mm diameter, 0.4-�m pore size, polyester membrane
Corning�Costar� Transwell� cell culture inserts (Corning,
Thermo Fisher Scientific, 3460), and Po (cm/s) was calculated as
described previously (80) using the equation, Po � ((FL/
�t)VPL)/(FAA), where Po is in cm/s, FL is basolateral fluores-
cence, FA is apical fluorescence, �t is the change in time, A is the
surface area of the filter, and VL is the volume of the basolateral
chamber.

Immunofluorescence staining

BREC monolayers were plated on ThermanoxTM plastic
round coverslips with a 13-mm diameter (Thermo Fisher Sci-
entific, 174950). After the indicated stimulation, monolayers
were washed twice with Dulbecco’s PBS/calcium/magnesium
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chloride (Gibco, Thermo Fisher Scientific, 14040-133), fixed
for 10 min with 1% paraformaldehyde (Electron Microscopy
Sciences (Hatfield, PA), 15710), permeabilized for 10 min with
0.2% Triton X-100, blocked for 1 h with 2% normal goat serum
(Life Technologies, Inc., Thermo Fisher Scientific, 50062Z) and
0.1% Triton X-100, and incubated with the primary antibodies
polyclonal rabbit �-claudin-5 (Invitrogen, Thermo Fisher Sci-
entific, 34-1600), polyclonal rabbit �-TSPAN12-FITC–
conjugated (Aviva Systems Biology Corp. (San Diego, CA),
ARP46887_P050), and/or monoclonal rat �-ZO-1 clone R40.76
(Millipore, Sigma–Aldrich, MABT11) for 2 days at 4 °C, fol-
lowed by its detection with secondary fluorescent antibodies
goat �-rabbit Alexa Fluor 488 (A11034) or goat �-rat Alexa
Fluor 647 (A21247) (Life Technologies, Thermo Fisher Scien-
tific) and Hoechst (Invitrogen, Thermo Fisher Scientific;
H3570) for nuclear staining overnight at 4 °C. Samples were
imaged using confocal microscopy. Claudin-5 cell border stain-
ing was analyzed by a semiquantitative ranking score system on
a scale of five categories that indicate the percentage of loss in
cell border staining (0 –100%). Three independent observers
were asked to assign a ranking score to four images per condi-
tion in a masked fashion. Results of three independent experi-
ments were summed, and the frequency of each ranking score
was calculated to determine differences between conditions.
For TSPAN12 staining analysis, total green fluorescence was
quantified from not permeabilized monolayers using ImageJ
software.

Cell fraction assays

Cytoplasmic, nuclear, and membrane fractions were isolated
using a compartment protein extraction kit (Millipore, Sigma–
Aldrich, 2145). BREC monolayers were plated on 60-mm Petri
dishes (Corning, Thermo Fisher Scientific, 353002) and har-
vested exactly as described in the manufacturer’s protocol fol-
lowing the instructions for adherent cells. Briefly, cells were
scrapped from cell culture plates with extraction buffer con-
taining sucrose (concentration not specified) and vortexed.
After 20 min of rotation at 4 °C, cells were passed through a
27-gauge needle until the nucleus was released from cells, as
observed by light microscopy. Homogenates were centrifuged
(15,000 � g for 20 min at 4 °C), and the supernatant containing
the cytoplasmic fraction was collected. Pellets were washed and
resuspended by pipetting in nuclear extraction buffer (without
sucrose). After 20 min of shaking (4 °C) and 15,000 � g centrif-
ugation (20 min at 4 °C), the supernatant containing nuclear
fraction was collected. A sodium deoxycholate and Nonidet
P-40 buffer was added to the pellet, and after 20 min of shaking
(4 °C) and 15,000 � g centrifugation (20 min at 4 °C), the super-
natant containing the membrane fraction was collected, and
the pellet was discarded. Equal amounts of protein were loaded
in SDS-PAGE and processed for Western blot analysis.

Western blotting

Cells were harvested in a Triton X-100-deoxycolate-SDS–
based lysis buffer. The insoluble material was pelleted by cen-
trifugation for 13 min at 13,000 � g at 4 °C, and the superna-
tants were used to determine the protein concentration by the
Bio-Rad DCTM protein colorimetric assay (Bio-Rad, 500-0113).

Equal amounts of protein were prepared with NuPAGETM LDS
sample buffer (Thermo Fisher Scientific, NP0007) and NuPag-
eTM sample-reducing agent (Thermo Fisher Scientific,
NP0009), and Western blotting was carried out in a NuPAG-
ETM (Invitrogen, Thermo Fisher Scientific) system exactly as
described (22). Primary antibodies (Table S1) were diluted
1:1,000 in 2% ECLTM prime blocking agent (Amersham Biosci-
ences, GE Healthcare, RPN418) and TBS-Tween, incubated
overnight, and detected with horseradish peroxidase–
conjugated secondary antibodies diluted 1:10,000 (Table S1)
and chemiluminescence. Results were analyzed using
AlphaView software FluorChemTM systems, by obtaining the
mean gray intensity of each band in a fixed area. The back-
ground value was subtracted from all bands and then reported
as a percentage of the control of each experiment.

qRT-PCR

RNA was extracted and genomic DNA was removed using
the RNeasy Plus mini kit (Qiagen Inc. (Hilden, Germany),
74134), and 1 �g of RNA per sample was processed with the
Omniscript reverse transcription kit (Qiagen Inc., 205113) to
obtain cDNA. Quantitative PCR was performed with Taq-
ManTM Real-Time PCR master mix (Applied Biosystems,
Thermo Fisher Scientific, 4304437) and using specific Taq-
ManTM gene expression assays (Thermo Fisher Scientific) to
detect FZD4 (Bt04293845_m1), LRP5 (Mm01227476_m1),
TSPAN12 (Bt03240118_m1), axin2 (Bt04311243_g1), or clau-
din-5 (Mm00727012_s1). Results were normalized to �-actin
(4351319) mRNA and expressed as relative change using the
��Ct method.

Statistical analysis

Data were analyzed using GraphPad Prism software in at
least three independent experiments. Graphs represent the
mean 	 S.D. p values were calculated by t test and one-way or
two-way ANOVA, as indicated for each figure, and p � 0.05 was
considered significant.
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