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Abstract

Human face-to-face communication is a complex multimodal signal. We use words (language 

modality), gestures (vision modality) and changes in tone (acoustic modality) to convey 

our intentions. Humans easily process and understand face-to-face communication, however, 

comprehending this form of communication remains a significant challenge for Artificial 

Intelligence (AI). AI must understand each modality and the interactions between them that 

shape the communication. In this paper, we present a novel neural architecture for understanding 

human communication called the Multi-attention Recurrent Network (MARN). The main strength 

of our model comes from discovering interactions between modalities through time using a 

neural component called the Multi-attention Block (MAB) and storing them in the hybrid 

memory of a recurrent component called the Long-short Term Hybrid Memory (LSTHM). 

We perform extensive comparisons on six publicly available datasets for multimodal sentiment 

analysis, speaker trait recognition and emotion recognition. MARN shows state-of-the-art results 

performance in all the datasets.

Introduction

Humans communicate using a highly complex structure of multimodal signals. We employ 

three modalities in a coordinated manner to convey our intentions: language modality 
(words, phrases and sentences), vision modality (gestures and expressions), and acoustic 
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modality (paralinguistics and changes in vocal tones) (Morency, Mihalcea, and Doshi 

2011). Understanding this multimodal communication is natural for humans; we do 

it subconsciously in the cerebrum of our brains everyday. However, giving Artificial 

Intelligence (AI) the capability to understand this form of communication the same 

way humans do, by incorporating all involved modalities, is a fundamental research 

challenge. Giving AI the capability to understand human communication narrows the gap 

in computers’ understanding of humans and opens new horizons for the creation of many 

intelligent entities.

The coordination between the different modalities in human communication introduces 

view-specific and cross-view dynamics (Zadeh et al. 2017). View-specific dynamics refer 

to dynamics within each modality independent of other modalities. For example, the 

arrangement of words in a sentence according to the generative grammar of the language 

(language modality) or the activation of facial muscles for the presentation of a smile (vision 

modality). Cross-view dynamics refer to dynamics between modalities and are divided into 

synchronous and asynchronous categories. An example of synchronous cross-view dynamics 

is the simultaneous co-occurrence of a smile with a positive sentence and an example 

of asynchronous cross-view dynamics is the delayed occurrence of a laughter after the 

end of sentence. For machines to understand human communication, they must be able to 

understand these view-specific and cross-view dynamics.

To model these dual dynamics in human communication, we propose a novel deep 

recurrent neural model called the Multi-attention Recurrent Network (MARN). MARN 

is distinguishable from previous approaches in that it explicitly accounts for both view-

specific and cross-view dynamics in the network architecture and continuously models 

both dynamics through time. In MARN, view-specific dynamics within each modality are 

modeled using a Long-short Term Hybrid Memory (LSTHM) assigned to that modality. 

The hybrid memory allows each modality’s LSTHM to store important cross-view 

dynamics related to that modality. Cross-view dynamics are discovered at each recurrence 

time-step using a specific neural component called the Multi-attention Block (MAB). 

The MAB is capable of simultaneously finding multiple cross-view dynamics in each 

recurrence timestep. The MARN resembles the mechanism of our brains for understanding 

communication, where different regions independently process and understand different 

modalities (Kuzmanovic et al. 2012; Sergent and Signoret 1992) – our LSTHM – and are 

connected together using neural links for multimodal information integration (Jiang et al. 

2012) – our MAB. We benchmark MARN by evaluating its understanding of different 

aspects of human communication covering sentiment of speech, emotions conveyed by the 

speaker and displayed speaker traits. We perform extensive experiments on 16 different 

attributes related to human communication on public multimodal datasets. Our approach 

shows state-of-the-art performance in modeling human communication for all datasets.

Related Work

Modeling multimodal human communication has been studied previously. Past approaches 

can be categorized as follows:
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Non-temporal Models:

Studies have focused on simplifying the temporal aspect of cross-view dynamics (Poria et 

al. 2017; Pérez-Rosas, Mihalcea, and Morency 2013a; Wöllmer et al. 2013) in order to 

model co-occurrences of information across the modalities. In these models, each modality 

is summarized in a representation by collapsing the time dimension, such as averaging the 

modality information through time (Abburi et al. 2016). While these models are successful 

in understanding co-occurrences, the lack of temporal modeling is a major flaw as these 

models cannot deal with multiple contradictory evidences, eg. if a smile and frown happen 

together in an utterance. Furthermore, these approaches cannot accurately model long 

sequences since the representation over long periods of time become less informative.

Early Fusion:

Approaches have used multimodal input feature concatenation instead of modeling view-

specific and cross-view dynamics explicitly. In other words, these approaches rely on 

generic models (such as Support Vector Machines or deep neural networks) to learn 

both view-specific and cross-view dynamics without any specific model design. This 

concatenation technique is known as early fusion (Wang et al. 2016; Poria et al. 2016). 

Often, these early fusion approaches remove the time factor as well (Zadeh et al. 2016; 

Morency, Mihalcea, and Doshi 2011). We additionally compare to a stronger recurrent 

baseline that uses early fusion while maintaining the factor of time. A shortcoming of these 

models is the lack of detailed modeling for view-specific dynamics, which in turn affects the 

modeling of cross-view dynamics, as well as causing overfitting on input data (Xu, Tao, and 

Xu 2013).

Late Fusion:

Late fusion methods learn different models for each modality and combine the outputs 

using decision voting (Wörtwein and Scherer 2017; Nojavanasghari et al. 2016). While these 

methods are generally strong in modeling view-specific dynamics, they have shortcomings 

for cross-view dynamics since these inter-modality dynamics are normally more complex 

than a decision vote. As an example of this shortcoming, if a model is trained for sentiment 

analysis using the vision modality and predicts negative sentiment, late fusion models have 

no access to whether this negative sentiment was due to a frowning face or a disgusted face.

Multi-view Learning:

Extensions of Hidden Markov Models (Baum and Petrie 1966) and Hidden Conditional 

Random Fields (Quattoni et al. 2007; Morency, Quattoni, and Darrell 2007) have been 

proposed for learning from multiple different views (modalities) (Song, Morency, and 

Davis 2012; 2013). Extensions of LSTMs have also been proposed in a multi-view setting 

(Rajagopalan et al. 2016).

MARN is different from the first category since we model both view-specific and cross-view 

dynamics. It is differs from the second and third category since we explicitly model view-

specific dynamics using a LSTHM for each modality as well as cross-view dynamics using 

the MAB. Finally, MARN is different from the fourth category since it explicitly models 
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view-specific dynamics and proposes more advanced temporal modeling of cross-view 

dynamics.

MARN Model

In this section we outline our pipeline for human communication comprehension: the Multi-

attention Recurrent Network (MARN). MARN has two key components: Long-short Term 

Hybrid Memory and Multi-attention Block. Long-short Term Hybrid Memory (LSTHM) 

is an extension of the Long-short Term Memory (LSTM) by reformulating the memory 

component to carry hybrid information. LSTHM is intrinsically designed for multimodal 

setups and each modality is assigned a unique LSTHM. LSTHM has a hybrid memory that 

stores view-specific dynamics of its assigned modality and cross-view dynamics related to 

its assigned modality. The component that discovers cross-view dynamics across different 

modalities is called the Multi-attention Block (MAB). The MAB first uses information from 

hidden states of all LSTHMs at a timestep to regress coefficients to outline the multiple 

existing cross-view dynamics among them. It then weights the output dimensions based on 

these coefficients and learns a neural cross-view dynamics code for LSTHMs to update their 

hybrid memories. Figure 1 shows the overview of the MARN. MARN is differentiable end-

to-end which allows the model to be learned efficiently using gradient decent approaches. In 

the next subsection, we first outline the Long-short Term Hybrid Memory. We then proceed 

to outline the Multi-attention Block and describe how the two components are integrated in 

the MARN.

Long-short Term Hybrid Memory

Long-short Term Memory (LSTM) networks have been among the most successful models 

in learning from sequential data (Hochreiter and Schmidhuber 1997). The most important 

component of the LSTM is a memory which stores a representation of its input through 

time. In the LSTHM model, we seek to build a memory mechanism for each modality which 

in addition to storing view-specific dynamics, is also able to store the cross-view dynamics 

that are important for that modality. This allows the memory to function in a hybrid manner.

The Long-short Term Hybrid Memory is formulated in Algorithm 1. Given a set of M 
modalities in the domain of the data, subsequently M LSTHMs are built in the MARN 

pipeline. For each modality m ϵ M, the input to the mth LSTHM is of the form 

Xm = x1
m, x2

m, x3
m, ⋯, xT

m; xt
mϵℝdin

m
, where xt

m is the input at time t and din
m is the dimensionality 

of the input of modality m. For example if m = l(language), we can use word vectors 

with din
l = 300 at each time step dmem

m  is the dimensionality of the memory for modality m. 

σ is the (hard-)sigmoid activation function and tanh is the tangent hyperbolic activation 

function.⊕ denotes vector concatenation and ⊙denotes element-wise multiplication. Similar 

to the LSTM, i is the input gate, f is the forget gate, and o is the output gate. ct
m is the 

proposed update to the hybrid memory ct
mϵℝdmem

m
 at time t. ℎt

mϵℝdmem
m

 is the time distributed 

output of each modality.

The neural cross-view dynamics code zt is the output of the Multi-attention Block at the 

previous time-step and is discussed in detail in next subsection. This neural cross-view 

Zadeh et al. Page 4

Proc AAAI Conf Artif Intell. Author manuscript; available in PMC 2020 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dynamics code zt is passed to each of the individual LSTHMs and is the hybrid factor, 

allowing each individual LSTHM to carry cross-view dynamics that it finds related to its 

modality. The set of weights W ∗
m, U∗

m and V ∗
m respectively map the input of LSTHM xt

m, output 

of LSTHM ℎt
m, and neural cross-view dynamics code zt to each LSTHM memory space using 

affine transformations.

Multi-attention Block

At each timestamp t, various cross-view dynamics across the modalities can occur 

simultaneously. For example, the first instance can be the connection between a smile and 

positive phrase both happening at time t. A second instance can be the occurrence of the 

same smile at time t being connected to an excited voice at time t − 4, that was carried to 

time t using the audio LSTHM memory. In both of these examples, cross-view dynamics 

exist at time t. Therefore, not only do cross-view dynamics span across various modalities, 

they are scattered across time forming asynchronous cross-view dynamics.

The Multi-attention Block is a network that can capture multiple different, possibly 

asynchronous, cross-view dynamics and encode all of them in a neural cross-view dynamics 

code zt(see Figure 2). In the most important step of the Multi-attention Block, different 

dimensions of LSTHM outputs ℎt
m are assigned attention coefficients according to whether 

or not they form cross-view dynamics. These attention coefficients will be high if the 

dimension contributes to formation of a cross-view dynamics and low if they are irrelevant. 

The coefficient assignment is performed multiple times due to the existence of possibly 

multiple such cross-view dynamics across the outputs of LSTHM. The Multi-attention 

Block is formulated in Algorithm 1. We assume a maximum of K cross-view dynamics 
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to be present at each timestamp t. To obtain the K attention coefficients, K softmax 

distributions are assigned to the concatenated LSTHM memories using a deep neural 

network A:ℝdmem ℝK × dmem with dmem = ∑mϵM dmem
m  At each timestep t, the output of LSTHM 

is the set ℎt
m:mϵM, ℎt

mϵℝdmem
m

. A takes the concatenation of LSTHM outputs ℎt = ⊕mϵM ℎt
m, 

ℎtϵℝdmem as input and outputs a set of K attentions at
k:k ≤ K, at

kϵℝdmem  with at = ⊕k = 1
K at

k, 

atϵℝK × dmem. A has a softmax layer at top of the network which takes the softmax activation 

along each one of the K dimensions of its output at. As a result, at
k ≥ 0, at

k ≥ 0, ∑i = 1
dmem at

k
i = 1

which forms a probability distribution over the output dimensions. ht is then broadcasted 

(from ℝdmem to ℝK × dmem) and element-wise multiplied by the at to produce attended outputs 

ℎt = ℎt
k : k ≤ K, ℎt

k ϵ ℝdmem , ℎt ϵ ℝK × dmem ⋅ K denotes broadcasting by parameter K.

The first dimension of ℎt contains information needed for the first cross-view dynamic 

highlighted using at
1, the second dimension of ℎt contains information for the second cross-

view dynamic using at
2, and so on until ℎt is high dimensional but ideally considered 

sparse due to presence of dimensions with zero value after element-wise multiplication 

with attentions. Therefore, ℎt is split into m different parts – one for each modality m 

– and undergoes dimensionality reduction using Cm:ℝK × dmem
m

ℝdlocal
m

, ∀m ϵ M with dlocal
m

as the target low dimension of each modality split in ℎt.The set of networks Cm:mϵM
maps attended of modality ℎt

m
 to same vector space. This dimensionality reduction produces 

a dense code st
m for the K times attended dimensions of each modality. Finally, the set 

of all M attended modality outputs, st = ⊕mϵM st
m are passed into a deep neural network 

G:ℝ∑mϵMdlocal
m

ℝdmem to generate the neural cross-view dynamics code zt at time t.

Experimental Methodology

In this paper we benchmark MARN’s understanding of human communication on three 

tasks: 1) multimodal sentiment analysis, 2) multimodal speaker traits recognition and 3) 

multimodal emotion recognition. We perform experimentations on six publicly available 

datasets and compare the performance of MARN with the performance of state-of-the-art 

approaches on the same datasets. To ensure generalization of the model, all the datasets are 

split into train, validation and test sets that include no identical speakers between sets, i.e. 

all the speakers in the test set are different from the train and validation sets. All models 

are re-trained on the same train/validation/test splits. To train the MARN for different tasks, 

the final outputs hT and neural cross-view dynamics code zT are the inputs to another 

deep neural network that performs classification (categorical cross-entropy loss function) or 

regression (mean squared error loss function). The code, hyperparameters and instruction on 

data splits are publicly available at https://github.com/A2Zadeh/MARN.

Following is the description of different benchmarks.
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Multimodal Sentiment Analysis

CMU-MOSI The CMU-MOSI dataset (Zadeh et al. 2016) is a collection of 2199 opinion 

video clips. Each opinion video is annotated with sentiment in the range [−3,3]. There are 

1284 segments in the train set, 229 in the validation set and 686 in the test set.

ICT-MMMO The ICT-MMMO dataset (Wöllmer et al. 2013) consists of online social 

review videos that encompass a strong diversity in how people express opinions, annotated 

at the video level for sentiment. The dataset contains 340 multimodal review videos, of 

which 220 are used for training, 40 for validation and 80 for testing.

YouTube The YouTube dataset (Morency, Mihalcea, and Doshi 2011) contains videos from 

the social media web site YouTube that span a wide range of product reviews and opinion 

videos. Out of 46 videos, 30 are used for training, 5 for validation and 11 for testing.

MOUD To show that MARN is generalizable to other languages, we perform 

experimentation on the MOUD dataset (Perez-Rosas, Mihalcea, and Morency 2013b) which 

consists of product review videos in Spanish. Each video consists of multiple segments 

labeled to display positive, negative or neutral sentiment. Out of 79 videos in the dataset, 49 

are used for training, 10 for validation and 20 for testing.

Multimodal Speaker Trait Recognition

POM Persuasion Opinion Multimodal (POM) dataset (Park et al. 2014) contains movie 

review videos annotated for the following speaker traits: confidence, passion, dominance, 

credibility, entertaining, reserved, trusting, relaxed, nervous, humorous and persuasive. 903 

videos were split into 600 were for training, 100 for validation and 203 for testing.

Multimodal Emotion Recognition

IEMOCAP The IEMOCAP dataset (Busso et al. 2008) consists of 151 videos of recorded 

dialogues, with 2 speakers per session for a total of 302 videos across the dataset. Each 

segment is annotated for the presence of 9 emotions (angry, excited, fear, sad, surprised, 

frustrated, happy, disappointed and neutral) as well as valence, arousal and dominance. The 

dataset is recorded across 5 sessions with 5 pairs of speakers. To ensure speaker independent 

learning, the dataset is split at the level of sessions: training is performed on 3 sessions (6 

distinct speakers) while validation and testing are each performed on 1 session (2 distinct 

speakers).

Multimodal Computational Descriptors

All the datasets consist of videos where only one speaker is in front of the camera. The 

descriptors we used for each of the modalities are as follows:

Language All the datasets provide manual transcriptions. We use pre-trained word 

embeddings (glove.840B.300d) (Pennington, Socher, and Manning 2014) to convert the 

transcripts of videos into a sequence of word vectors. The dimension of the word vectors is 

300.
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Vision Facet (iMotions 2017) is used to extract a set of features including per-frame basic 

and advanced emotions and facial action units as indicators of facial muscle movement.

Acoustic We use COVAREP (Degottex et al. 2014) to extract low level acoustic features 

including 12 Mel-frequency cepstral coefficients (MFCCs), pitch tracking and voiced/

unvoiced segmenting features, glottal source parameters, peak slope parameters and maxima 

dispersion quotients.

Modality Alignment To reach the same time alignment between different modalities we 

choose the granularity of the input to be at the level of words. The words are aligned with 

audio using P2FA (Yuan and Liberman 2008) to get their exact utterance times. Time step t 
represents the tth spoken word in the transcript. We treat speech pause as a word with vector 

values of all zero across dimensions. The visual and acoustic modalities follow the same 

granularity. We use expected feature values across the entire word for vision and acoustic 

since they are extracted at a higher frequency (30 Hz for vision and 100 Hz for acoustic).

Comparison Metrics

Different datasets in our experiments have different labels. For binary classification and 

multiclass classification we report accuracy AC where C denotes the number of classes, and 

F1 score. For regression we report Mean Absolute Error MAE and Pearson’s correlation 

r. For all the metrics, higher values denote better performance, except MAE where lower 

values denote better performance.

Baseline Models

We compare the performance of our MARN to the following state-of-the-art models in 

multimodal sentiment analysis, speaker trait recognition, and emotion recognition. All 

baselines are trained for datasets for complete comparison.

TFN (Tensor Fusion Network) (Zadeh et al. 2017) explicitly models view-specific and 

cross-view dynamics by creating a multi-dimensional tensor that captures unimodal, 

bimodal and trimodal interactions across three modalities. It is the current state of the art for 

CMU-MOSI dataset.

BC-LSTM (Bidirectional Contextual LSTM) (Poria et al. 2017) is a model for context-

dependent sentiment analysis and emotion recognition, currently state of the art on the 

IEMOCAP and MOUD datasets.

MV-LSTM (Multi-View LSTM) (Rajagopalan et al. 2016) is a recurrent model that 

designates special regions inside one LSTM to different views of the data.

C-MKL (Convolutional Neural Network (CNN) with Multiple Kernel Learning) (Poria, 

Cambria, and Gelbukh 2015) is a model which uses a CNN for visual feature extraction and 

multiple kernel learning for prediction.

THMM (Tri-modal Hidden Markov Model) (Morency, Mihalcea, and Doshi 2011) performs 

early fusion of the modalities by concatenation and uses a HMM for classification.
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SVM (Support Vector Machine) (Cortes and Vapnik 1995) a SVM is trained on the 

concatenated multimodal features for classification or regression (Zadeh et al. 2016; Perez-

Rosas, Mihalcea, and Morency 2013b; Park et al. 2014). To compare to another strong 

non-neural baseline we use RF (Random Forest) (Breiman 2001) using similar multimodal 

inputs.

SAL-CNN (Selective Additive Learning CNN) (Wang et al. 2016) is a model that attempts 

to prevent identity-dependent information from being learned by using Gaussian corruption 

introduced to the neuron outputs.

EF-HCRF: (Hidden Conditional Random Field) (Quattoni et al. 2007) uses a HCRF to 

learn a set of latent variables conditioned on the concatenated input at each time step. We 

also implement the following variations: 1) EF-LDHCRF (Latent Discriminative HCRFs) 

(Morency, Quattoni, and Darrell 2007) are a class of models that learn hidden states 

in a CRF using a latent code between observed concatenated input and hidden output. 

2) MV-HCRF: Multi-view HCRF (Song, Morency, and Davis 2012) is an extension of 

the HCRF for Multi-view data, explicitly capturing view-shared and view specific sub-

structures. 3) MV-LDHCRF: is a variation of the MV-HCRF model that uses LDHCRF 

instead of HCRF. 4) EF-HSSHCRF: (Hierarchical Sequence Summarization HCRF) (Song, 

Morency, and Davis 2013) is a layered model that uses HCRFs with latent variables to learn 

hidden spatio-temporal dynamics. 5) MV-HSSHCRF: further extends EF-HSSHCRF by 

performing Multi-view hierarchical sequence summary representation. The best performing 

early fusion model is reported as EF-HCRF(⋆) while the best multi-view model is reported 

as MV-HCRF(⋆),where ⋆ ϵ {h, 1, s} to represent HCRF, and HSSCRF respectively.

DF (Deep Fusion) (Nojavanasghari et al. 2016) is a model that trains one deep model for 

each modality and performs decision voting on the output of each modality network.

EF-LSTM (Early Fusion LSTM) concatenates the inputs from different modalities at each 

time-step and uses that as the input to a single LSTM. We also implement the Stacked, (EF-
SLSTM) Bidirectional (EF-BLSTM) and Stacked Bidirectional (EF-SBLSTM) LSTMs for 

stronger baselines. The best performing model is reported as EF-LSTM(⋆), ⋆ ϵ {−, s, b, sb} 

denoting vanilla stacked, bidirectional LSTMs respectively.

Majority performs majority voting for classification tasks, and predicts the expected label 

for regression tasks. This baseline is useful as a lower bound of model performance.

Human performance is calculated for CMU-MOSI dataset which offers per annotator 

results. This is the accuracy of human performance in a one-vs-rest classification/regression.

Finally, MARN indicates our proposed model. Additionally, the modified baseline MARN 
(no MAB) removes the MAB and learns no dense cross-view dynamics code z. This model 

can be seen as three disjoint LSTMs and is used to investigate the importance of modeling 

temporal cross-view dynamics. The next modified baseline MARN (no A) removes the A
deep network and sets all K attention coefficients at1

k = 1 ℎt
k = ℎt

k
 This comparison shows 

whether explicitly outlining the cross-view dynamics using the attention coefficients is 
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required. For MARN and MARN (no A), K is treated as a hyperparamter and the best value 

of K is indicated in parenthesis next to the best reported result.

Experimental Results

Results on CMU-MOSI dataset

We summarize the results on the CMU-MOSI dataset in Table 1. We are able to achieve new 

state-of-the-art results for this dataset in all the metrics using the MARN. This highlights our 

model’s capability in understanding sentiment aspect of multimodal communication.

Results on ICT-MMMO, YouTube, MOUD Datasets

We achieve state-of-the-art performance with significant improvement over all the 

comparison metrics for two English sentiment analysis datasets. Table 2 shows the 

comparison of our MARN with state-of-the-art approaches for ICT-MMMO dataset as 

well as the comparison for YouTube dataset. To assess the generalization of the MARN to 

speakers communicating in different languages, we compare with state-of-the-art approaches 

for sentiment analysis on MOUD, with opinion utterance video clips in Spanish. The final 

third of Table 2 shows these results where we also achieve significant improvement over 

state-of-the-art approaches.

Results on POM Dataset

We experiment on speaker traits recognition based on observed multimodal communicative 

behaviors. Table 3 shows the performance of the MARN on POM dataset, where it achieves 

state-of-the-art accuracies on all 11 speaker trait recognition tasks including persuasiveness 

and credibility.

Results on IEMOCAP Dataset

Our results for multimodal emotion recognition on IEMOCAP dataset are reported in Table 

4. Our approach achieves state-of-the-art performance in emotion recognition: both emotion 

classification as well as continuous emotion regression except for the case of correlation in 

dominance which our results are competitive but not state of the art.

Discussion

Our experiments indicate outstanding performance of MARN in modeling various attributes 

related to human communication. In this section, we aim to better understand different 

characteristics of our model.

Properties of Attentions

To better understand the effects of attentions, we pose four fundamental research questions 

(RQ) in this section as RQ1: MARN (no MAB): whether the cross-view dynamics are 

helpful. RQ2: MARN (no A): whether the attention coefficients are needed. RQ3: MARN: 

whether one attention is enough to extract all cross-view dynamics. RQ4: whether different 

tasks and datasets require different numbers of attentions.
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RQ1: MARN (no MAB) model can only learn simple rules among modalities 

such as decision voting or simple co-occurrence rules such as Tensor Fusion 

baseline. Across all datasets, MARN (no MAB) is outperformed by MARN. 

This indicates that continuous modeling of cross-view dynamics is crucial in 

understanding human communication.

RQ2: Whether or not the presence of the coefficients at are crucial is an important 

research question. From the results tables, we notice that the MARN (no 

A) baseline severely under-performs compared to MARN. This supports the 

importance of the attentions in the MAB.Without these attentions, MARN is not 

able to accurately model the cross-view dynamics.

RQ3: In our experiments the MARN with only one attention (like conventional 

attention models) under-performs compared to the models with multiple 

attentions. One could argue that the models with more attentions have more 

parameters, and as a result their better performance may not be due to better 

modeling of cross-view dynamics, but rather due to more parameters. However 

we performed extensive grid search on the number of parameters in MARN with 

one attention. Increasing the number of parameters further (by increasing dense 

layers, LSTHM cellsizes etc.) did not improve performance. This indicates that 

the better performance of MARN with multiple attentions is not due to the 

higher number of parameters but rather due to better modeling of cross-view 

dynamics.

RQ4: Different tasks and datasets require different number of attentions. This is highly 

dependent on each dataset’s nature and the underlying interconnections between 

modalities.

Visualization of Attentions

We visually display how each attention is sensitive to different dimensions of LSTHM 

outputs in Figure 3. Each column of the figure denoted by ak shows the behavior of the 

kth attention on a sample video from CMU-MOSI. The left side of ak is t = 1 and the 

right side is t = 20, since the sequence has 20 words. The y axis shows what modality the 

dimension belongs to. Dark blue means high coefficients and red means low coefficients. 

Our observations (O) are detailed below:

O1: By comparing each of the attentions together, they show diversity on which 

dimensions they are sensitive to, indicating that each attention is sensitive to 

different cross-view dynamics.

O2: Some attention coefficients are not active (always red) throughout time. These 

dimensions carry only view-specific dynamics needed by that modality and not 

other modalities. Hence, they are not needed for cross-view dynamics and will 

carry no weight in their formation.

O3: Attentions change their behaviors across time. For some coefficients, these 

changes are more drastic than the others. We suspect that the less drastic the 

change in an attention dimension over time, the higher the chances of that 
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dimension being part of multiple cross-view dynamics. Thus more attentions 

activate this important dimension.

O4: Some attentions focus on cross-view dynamics that involve only two modalities. 

For example, in a3, the audio modality has no dark blue dimensions, while in 

a1 all the modalities have dark blue dimensions. The attentions seem to have 

residual effects. a1 shows activations over a broad set of variables while a4 

shows activation for fewer sets, indicating that attentions could learn to act in a 

complementary way.

Conclusion

In this paper we modeled multimodal human communication using a novel neural approach 

called the Multi-attention Recurrent Network (MARN). Our approach is designed to model 

both view-specific dynamics as well as cross-view dynamics continuously through time. 

View-specific dynamics are modeled using a Long-short Term Hybrid Memory (LSTHM) 

for each modality. Various cross-view dynamics are identified at each time-step using 

the Multi-attention Block (MAB) which outputs a multimodal neural code for the hybrid 

memory of LSTHM. MARN achieves state-of-the-art results in 6 publicly available datasets 

and across 16 different attributes related to understanding human communication.
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Figure 1: 
Overview of Multi-attention Recurrent Network (MARN) with Long-short Term Hybrid 

Memory (LSTHM) and Multi-attention Block (MAB) components, for M = {l; v; a} 

representing the language, vision and acoustic modalities respectively.
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Figure 2: 
Overview of Multi-attention Block (MAB).
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Figure 3: 
Visualization of attention units throughout time. Blue: activated attentions and red: non-

activated attentions. The learned attentions are diverse and evolve across time.
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Table 1:

Sentiment prediction results on CMU-MOSI test set using multimodal methods. Our model outperforms the 

previous baselines and the best scores are highlighted in bold.

Binary Multiclass Regression

Method A2 F1 A7 MAE Corr

Majority 50.2 50.1 17.5 1.864 0.057

RF 56.4 56.3 21.3 - -

SVM-MD 71.6 72.3 26.5 1.100 0.559

THMM 50.7 45.4 17.8 - -

SAL-CNN 73.0 - - - -

C-MKL 72.3 72.0 30.2 - -

EF-HCRF(⋆) 65.3(h) 65.4(h) 24.6(l) - -

MV-HCRF(⋆) 65.6(s) 65.7(s) 24.6(l) - -

DF 72.3 72.1 26.8 1.143 0.518

EF-LSTM(⋆) 73.3(sb) 73.2(sb) 32.4(−) 1.023(−) 0.622(−)

MV-LSTM 73.9 74.0 33.2 1.019 0.601

BC-LSTM 73.9 73.9 28.7 1.079 0.581

TFN 74.6 74.5 28.7 1.040 0.587

MARN (no MAB) 76.5 76.5 30.8 0.998 0.582

MARN (no 
A
)

59.3(3) 36.0(3) 22.0(3) 1.438(5) 0.060(5)

MARN 77.1(4) 77.0(4) 34.7(3) 0.968(4) 0.625(5)

Human 85.7 87.5 53.9 0.710 0.820
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Table 2:

Sentiment prediction results on ICT-MMMO, YouTube and MOUD test sets. Our model outperforms the 

previous baselines and the best scores are highlighted in bold.

ICT-MMMO Binary YouTube Multiclass MOUD Binary

Method A2 F1 A3 F1 A2 F1

Majority 40.0 22.9 42.4 25.2 60.4 45.5

RF 70.0 69.8 49.3 49.2 64.2 63.3

SVM 68.8 68.7 42.4 37.9 60.4 45.5

THMM 53.8 53.0 42.4 27.9 58.5 52.7

C-MKL 80.0 72.4 50.2 50.8 74.0 74.7

EF-HCRF(⋆) 81.3(l) 79.6(l) 45.8(l) 45.0(l) 54.7(h) 54.7(h)

MV-HCRF(⋆) 81.3(l) 79.6(l) 44.1(s) 44.0(s) 60.4(l) 47.8(l)

DF 77.5 77.5 45.8 32.0 67.0 67.1

EF-LSTM(⋆) 80.0(sb) 78.5(sb) 44.1(−) 43.6(−) 67.0(−) 64.3(−)

MV-LSTM 72.5 72.3 45.8 43.3 57.6 48.2

BC-LSTM 70.0 70.1 47.5 47.3 72.6 72.9

TFN 72.5 72.6 47.5 41.0 63.2 61.7

MARN (no MAB) 82.5 82.4 47.5 42.8 75.5 72.9

MARN (no 
A
)

80.0(5) 79.1(5) 44.1(5) 29.3(5) 63.2(5) 61.9(5)

MARN 86.3(2) 85.9(2) 54.2(6) 52.9(6) 81.1(2) 81.2(2)
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Table 4:

Emotion recognition results on IEMOCAP test set using multimodal methods. Our model outperforms the 

previous baselines and the best scores are highlighted in bold.

Task Emotions Valence Arousal Dominance

Method A9 F1 MAE Corr MAE Corr MAE Corr

Majority 21.2 7.4 2.042 −0.02 1.352 0.01 1.331 0.17

SVM 24.1 18.0 0.251 0.06 0.546 0.54 0.687 0.42

RF 27.3 25.3 - - - - - -

THMM 23.5 10.8 - - - - - -

C-MKL 34.0 31.1 - - - - - -

EF-HCRF(⋆) 32.0(s) 20.5(s) - - - - - -

MV-HCRF(⋆) 32.0(s) 20.5(s) - - - - - -

DF 26.1 20.0 0.250 −0.04 0.613 0.27 0.726 0.09

EF-LSTM(⋆) 34.1(s) 32.3(s) 0.244(−) 0.09(−) 0.512(b) 0.62(−) 0.669(s) 0.51(sb)

MV-LSTM 31.3 26.7 0.257 0.02 0.513 0.62 0.668 0.52

BC-LSTM 35.9 34.1 0.248 0.07 0.593 0.40 0.733 0.32

TFN 36.0 34.5 0.251 0.04 0.521 0.55 0.671 0.43

MARN (no MAB) 31.2 28.0 0.246 0.09 0.509 0.63 0.679 0.44

MARN (no 
A
)

23.0(3) 10.9(3) 0.249(5) 0.05(5) 0.609(4) 0.29(4) 0.752(4) 0.21(5)

MARN 37.0(4) 35.9(4) 0.242(6) 0.10(5) 0.497(3) 0.65(3) 0.655(1) 0.50(5)
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