Skip to main content
. Author manuscript; available in PMC: 2020 Apr 6.
Published in final edited form as: Proc AAAI Conf Artif Intell. 2018 Feb;2018:5642–5649.

Table 1:

Sentiment prediction results on CMU-MOSI test set using multimodal methods. Our model outperforms the previous baselines and the best scores are highlighted in bold.

Binary Multiclass Regression
Method A2 F1 A7 MAE Corr
Majority 50.2 50.1 17.5 1.864 0.057
RF 56.4 56.3 21.3 - -
SVM-MD 71.6 72.3 26.5 1.100 0.559
THMM 50.7 45.4 17.8 - -
SAL-CNN 73.0 - - - -
C-MKL 72.3 72.0 30.2 - -
EF-HCRF(⋆) 65.3(h) 65.4(h) 24.6(l) - -
MV-HCRF(⋆) 65.6(s) 65.7(s) 24.6(l) - -
DF 72.3 72.1 26.8 1.143 0.518
EF-LSTM(⋆) 73.3(sb) 73.2(sb) 32.4(−) 1.023(−) 0.622(−)
MV-LSTM 73.9 74.0 33.2 1.019 0.601
BC-LSTM 73.9 73.9 28.7 1.079 0.581
TFN 74.6 74.5 28.7 1.040 0.587
MARN (no MAB) 76.5 76.5 30.8 0.998 0.582
MARN (no A) 59.3(3) 36.0(3) 22.0(3) 1.438(5) 0.060(5)
MARN 77.1 (4) 77.0 (4) 34.7 (3) 0.968 (4) 0.625 (5)
Human 85.7 87.5 53.9 0.710 0.820