
Increasing doses of ketamine curtail antidepressant responses 
and suppress associated synaptic signaling pathways

Ji-Woon Kim1,2, Lisa M. Monteggia1,2

1Department of Pharmacology, Vanderbilt University, Nashville, TN, USA 37240-7933

2Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA 37240-7933

Abstract

Clinical findings show that a single subanesthetic dose of ketamine elicits rapid antidepressant 

effects. Accumulating data suggests that ketamine blocks the N-methyl-D-aspartate receptor and 

results in specific effects on intracellular signaling including increased brain-derived neurotrophic 

factor (BDNF) protein expression, which augments synaptic responses required for rapid 

antidepressant effects. To further investigate this potential mechanism for ketamine’s 

antidepressant action, we examined the effect of increasing ketamine doses on intracellular 

signaling, synaptic plasticity, and rapid antidepressant effects. Given that ketamine is often used at 

2.5–10 mg/kg to examine antidepressant effects and 20–50 mg/kg to model schizophrenia, we 

compared effects at 5, 20 and 50 mg/kg. We found that intraperitoneal (i.p.) injection of low dose 

(5 mg/kg) ketamine produces rapid antidepressant effects, which were not observed at 20 or 50 

mg/kg. At 5 mg/kg ketamine significantly increased the level of BDNF, a protein necessary for the 

rapid antidepressant effects, while 20 and 50 mg/kg ketamine did not alter BDNF levels in the 

hippocampus. Low concentration ketamine also evoked the highest synaptic potentiation in the 

hippocampal CA1, while higher concentrations significantly decreased the synaptic effects. Our 

results suggest low dose ketamine produces antidepressant effects and has independent behavioral 

and synaptic effects compared to higher doses of ketamine that are used to model schizophrenia. 

These findings strengthen our knowledge on specific signaling associated with ketamine’s rapid 

antidepressant effects.
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1. Introduction

Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that is 

mainly used as an anesthetic but has other uses including for the treatment of depression [1]. 

Berman et al. demonstrated a single subanesthetic ketamine infusion (0.5 mg/kg) produces 

Corresponding author: Lisa M. Monteggia, Ph.D., Barlow Family Director of the Vanderbilt Brain Institute, Professor of 
Pharmacology, Vanderbilt University, 465 21st Avenue South, MRB3, Room 7140, Nashville, TN 37240-7933, Tel 615-936-5483, Fax 
615-936-3613, lisa.monteggia@vanderbilt.edu. 

Declarations of interest: The authors declare no conflict of interest

HHS Public Access
Author manuscript
Behav Brain Res. Author manuscript; available in PMC 2020 April 06.

Published in final edited form as:
Behav Brain Res. 2020 February 17; 380: 112378. doi:10.1016/j.bbr.2019.112378.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rapid antidepressant effects [2]. This result has been reproduced in subsequent clinical 

studies [3–9] and has triggered significant interest in the development of ketamine as a 

treatment for major depressive disorder.

Preclinical studies have postulated molecular mechanisms underlying the antidepressant 

effects of ketamine. The rapid antidepressant effects of ketamine are blocked by α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, demonstrating a 

requirement for AMPA receptors [10–12]. Consistent with this finding, we have shown that 

ketamine produces synaptic potentiation in the CA1 hippocampal region by triggering the 

rapid translation of synaptic proteins, including brain-derived neurotrophic factor (BDNF), 

resulting in the insertion of AMPA receptors [11, 13]. Notably, the ketamine-induced 

potentiation and rapid antidepressant effects were not observed in mice in which Bdnf was 

deleted in broad forebrain areas [11, 13], suggesting BDNF is necessary to induce the 

augmented synaptic effects in the hippocampus and the rapid antidepressant effects. In 

separate work, the mammalian target of rapamycin (mTOR) and its downstream signaling 

molecule, p70S6 kinase (S6K), have also been indicated as target molecules for ketamine’s 

rapid antidepressant effects [14, 15]. Infusion into the prefrontal cortex of mice with 

rapamycin, an mTOR signaling inhibitor, prior to ketamine treatment was shown to prevent 

antidepressant effects suggesting a requirement for mTOR-dependent signaling changes [14, 

15]. Inhibition of glycogen synthase kinase-3 (GSK3) has also been implicated in 

ketamine’s rapid antidepressant action. In these studies, ketamine increases phosphorylation 

at α (serine-21) and β subunits (serine-9) and, thereby, inhibits GSK3 activity [16, 17]. 

Moreover, the genetic ablation of these two phosphorylation sites abolished the ketamine-

induced increase in AMPA receptor expression and rapid antidepressant responses, 

suggesting inhibition of GSK3 as another key target [16, 17].

A challenge to understand the mechanism of ketamine’s antidepressant action is that 

subanesthetic doses of ketamine also produce behavioral impairments that mimic symptoms 

of schizophrenic patients [18–20]. Subanesthetic ketamine is widely used to model 

schizophrenia in rodents [21, 22], although at a higher dose range (20–50 mg/kg) [23–27] 

than used for examining antidepressant effects (2.5–10 mg/kg) [10–12, 16, 28, 29]. A 

question that arises is whether the link between ketamine’s antidepressant action and the 

proposed mechanistic molecular and synaptic changes are also induced by these higher 

doses of ketamine that model symptoms of schizophrenia. We compared various 

subanesthetic doses of ketamine for antidepressant-like effects as well as for specific 

molecular and synaptic alterations. We found that low dose ketamine produces rapid 

antidepressant responses as well as key molecular and synaptic effects that were not 

observed at higher doses. These results suggest that low dose ketamine may have specific 

molecular and synaptic effects that are impaired by higher doses.

2. Materials and methods

2.1. Mice

C57BL/6J male adult mice (10–15 weeks old) were used for this study. Age-matched mice 

were randomly allocated for each dosage group. Animals were maintained on a 12h-light/

12h-dark cycle, at ambient temperature (23 ± 3 °C) and humidity (50 ± 20%) with ad 
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libitum access to chow pellets and water. All experiments were performed and scored by an 

observer that was blind to the drug treatment. All animal procedures were performed in 

accordance with the guidance for the care and use of laboratory animals and were approved 

by the institutional animal care and use committee at UT Southwestern Medical School and 

Vanderbilt University (APN No.2017–101831-G at UT Southwestern Medical Center, APN 

No. M1800164–00 at Vanderbilt University).

2.2. Ketamine treatment

For behavior and biochemistry experiments, ketamine-hydrochloride (Hospira or Zoetis) was 

freshly dissolved in 0.9% saline and intraperitoneally (i.p.) injected. For electrophysiology, 

ketamine-hydrochloride was diluted in artificial cerebrospinal fluid (ACSF, 124 mM NaCl, 5 

mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 2 mM CaCl2, 2 mM MgCl2, and 10 mM 

D-glucose) and perfused into the recording chamber. All doses or concentrations of 

ketamine were calculated from the molecular weight of ketamine-hydrochloride. Different 

cohorts of mice were used for the respective analysis to avoid possible additive effects of 

multiple ketamine treatments.

2.3. Forced swim test (FST)

Prior to testing, mice were handled briefly each day for 2 weeks. On the day of testing, mice 

were acclimated to the behavioral room for 2 hrs and then received saline or a single dose of 

ketamine (i.p injection; 5, 20, or 50 mg/kg) 2 hrs prior to testing. Mice were placed in a 4 L 

Pyrex glass beaker containing 3 L of water (23–25°C) for a total of 6 min. Immobility was 

measured during the final 4 min of the test. All experiments were performed and scored by 

an observer that was blind to drug treatment. A mouse was considered immobile if it floated 

without deliberate motion in the water or showed only minor movement to balance its body 

or keep its head above water without struggling [30].

2.4. Brain preparation and western blot analysis

C57BL/6J mice were injected with saline or ketamine (5, 20, or 50 mg/kg, i.p.), sacrificed 

30 minutes later, and hippocampal slices (~1 mm thick) were rapidly prepared using an ice-

chilled matrix for the coronal dissection of the brain (Alto acrylic 1mm mouse brain coronal, 

AL-1175). The collected hippocampi were immediately snap-frozen and stored at −80°C. 

The collected hippocampi were lysed using RIPA buffer [50 mM Tris, pH 7.4, 1% Igepal® 

CA-630, 0.1% SDS, 0.5% Na deoxycholate, 4 mM EDTA, 150 mM NaCl, protease 

inhibitors (Roche), and phosphatase inhibitors (2 mM sodium orthovanadate, 50 mM sodium 

fluoride, and 10 mM sodium pyrophosphate)]. The total amount of protein was quantified by 

the bicinchoninic acid assay (Thermo Fisher Scientific). An equal amount of total protein 

was resolved by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were 

blocked for 1 hr at room temperature, washed three times with 0.1% TBS-Tween [0.1% (v/v) 

Tween 20, 500 mM NaCl, and 20 mM Tris-HCl with pH 7.5], and then incubated overnight 

at 4°C with the following primary antibodies: mature BDNF (mBDNF or BDNF, 1:1,500, 

Abcam, ab108319), phospho-S6K (Thr 389, 1:1000, Cell Signaling Technology, 9205S), 

S6K (1:5000, Cell Signaling Technology, 9202S), phospho-GSK3β (Ser 9, 1:5000, Cell 

Signaling Technology, 9323S), GSK3β (1:10,000, Cell Signaling Technology, 9315S), or 

GAPDH (1:100,000, Cell Signaling Technology, 2118S). After washing three more times 

Kim and Monteggia Page 3

Behav Brain Res. Author manuscript; available in PMC 2020 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with 0.1% TBS-Tween solution, blots were incubated with peroxidase-labeled secondary 

antibody (PI-1000, Vector Laboratories) at room temperature for 2 hrs. For blocking and 

incubating the blots, 5% skim milk in 0.1% TBS-Tween solution was used. The protein 

bands were detected using Clarity™ western ECL substrate (Biorad) and exposed to X-ray 

film.

2.5. Hippocampal slice field recording

Mice were briefly anesthetized for 2 min with isoflurane (Henry Schein Animal Health), 

brains were quickly removed, and hippocampal slices were prepared using a vibratome (VT 

1000S, Leica) and placed in ice-cold dissection buffer (2.6 mM KCl, 1.25 mM NaH2PO4, 26 

mM NaHCO3, 0.5 mM CaCl2, 5 mM MgCl2, 212 mM sucrose, and 10 mM D-glucose). To 

record field excitatory postsynaptic potential (fEPSP) in the CA1 region, the CA3 region 

was surgically removed from each slice. The slices were transferred into a reservoir chamber 

filled with ACSF. Slices were incubated for 2–3 hrs at 30°C for recovery. The dissection 

buffer and ACSF were equilibrated with 95% O2 and 5% CO2.

For recording, slices were transferred to a submerged recording chamber that was 

maintained at 30°C and perfused continuously with ACSF at a rate of 3 ml/min. fEPSPs 

were recorded with extracellular recording electrodes filled with ACSF (resistance, 1–2 MΩ) 

and placed in the stratum radiatum of area CA1. fEPSPs were evoked by monophasic 

stimulation (duration, 200 μs) of Schaffer collateral/commissural afferents with a concentric 

bipolar microelectrode (FHC). Stable baseline responses were collected every 30 sec using a 

stimulus yielding 50–75% of the maximum peak. fEPSPs were filtered at 2 kHz and 

digitized at 10 kHz on a personal computer with a customized program (LabVIEW, National 

Instruments). The response was measured as the initial slope (10–40% of the rising phase) of 

the fEPSPs.

Ketamine-induced potentiation was measured as previously described with slight 

modifications [13]. After measuring the baseline response for 20 min, ketamine was infused 

at a rate of 18 ml/hr to a final concentration of 20, 50 or 100 μM for 30 min. After the 

ketamine infusion, a single stimulation was delivered and the response was recorded to 

document the initial ketamine-induced potentiation response. After a 50 min washout period, 

the stimulation was issued every 30 sec and the response recorded for 20 min to confirm the 

continuation of the ketamine potentiation. All responses were normalized to the baseline 

response. The magnitude of the potentiation was the averaged value of responses recorded 

during the last 20 min. The input-output (I-O) relationship was measured using stimulation 

intensities of 4, 8, 12, 16, 20, and 24 μA before and after ketamine treatment. To analyze the 

I-O curve, the initial slope of the obtained fEPSP was plotted as a function of presynaptic 

volley peak at a given stimulation intensity. Paired-pulse ratios (PPRs) were measured with 

interstimulus intervals (ISIs) of 20, 30, 50, 100, 200, 400, and 500 ms before and after 

ketamine treatment. PPR was calculated by the slope ratio of the second to the first response 

(P2/P1).
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2.6. Statistics

Statistical analyses were performed using GraphPad Prism 8 software. Depending on 

experimental design and dataset, paired t-test, Wilcoxon test, or one-way analysis of 

variance (ANOVA) were performed. More specific statistical details are described in 

supplementary table. A p-value of < 0.05 was considered statistically significant in all 

experiments.

3. Results

3.1. Dose-dependent effects of ketamine on FST behavior

Based on previous studies [23–27, 29, 31, 32], we chose three subanesthetic dosages of 

ketamine, 5, 20 and 50 mg/kg. The 5 mg/kg ketamine is known to produce antidepressant-

like drug effects in mice [29, 31, 32], while 20 and 50 mg/kg ketamine is used to model 

schizophrenia-related behaviors [23–27]. Ketamine is known to induce hyperlocomotion in a 

dose-dependent manner at subanesthetic doses, which usually dissipates within 2 hrs after 

i.p. injection [25, 28, 33]. Thus, to avoid any potential confounds of ketamine-induced 

hyperactivity, we tested the dose-dependent effects of ketamine 2 hrs after i.p. injection in 

the forced swim test (FST) (Figure 1). In agreement with previous data [29, 31, 32], 5 mg/kg 

ketamine treatment significantly reduced immobility suggestive of an antidepressant-like 

effect compared to saline treatment. In contrast, 20 and 50 mg/kg ketamine-treated groups 

did not alter immobility compared to the saline-treated control group.

3.2. Ketamine doses differentially regulate intracellular signaling in the hippocampus

The rapid antidepressant effects of ketamine have been linked to several signaling molecules 

including BDNF [11, 33–36], phospho-S6K (pS6K, Thr389) [14, 15], and phospho-GSK3β 
(pGSK3β, Ser9) [16, 17]. To investigate whether the dose-dependent effect of ketamine on 

rapid antidepressant effects extends to intracellular signaling, we measured protein levels in 

the hippocampus, a brain region implicated in the antidepressant action of ketamine [11, 13, 

16, 33]. Thirty minutes after i.p. injection of saline or ketamine, hippocampi were collected 

and protein levels were analyzed by Western blot analysis (Figure 2). BDNF protein 

expression was significantly increased by 5 mg/kg ketamine in agreement with previous data 

[11, 33]. By contrast, 20 and 50 mg/kg ketamine-treated groups did not increase BDNF 

protein levels but rather resulted in a trend towards decreased BDNF protein levels 

compared to the saline-treated group. Examination of phospho-S6K revealed no differences 

at 5 or 20 mg/kg ketamine compared to a saline-treated group, while 50 mg/kg ketamine 

showed a trend toward an increase that did not achieve statistical significance (p = 0.0633). 

The phospho-GSK3β levels also were not altered by 5, 20, or 50 mg/kg ketamine.

3.3. Concentration-dependent effects on ketamine-driven synaptic potentiation

Our previous work identified ketamine-induced synaptic potentiation in the hippocampus, 

which is strongly correlated with antidepressant-like effects, as a possible mechanism for 

rapid antidepressant action [11, 13, 33]. We, therefore, examined whether ketamine-induced 

potentiation is dependent on the ketamine concentration (Figure 3). Ketamine blocks 

NMDA-receptor-induced fEPSP over 50% at 20 μM and abolishes it at 100 μM in the 
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hippocampal CA1 region [37, 38]. In the CA1, ketamine blocks high-frequency- or theta-

burst-stimulation-induced long-term-potentiation (LTP) mediated by activation of 

postsynaptic NMDA receptors with an IC50 value of 14.8 μM, and the LTP induction is 

totally blocked at 30 μM [39–41]. Based on these previous results, we chose 20, 50, and 100 

μM of ketamine as 20 μM ketamine blocks about 60 −70% of postsynaptic NMDA receptors 

while 50 μM and 100 μM far exceed the concentration for blocking the postsynaptic NMDA 

receptors [37–41]. Low concentration (20 μM) ketamine perfused on hippocampal slices 

significantly increased synaptic responses in agreement with previous data [11, 13] (Figure 

3a and b). The potentiation magnitude at 20 μM was the highest among the three 

concentrations examined (20, 50, and 100 μM). Moreover, the potentiation magnitudes at 50 

and 100 μM ketamine were significantly lower than at 20 μM (Figure 3b). To examine the 

concentration-response relationship in basal neurotransmission, the slope change of the 

input-output (I-O) curve before and after ketamine-treatment was analyzed. Ketamine 

significantly increased the slope of the I-O curve at all tested concentrations (Figure 3c–e). 

However, 20 μM ketamine produced the biggest slope change while the ratio of slope change 

at 100 μM was significantly lower than at 20 μM (Figure 3f).

3.4. Ketamine does not affect presynaptic function

We previously showed that 20 μM ketamine does not affect presynaptic function [13]. 

However, it is unclear whether higher concentrations of ketamine impact presynaptic 

function. To test whether the suppressed potentiation observed with 50 and 100 μM 

ketamine is due to changes in presynaptic function, we measured PPRs before and after 

ketamine-treatment (Figure 4). We observed no differences in the PPRs at 20, 50 and 100 

μM ketamine.

4. Discussion

In this study, we report that ketamine produces an antidepressant response at a low dose (5 

mg/kg, i.p.) but not higher doses (20 and 50 mg/kg, i.p.). The 5 mg/kg ketamine also 

increased hippocampal BDNF expression, a critical component for ketamine action [11, 33–

36], whereas 20 and 50 mg/kg ketamine did not. In the field recording experiment, 20 μM 

ketamine increased the magnitude of ketamine-induced potentiation and the slope change of 

the I-O curves greater than at higher concentrations (50 and 100 μM). Taken together, these 

results show that specific intracellular signaling and synaptic potentiation mechanisms 

associated with the rapid antidepressant response are activated by low dose ketamine but 

disrupted by higher dose ketamine used to model schizophrenia.

Numerous studies have shown that ketamine ranging from 2.5–10 mg/kg elicits a 

reproducible rapid antidepressant response in mice [10–12, 16, 28, 29, 31, 32] although the 

exact doses are variable depending on the strain, stress condition, and behavioral test [42]. 

Here, we observed that 5 mg/kg ketamine produced an antidepressant response in the FST. 

However, at higher doses, 20 or 50 mg/kg, there was no change in immobility. Our finding 

that higher doses of ketamine abolish antidepressant effects is in agreement with previous 

studies [14, 28, 43]. These data suggest that the rapid antidepressant effects of ketamine are 

mediated by mechanism activated within a specific dose range and interrupted by off-target 
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effects at high doses. It is important to note that it is difficult to directly compare the 

ketamine doses used in preclinical studies with the clinically used dose range [0.5–1mg/kg 

intravenous infusion (i.v.) for 40 min [2, 3, 44–46]. However, given previous preclinical 

studies that BDNF is required for the rapid antidepressant effects of ketamine [11, 34, 36], 

which may have clinical relevance [35], it is plausible that this preclinical low dose range 

may have a connection to the clinical effects.

We found that hippocampal BDNF is increased by ketamine only at a low dose (5mg/kg) 

which produces antidepressant effects. We measured BDNF protein levels 30 min after 

ketamine treatment, a time point associated with rapid antidepressant effects. Previous work 

has shown the brain concentration of ketamine peaks at 10–15 min and then is rapidly 

eliminated within 2 hrs of ketamine injection in mice [28, 47]. In earlier work, we found that 

3 mg/kg ketamine, in a different strain of mice, induced autophosphorylation of tropomyosin 

receptor kinase B (TrkB), the BDNF high-affinity receptor, in the hippocampus at 30 

minutes after ketamine treatment suggesting that BDNF-TrkB signaling was engaged [11]. 

Another study reported that 10 mg/kg ketamine did not alter TrkB autophosphorylation in 

the medial prefrontal cortex, suggesting that BDNF-TrkB signaling may be differentially 

regulated by ketamine in specific brain regions [48]. In prior work, we demonstrated that the 

genetic deletion of BDNF or its receptor, TrkB, in postnatal forebrain regions resulted in an 

attenuated behavioral response to ketamine in the FST [11]. The abolished or attenuated 

antidepressant action of ketamine is also observed when intracellular-localization and 

activity-dependent release of BDNF is impaired by the BDNF val66met polymorphism [35, 

36, 49]. These multiple lines of evidence strongly suggest that hippocampal BDNF is a 

critical mediator for rapid antidepressant effects.

In this study, we did not observe changes in pS6K expression at any of the ketamine doses 

examined. A number of papers suggested activation of mTOR and S6K as key regulators in 

rapid antidepressant action [14, 15, 50, 51]. One possible explanation for this discrepancy is 

that the importance of pS6K has been emphasized in the prefrontal cortex [14, 15], and may 

not be similar in the hippocampus. However, there have been several reports that have not 

observed ketamine-mediated changes in mTOR-S6K and its related pathway [11, 28, 52, 53] 

and have questioned the importance of mTOR-S6K pathway in ketamine action. A recent 

clinical study has shown that rapamycin does not prevent ketamine-mediated rapid 

antidepressant action, suggesting that activation of the mTOR-S6K pathway may not be 

important for the clinical effects [54]. Rapid spinogenesis and synaptogenesis via activation 

of the mTOR-S6K pathway have also been proposed as a key mechanism recapitulating the 

fast-acting antidepressant effects of ketamine [14]. However, a recent study demonstrated 

that ketamine’s antidepressant effects occur prior to new spine formation, suggesting 

structural changes in spines and synapses may not be a mediator for rapid antidepressant 

effects but for sustained antidepressant effects [55]. Collectively, these data suggest that 

activation of the mTOR-S6K pathway may not be critical in mediating rapid antidepressant 

effects.

In previous studies, pGSK3β was increased in the hippocampus following ketamine 

treatment [16, 17]. However, we did not see any significant change in the level of pGSK3β 
following any of the ketamine doses examined. A separate study reported increased pGSK3β 
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levels following ketamine treatment but at 100 mg/kg [56], well outside the dose involved in 

the rapid antidepressant effects of ketamine. Co-treatment with lithium, a GSK3 inhibitor, 

potentiated rapid antidepressant effects by low dose ketamine (1 mg/kg) in rats [57], 

suggesting GSK3 signaling as a modulator rather than an inducer of rapid antidepressant 

effects. However, a recent clinical study reported that co-treatment with lithium does not 

affect the rapid efficacy and persistence of the antidepressant action of ketamine [58]. These 

results suggest a re-evaluation of the proposal that inhibition of GSK3 signaling is required 

for ketamine’s effects, although inhibition of GSK3 may be involved in the antidepressant 

effects of other drugs [59, 60].

In the current study, we did not see any changes in PPRs, suggesting presynaptic function in 

the hippocampal CA1 area is not affected by ketamine. Instead, we found ketamine-driven 

postsynaptic potentiation at 50 and 100 μM was significantly lower than at 20 μM, indicating 

that higher concentrations do not induce this synaptic augmentation. Previous studies have 

reproducibly demonstrated ketamine-driven synaptic potentiation at 20 μM ketamine in the 

CA1 region of control animals [11, 13, 61–63]. Given that 50 and 100 μM ketamine far 

exceed the concentration (30 μM) of blocking postsynaptic NMDA receptor activation in the 

CA1 region [39–41], these data suggest that the higher doses of ketamine may be triggering 

non-NMDA receptor-mediated effects that interfere with this postsynaptic NMDA receptor-

driven potentiation [11, 13, 33, 63–65]. It is intriguing that previous work has shown a 

requirement for BDNF in ketamine-induced synaptic potentiation [11, 13] and that, in the 

current study, only the low dose of ketamine induces the rapid increase in BDNF protein and 

mediates the synaptic potentiation and rapid antidepressant effects. Of note, one study 

reported that 20 μM ketamine does not produce synaptic potentiation in the CA1 

hippocampal field recording of rats prenatally exposed to dexamethasone [66]. However, 

prenatal exposure of dexamethasone may affect neural development, which may have 

complicated the experimental design in evaluating ketamine’s effect on synaptic 

potentiation.

Previous work from our laboratory has proposed that ketamine mediates rapid antidepressant 

effects by blocking the NMDA receptor at rest, resulting in inhibition of eukaryotic 

elongation factor 2 kinase (eEF2K), that desuppresses protein translation, including BDNF, 

resulting in the insertion of AMPA receptors and the synaptic potentiation in the 

hippocampal CA1 region [11, 13]. The results of the current study are consistent with the 

hypothesis and suggest that the doses of ketamine that mediate antidepressant effects exert 

specific signaling and synaptic effects that are not observed at higher doses of ketamine. 

Another proposed mechanism of ketamine action suggests that blockade of the NMDA 

receptor on inhibitory neurons in cortical regions leads to an increase in neuronal activity 

and glutamate release that produces antidepressant effects (also known as disinhibition) [14, 

67–69]. However, one of the caveats of the disinhibition hypothesis is that the ketamine 

doses that increase glutamate release partly overlap with the doses producing schizophrenia-

related symptoms. In preclinical studies, 10 to 30 mg/kg of ketamine increased extracellular 

glutamate levels [43, 68], and over 20 mg/kg produced schizophrenia-related symptoms [23–

27], although results from the current study show doses over 20 mg/kg did not trigger the 

molecular, synaptic or behavioral effects associated with rapid antidepressant effects. 

Consistent with these preclinical findings, clinical studies have shown increased glutamate 
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levels in the prefrontal cortex following ketamine treatment that correlates with 

schizophrenic symptoms [70, 71]. Additionally, pretreatment of lamotrigine, which 

suppresses glutamate release [72], did not block the antidepressant and mood-elevating 

effects of ketamine [73, 74]. Thus, these results suggest increased glutamate release may not 

be associated with the antidepressant effects of ketamine but rather with the schizophrenic 

symptoms as suggested previously [68, 69].

Clinically, it is unclear whether the antidepressant effects of ketamine are observed only 

within a specific dose range. The dose range of ketamine showing stable antidepressant 

effects is 0.5 mg/kg to 1 mg/kg, (i.v. infusion for 40 min) [2, 3, 44–46], while the 

dissociative symptoms are usually observed in the same dose range [44, 45], suggesting a 

possibile correlation between antidepressant and dissociative effects. However, some clinical 

studies have reported ketamine produces antidepressant effects at a lower dose range (0.1–

0.2mg/kg, i.v., i.m., or s.c.) with minimal dissociative symptoms [75, 76]. Although some 

clinical studies have suggested dissociative symptoms predict antidepressant efficacy [77, 

78], this correlation was not observed in other clinical studies [44, 79]. Of note, in a recent 

double-blind, placebo-controlled clinical study, several doses of ketamine (0.1, 0.2, 0.5, and 

1mg/kg, i.v for 40 min) were tested and evaluated for a possible correlation between 

antidepressant effects and dissociative symptoms. However, the study did not find any 

significant correlation between these and argued that the dissociative symptoms may be an 

unblinding factor since patients can recognize when the drug has been administered [44]. 

Thus, these lines of evidence may indicate the antidepressant effects can be separated from 

dissociative effects in ketamine, although this possibility awaits further investigation.

5. Conclusion

Our findings show that low dose ketamine which triggers rapid antidepressant effects 

impacts key factors, rapidly increasing BDNF protein expression and inducing synaptic 

potentiation in the hippocampus, while these changes are not observed at higher doses. 

These results suggest the antidepressant effects of ketamine exert specific molecular and 

synaptic effects while higher doses impair this specificity. Further investigation of the 

pharmacological targets associated with hippocampal BDNF and synaptic potentiation will 

be fundamental to understanding the rapid antidepressant effects of ketamine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Intraperitoneal injection (i.p.) of ketamine produces antidepressant effects at a 

low dose (5 mg/kg) but not higher doses (20 and 50 mg/kg).

• Low dose (5 mg/kg, i.p.) ketamine rapidly increases BDNF expression in the 

hippocampus, while higher doses (20 and 50 mg/kg, i.p.) do not increase 

BDNF levels.

• Perfusion of low concentration (20 μM) of ketamine on hippocampal slices 

induces postsynaptic potentiation in the hippocampal CA1 that is not 

observed with higher concentrations (50 and 100 μM).

• Low dose ketamine which mediates rapid antidepressant responses may have 

specific molecular and synaptic effects that are impaired by higher doses.
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Fig. 1: Dose-dependent effects of ketamine on antidepressant-like responses.
FST was performed 2 hr after ketamine treatment with three different dosages (5, 20, and 50 

mg/kg). Ketamine significantly reduces immobility at 5 mg/kg, but not at 20 and 50 mg/kg, 

compared to saline-treated control (one-way ANOVA, F(3, 35) = 3.005, p = 0.0434, n = 9 ~ 

10 per group). Graphs represent mean ± S.E.M., **, p < 0.05.
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Fig. 2: Effect of different doses of ketamine on intracellular signaling.
Ketamine was i.p. injected into mice, 30 min later the animal was sacrificed and the 

hippocampus dissected out. (a) Representative Western blots. (b) Densitometric quantitation 

of blots. mBDNF was significantly increased at 5 mg/kg, while significantly decreased at 20 

and 50 mg/kg of ketamine, compared to saline-treated control (one-way ANOVA, F(3, 27) = 

10.67, p < 0.0001, n = 7 ~ 8 per group). pS6K/S6K showed a tendency toward an increase as 

a dose-dependent manner but did not achieve statistical significance compared to saline-

treated mice (one-way ANOVA, F(3, 28) = 2.009, p = 0.1355, n = 8 per group). pGSK3β/

GSK3β did not show any significant changes at 5, 20 or 50 mg/kg ketamine compared to 

saline-treated mice (one-way ANOVA, F(3, 28) = 0.5598, p = 0.6430, n = 8 per group). 
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Graphs represent mean ± S.E.M., *, p < 0.05, ###, p < 0.001, * indicates comparison with 

saline control, # indicates comparison between indicated groups. Ket: ketamine
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Fig. 3: Dose-dependent effects of ketamine-induced synaptic potentiation.
To examine the dose-response relationship in ketamine-driven postsynaptic potentiation, 

fEPSPs were recorded from the CA1 Schaffer-collateral pathway with three different 

concentrations of ketamine (20, 50 or 100 μM). After 20 min of stable baseline 

measurement, ketamine was applied for 30 min, then washed out for 50 min, followed by 

recordings of fEPSP responses for 20 min. (a, b) The highest potentiation magnitude was 

observed at 20 μM and significantly decreased at 50 and 100 μM (one-way ANOVA test, 

F(2, 17) = 9.721, p = 0.0015, n = 6 ~ 7 per group). (c-e) To confirm the change of basal 

neurotransmission by different concentrations of ketamine, the I-O curve relationship was 

measured before and after ketamine treatment. Ketamine significantly increased the slope of 

the IO-curve at all tested concentrations (paired t-test, 20 μM: t(6) = 5.359, p = 0.0017, 50 

μM: t(5) = 4.505, p = 0.0064, 100 μM: t(5) = 3.049, p = 0.0285, n = 6 ~ 7 per group). (f) To 

confirm the dose-response relationship in the slope-change of the I-O curve, the ratio of the 

slope-change was analyzed. The biggest slope change was shown at 20 μM of ketamine. The 

ratio of slope change at 100 μM was significantly lower than at 20 μM of ketamine (one-way 

ANOVA test, F(2, 19) = 4.579, p = 0.0268, n = 6 ~ 7 per group). Graphs represent mean ± 

S.E.M., *, p < 0.05, **, p < 0.01
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Fig. 4: Ketamine does not affect presynaptic functional change.
To examine the presynaptic functional change by ketamine, we measured PPRs before and 

after ketamine treatment. (a-c) Ketamine did not change the PPRs at 5, 20 or 50 mg/kg 

concentrations (paired t-test or Wilcoxon test, p > 0.05 in all tested interstimulus interval 

condition). Graphs represent mean ± S.E.M.
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