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Abstract
Objectives
Epigenetic modifications are closely linked with aging, but their relationship with cognition
remains equivocal. Given known sex differences in epigenetic aging, we explored sex-specific
associations of 3 DNA methylation (DNAm)–based measures of epigenetic age acceleration
(EAA) with baseline and longitudinal change in cognitive performance among middle-aged
urban adults.

Methods
We used exploratory data from a subgroup of participants in theHealthy Aging inNeighborhoods
of Diversity across the Life Span studywith completeDNA samples andwhose baseline ages were
>50.0 years (2004–2009) to estimate 3 DNAm EAA measures: (1) universal EAA (AgeAccel);
(2) intrinsic EAA (IEAA); and (3) extrinsic EAA (EEAA). Cognitive performance was measured
at baseline visit (2004–2009) and first follow-up (2009–2013) with 11 test scores covering global
mental status and specific domains such as learning/memory, attention, visuospatial, psycho-
motor speed, language/verbal, and executive function. A series of mixed-effects regressionmodels
were conducted adjusting for covariates and multiple testing (n = 147–156, ;51% men, k =
1.7–1.9 observations/participant, mean follow-up time ;4.7 years).

Results
EEAA, a measure of both biological age and immunosenescence, was consistently associated
with greater cognitive decline among men on tests of visual memory/visuoconstructive ability
(Benton Visual Retention Test: γ11 = 0.0512 ± 0.0176, p = 0.004) and attention/processing
speed (Trail-Making Test, part A: γ11 = 0.219 ± 0.080, p = 0.007). AgeAccel and IEAAwere not
associated with cognitive change in this sample.

Conclusions
EEAA capturing immune system cell aging was associated with faster decline among men in
domains of attention and visual memory. Larger longitudinal studies are needed to replicate our
findings.
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Human aging involves complex biological and molecular
processes whose identification may be key for developing
therapies to extend longevity or delay age-associated dis-
eases,1 making its quantification a priority for biomedical and
social sciences.1,2 Specifically, epigenetic factors have been
linked to neurogenesis,3–5 synaptic plasticity, and long-term
memory formation3,6,7 in cognitive aging.

Epigenetics consists of regulatory processes of gene expres-
sion, genome integrity, and normal cell function3,8 through
heritable changes that are independent of DNA sequence
modifications such as mutations. Among 3 epigenetic medi-
ating mechanisms, DNA methylation (DNAm) is the most
understood epigenetic marker.3 Hypermethylation generally
triggers gene expression silencing, while the reverse is true for
hypomethylation.3 Both phenomena are observed in cogni-
tive aging in a gene-specific manner,9 particularly within brain
regions involved in memory formation and storage.10

The epigenetic clock derived from DNAm levels is a molec-
ular marker reflecting human cell, tissue, and organ aging,
while being highly correlated with age across the life span11

and linked to increased age-related chronic disease and all-
cause mortality risk.11–14 While DNAm at specific sites can
influence cognitive performance (e.g., global mental status
and phonemic fluency),15 few studies have examined the
epigenetic clock in relation to cognition,11,15–19 and none
have tested sex-specific effects given than menmay have faster
epigenetic age acceleration (EAA) than women20 and cog-
nitive decline differs by sex.21

We tested sex-specific associations of 3 DNAm-based epige-
netic clock measures with cross-sectional and longitudinal
cognitive performance using exploratory data from a sample
of middle-aged urban adults. We hypothesize that DNAm
EAA is directly related to cognitive aging, perhaps differen-
tially by sex.

Glossary
AA = African American; AD = Alzheimer disease; BMI = body mass index; BTA = Brief Test of Attention; BVRT = Benton
Visual Retention Test;CES-D = Center for Epidemiologic Studies–Depression scale;CVLT = California Verbal Learning Test;
DFR = delayed free recall; DNAm = DNA methylation; EAA = epigenetic age acceleration; EEAA = extrinsic epigenetic
age acceleration; FA = fractional anisotropy; HANDLS = Healthy Aging in Neighborhoods of Diversity across the Life Span;
HEI = Healthy Eating Index;HS = high school; IEAA = intrinsic epigenetic age acceleration; IRB = institutional review board;
MD = mean diffusivity; MMSE = Mini-Mental State Examination; MRV = medical research vehicle; NK = natural killer;
NSAID = nonsteroidal anti-inflammatory drug; PI = principal investigator; TMT = Trail-Making Test.
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Methods
Database
Healthy Aging in Neighborhoods of Diversity across the Life
Span (HANDLS) is an ongoing prospective cohort study ini-
tiated in 2004 aimed at examining racial and socioeconomic
disparities in cardiovascular disease and cognitive aging.
HANDLS is unique as it recruits an ethnically and socioeco-
nomically diverse sample of African American (AA) and white
urban middle-aged adults (baseline age 30–64 years) and col-
lects a range of cognitive measures across time points, as well as
clinical andmolecular biomarkers spanningmultiple physiologic
systems. The primary sampling units were 13 Baltimore
neighborhoods using an area probability sampling strategy.22

Standard protocol approvals, registrations,
and patient consents
The study protocol (09-AG-N248) received approval from
the National Institute on Environmental Health Sciences in-
stitutional review board (IRB) of the NIH. Upon request, data
can be made available to researchers with approved proposals,
after they have agreed to confidentiality as required by our
IRB. Policies are publicized on handls.nih.gov.

Study sample
The original HANDLS cohort included 3,720 participants
(30–65 years, AA and white, phase I, visit 1: 2004–2009).
During phase II of visit 1 (also known as the medical research
vehicle [MRV] baseline visit: 2004–2009), in-depth examina-
tions were conducted including a fasting blood draw, a physical
examination, a dual-energy X-ray absorptiometry scan, an ECG,
a cognitive assessment, and a 24-hour dietary recall, followed by
a second 24-hour dietary recall telephone interview (3–10 days
later). Frozen purified blood mononuclear cells on a subsample
of white and AA participants were used to conduct epigenetic
analysis. The first follow-up visit (visit 2) was conducted using
a similar protocol as the baseline visit (visit 1) during the
2009–2013 period and consisted primarily of an MRV in-depth
examination visit. Among participants who completed visit 2,
the mean follow-up time was estimated at 4.7 years.

Participant flowchart is presented in figure 1. We included
participants >50.0 years of age at baseline (n = 1,670 of 3,720,
sample 1a) with cognitive test scores at either visit (baseline age:
30–65 years, visit 1: Nmax = 2,744; visit 2: Nmax = 2,247: ex-
cluded from figure 1). Combining both criteria while excluding
unreliable cognitive test scores (mainly due to literacy-related or
physical/sensory limitations), samples were reduced to 1,219
(visit 1, sample 2a) and 976 (visit 2, sample 2b). Baseline valid
and reliable epigenetic data were available for 470 of all baseline
ages (30–65 years) and for both white and AA participants
(excluded from figure 1). This sample was reduced to 461 for
individuals with visit 1 cognitive data and 428 for those with visit
2 cognitive data (excluded from figure 1). Following exclusions
of participants ≤50.0 years of age and unreliable or missing
cognitive test scores, we attained a sample of N’ = 404 obser-
vations (207 participants at visit 1 and 197 participants at visit 2;

figure e-1, doi.org/10.5061/dryad.6r80s8p: samples 3a and 3b).
We further excluded participants with missing covariate data
(see Covariates section). As detailed in figure e-1 (doi.org/10.
5061/dryad.6r80s8p), samples varied by cognitive test, with up
to N’ = 304 observations (156 participants [visit 1] and 148
participants [visit 2], samples 5a–5k).

Cognitive assessment
Cognitive performance was assessed using 11 derived raw
scores from 8 tests, capturing various cognitive domains, as was
done in previous studies.23,24 Specifically, the 11 test scores used
were as follows: Mini-Mental State Examination (MMSE) total
score (global mental status)25; California Verbal Learning Test
(CVLT), List A (verbal learning) and delayed free recall (DFR)
(verbal memory)26; Benton Visual Retention Test (BVRT)27

(visuospatial/visuoconstruction), total errors; Digit Span For-
ward and Backward,28 total correct (attention, executive
function/workingmemory); Animal Fluency Test29 (language/
verbal fluency), total words minus intrusions/perseverations;
Brief Test of Attention (BTA),30 total correct trials of 10; Trail-
Making Test (TMT),31 part A (attention) and part B (executive
function), number of seconds to completion; and the Clock-
Drawing Test32 command total score (0–10) (visuospatial/
visuoconstruction). Most cognitive test scores were coded in

Figure 1 Participant flow chart

Sample1 is the initial visit 1, phase1 selectedHealthyAging inNeighborhoodsof
Diversity across the Life Span (HANDLS) sample of adults aged 30–64 years
(white and African American). Samples 1a and 1b are the subsamples ≤50.0
years and>50.0 years at baseline. Out of sample 1a, sample 2a/2b is the sample
of participants with complete and reliable data at visits 1 and 2, respectively, on
cognitive test scores. Of those, samples 3a/3b have in addition complete epi-
genetic data. Finally, excluding those with missing covariates, the result is
sample 4a/4b, of whom147–156 constitute the final analytic sample included in
the mixed-effects regression models, k = 1.7–1.9 observations/participant.
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the direction of higher score reflecting better performance, with
the exception of BVRT (total errors), and TMT both parts
(expressed in seconds) (e-Methods 1, doi.org/10.5061/dryad.
6r80s8p). Following a probe protocol comprehension,
HANDLS participants provided informed consent. Although
dementia was not diagnosed, participants were screened for
cognitive impairment using the MMSE total score.

DNAm and epigenetic clocks
Using a factorial design across sex, race, poverty status, and
available DNA samples, a randomly selected sample of 508
participants’ DNAm was assessed using 250 ng of DNA
extracted from blood and treated with sodium bisulfite as per
the manufacturer’s protocol (Zymo Research, Orange, CA).
Genome-wide DNAm was measured utilizing the Illumina
(San Diego, CA) InfiniumMethylationEPIC BeadChip. Of the
initial 508 participants, 487 had DNAmmeasures including 12
technical replicates. Briefly, quality control was carried out at
the sample and probe levels. At the sample level, 17 samples
were excluded due to being outliers, having poor quality
methylation values (i.e., a mean detection p value ≥0.01), or
having a sex mismatch between their self-report and the
methylation prediction. At the probe level, we excluded due to
poor quality (mean detection p value ≥0.01), having over-
lapping single nucleotide polymorphisms (minor allele fre-
quency cutoff = 0.05), cross-hybridizing probes, and probes
mapping to the sex chromosomes. Following quality control,
DNAm β values were normalized using the normal-exponential
out-of-band method33 before calculating DNAm age (epige-
netic age/epigenetic clock) for each of the final 470 participants
(baseline age 30–65 years). Using DNAm data, proportions of
various white blood cell types were also estimated: gran-
ulocytes, natural killer cells, monocytes, B cells, CD8+-naive
T cells, CD4+ T cells, exhausted CD8+ T cells (CD8+-
CD28−CD45RA−), plasmablasts, and naive CD8+ T cell
(CD8+CD45RA+CCR7+) count.34

DNAm age prediction and EAA measures
DNAm age was computed using the Horvath35 and Hannum
et al.36 algorithms using genome-wide selected DNAm β values
of 353 and 71 CpGs, respectively. The algorithms were trained
and validated using participants with diverse ancestry and DNA
derived from multiple tissues including blood. The DNAm age
and EAA estimation process is detailed at dnamage.genetics.
ucla.edu/home. In brief, the Horvath method predicts age in-
dependently of tissue or cell source of DNA and is therefore
not dependent on tissue or cell type. In contrast, the Hannum
et al. algorithm was developed based on blood DNAm only.
Universal EAA (AgeAccel or Epigenetic clock1) are the
residuals obtained from regressing DNAm age predicted by the
Horvath algorithm on chronological age, with a positive re-
sidual value suggesting faster aging and a negative value
reflecting slower aging. Two additional EAA measures were
used to reflect intrinsic and extrinsic EAA—IEAA (Epigenetic
clock 2) and EEAA (Epigenetic clock 3), respectively. Thought
to be a measure of a cell’s EAA irrespective of white blood cell
composition, IEAA is the residual from regressing DNAm age

(predicted by theHorvath algorithm) on chronological age and
white blood cell proportions (naive CD8+ T cells, exhausted
CD8+ T cells, plasmablasts, CD4+ T cells, natural killer cells,
monocytes, and granulocytes). EEAA is based on DNAm age
predicted by the Hannum et al. algorithm and is thought to be
a measure of EAA combined with changes in white blood cell
proportions, and thus may indicate immune system cell aging
(immunosenescence).12

Covariates
Covariates were selected for their well-established associations
with cognitive decline.37–39 Sociodemographic covariates in-
cluded age at baseline visit, race (white vs AA), sex, marital
status (married vs not), educational level (< high school [HS],
HS, > HS), poverty status (<125% of federal poverty line for
below poverty), employment status (employed vs not), and
Wide Range Achievement Test score, which reflects literacy on
a continuous scale.40 We also included several lifestyle and
health-related factors: bodymass index (BMI [kg/m2]), dietary
quality, baseline chronic conditions, prescription and over-the-
counter nonsteroidal anti-inflammatory drug (NSAID) use
over the last 2 weeks, opiate, marijuana, or cocaine use (current
vs never or former), smoking status (current vs never or for-
mer), and depressive symptoms using the 20-item Center for
Epidemiologic Studies–Depression scale (CES-D)41 (e-
Methods 1, doi.org/10.5061/dryad.6r80s8p). Dietary quality
was operationalized using the Healthy Eating Index (HEI-
2010) total score, computed with the mean of two 24-hour
dietary recalls that were administered at visit 1, as outlined in
appliedresearch.cancer.gov/tools/hei/tools.html and handls.
nih.gov/06Coll-dataDoc.html. Baseline chronic conditions in-
cluded self-reported history of hypertension, dyslipidemia, type
2 diabetes, cardiovascular disease (congestive heart failure,
stroke, nonfatal myocardial infarction, or atrial fibrillation), and
inflammatory disease (rheumatoid arthritis, gout, multiple
sclerosis, systemic lupus, psoriasis, Crohn disease, and thyroid
disorder).

Statistical analysis
STATA release 15.0 was utilized for our analyses.42 We esti-
mated population means and proportions with appropriate
sampling weights, whereby sex differences were tested using
a design-based F-test (svy:tab and svy:reg). We estimated
a series of mixed-effects regression models in our primary
analysis for each of 11 cognitive test scores as outcomes and
each of 3 epigenetic clocks as exposures, yielding a total of 33
models. Each model included years elapsed between visits
(time) and interaction terms between time and key exposures
as well as covariates. Those interaction terms are interpreted
as the effects of exposures and covariates on the slope or
annual rate of change in cognitive performance. Main effects
of exposures and covariates were also included in each model
and are interpreted as fixed effects of exposures and outcome
on baseline performance. Repeated outcomemeasures ranged
between 1.7 and 1.9 visits per participant. We assumed the
unavailability of outcomes to be missing at random (e-
Methods 2, doi.org/10.5061/dryad.6r80s8p).43
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To aid in the interpretation of our findings, we plotted our
results over time (years) and stratified by standardized epi-
genetic clock levels (−1 = mean − 1 SD, 0 = mean, +1 = mean
+ 1 SD).Models were presented for the overall eligible sample
and stratified by sex, while statistically testing for moderating
effects of sex through the addition of 2- and 3-way interaction
terms between exposure, the effect modifier, and time.
Covariates included in the overall model and sex-stratified
models were the same (with the exclusion of sex in the
stratified models) and are listed under the Covariates section.
Continuous covariates were centered at their means. A sen-
sitivity analysis was conducted on selected models with sig-
nificant findings whereby covariates were reduced to those
with at least one measure with associated p < 0.10, using
a backward elimination process.

Selection bias triggered by systematic differences in key
characteristics between selected and excluded samples of the
target population may occur. To account for this bias, we
conducted a 2-stage Heckman selection process applied to
the main mixed-effects regression models. In stage 1, a probit
model was used to regress a binary selection variable on sex,
race, baseline age, poverty status, and educational attain-
ment. The conditional predicted probability of selection was
then utilized to calculate an inverse mills ratio, which at the
second stage was entered into the main causal models as
a covariate.44

We considered 0.05 and 0.10 as type I errors for main effects
and interaction terms, respectively,45 prior to multiple testing
adjustment. This adjustment was carried out using a family-
wise Bonferroni approach while considering cognitive test
multiplicity and assuming that each exposure was a distinctive
substantive hypothesis.46 Thus significance levels for main
effects were p < 0.0045 (0.05/11), p values of 0.10/11 =
0.0090 for 2-way interaction terms, and p values of 0.05 for
3-way interaction terms. This approach is similar to other
published works.47

Data availability
Data access request can be sent to principal investigators (PIs)
or the study manager, Jennifer Norbeck, at norbeckje@
mail.nih.gov. These data are owned by the National Institute
on Aging at the NIH. The PIs have made the data restricted to
the public for 2 main reasons: “(1) The study collects medical,
psychological, cognitive, and psychosocial information on
racial and poverty differences that could be misconstrued or
willfully manipulated to promote racial discrimination; and
(2) Although the sample is fairly large, there are sufficient
identifiers that the PIs cannot guarantee absolute confiden-
tiality for every participant as we have stated in acquiring our
confidentiality certificate.”23

Results
Compared to those excluded (>50.0 years at baseline), the final
analytic sample (i.e., N’ = 304 observations) had moremen and

AA participants, and fewer participants living above the poverty
line, based on a probit model that included age, sex, race, ed-
ucation, and poverty status as predictors for sample selectivity.
This sample selectivity was adjusted for in our final models
using a 2-stage Heckman selection procedure (see Statistical
analysis section). When making bivariate baseline comparisons
between selected participants (table e-1, doi.org/10.5061/
dryad.6r80s8p) (>50.0 years of age, at least one baseline cog-
nitive test performance, DNAm data, and covariates; n = 156)
and the remaining sample >50.0 years (n = 1,107), mean ages ±
SEwere 56.25 ± 0.13 and 57.04 ± 0.13, respectively (p= 0.030, t
test); percent male was 53.9 and 42.6, respectively (p = 0.008,
χ2 test); percent AA was 51.3 and 57.5, respectively (p = 0.14,
χ2 test). Finally, in terms of socioeconomic differences, percent
> HS was 30.1 and 36.3, respectively (p = 0.029, χ2 test) and
percent above poverty was 51.9 and 64.6, respectively (p =
0.002, χ2 test). Similarly, for visit 2, the selected group had
a lower proportion AA (50.7% vs 60.4%, p = 0.026), a lower
proportion above poverty (52.0% vs 66.8%, p = 0.001), and
a higher proportion of men (54.7% vs 39.8%, p = 0.001),
compared to the unselected group.

Table 1 displays descriptive measures of selected baseline study
characteristics in the total eligible population (>50.0 years at
baseline with complete MMSE data and DNAm data at base-
line, i.e., sample 2a in figure 1 for MMSE total score) and
stratifying by sex. While men were more likely to be current
smokers and to have poorer dietary quality than women,
prevalent hypertension and inflammatory conditions were
higher among women than men. Critically, accelerated aging
was higher among men for 2 DNAm measures, namely epi-
genetic clocks 1 and 3.

Table 2 displays sex differences in cognitive performance
within each data time point, in addition to differences across
time points. We noted sex differences at visit 2 in CVLT-DFR
and BTA performance, where performance was better among
women in the former and among men in the latter. Both men
and women exhibited a decline on CVLT List A, CVLT-DFR,
and BVRT test performance over time, while a marginally
significant decline in performance on the TMT part A was
noted in the full sample.

In order to test our main hypotheses, we conducted a series of
multiple mixed-effects regression models to test cross-sectional
and longitudinal associations between baseline EAA measures
and cognitive performance (table 3 and table e-2, doi.org/10.
5061/dryad.6r80s8p). We were particularly interested in the
longitudinal associations with age-related cognitive decline.
After adjusting for multiple testing, among men, epigenetic
clock 3 was consistently associated with faster cognitive decline
on tests of visual memory/visuoconstructive ability (BVRT:
γ11 = 0.0512 ± 0.0176, p = 0.004) and attention/processing
speed (TMT, part A: γ11 = 0.219 ± 0.080, p = 0.007). The
3-way interaction among exposure, time, and sex indicated that
there was no heterogeneity in the effect of this exposure (epi-
genetic clock 3) on cognitive change in BVRT or TMT part A
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Table 1 Selected baseline (visit 1) and time-dependent study participant characteristics by sex for Healthy Aging in
Neighborhoods of Diversity across the Life Span participants >50.0 years of age at baseline with complete and
reliable baseline Mini-Mental State Examination scores and epigenetic clock data (n = 199)a

All (n = 199) Women, 48.9% ± 5.4 SE (n = 95) Men, 51.1% ± 5.4 SE (n = 104) psex
b

Age at baseline, y 56.14 ± 0.36 (199) 56.45 ± 0.48 (95) 55.84 ± 0.53 (104) 0.39

African American, % 60.3 ± 4.9 (199) 60.2 ± 7.0 (104) 60.4 ± 6.9 (95) 0.99

Married, % 34.0 ± 5.2 (182) 30.2 ± 7.3 (84) 37.7 ± 7.5 (98) 0.48

Education, %

< HS 8.5 ± 2.5 6.5 ± 2.9 10.5 ± 4.1 0.36

HS 51.8 ± 5.4 45.4 ± 7.5 57.9 ± 7.5

> HS 37.7 ± 5.4 45.9 ± 7.8 29.9 ± 7.0

Missing 1.92 ± 1.2 (199) 2.2 ± 1.7 (95) 1.7 ± 1.7 (104)

Literacy (WRAT score) 43.4 ± 0.7 (198) 43.2 ± 0.9 (103) 43.5 ± 0.9 (95) 0.81

PIR <125%, % 24.9 ± 4.9 (199) 28.0 ± 5.6 (95) 24.9 ± 4.9 (104) 0.69

Employment, %

Yes 43.9 ± 5.4 49.9 ± 7.6 38.2 ± 7.0 0.35

Missing 15.9 ± 3.3 (199) 11.6 ± 3.1 (95) 20.1 ± 5.7 (104)

Current smoking status, %

Currently smoking 35.9 ± 5.2 22.5 ± 5.2 48.6 ± 7.7 0.003

Missing 6.5 ± 2.9 (199) 11.9 ± 5.7 (95) 1.3 ± 1.3 (104)

Current use of illicit drugs, %

Used any type 40.5 ± 5.4 33.6 ± 7.4 47.1 ± 7.7 0.24

Missing 9.6 ± 3.5 (199) 13.9 ± 6.3 (95) 10.0 ± 3.3 (104)

Body mass index, kg·m22 30.26 ± 0.91 (199) 31.06 ± 1.02 (95) 29.49 ± 1.49 (104) 0.39

HEI-2010 total score 46.36 ± 1.65 (166) 49.69 ± 2.54 (81) 42.99 ± 1.97 (85) 0.04

Depressive symptoms

CES-D score 13.93 ± 1.09 (198) 15.64 ± 1.99 (94) 12.33 ± 1.05 (104) 0.14

Diabetes, % 14.1 ± 3.5 (186) 14.2 ± 4.7 (87) 14.0 ± 5.3 (99) 0.97

Hypertension, % 51.0 ± 5.8 (180) 66.4 ± 7.3 (83) 36.6 ± 7.2 (97) 0.006

Dyslipidemia, % 26.0 ± 4.4 (181) 23.3 ± 5.5 (83) 28.6 ± 6.8 (98) 0.54

Cardiovascular disease,c % 13.0 ± 3.6 (186) 18.9 ± 6.6 (87) 7.4 ± 2.9 (99) 0.068

Inflammatory conditions,d % 17.7 ± 4.1 (186) 26.2 ± 7.0 (87) 9.9 ± 4.0 (99) 0.036

NSAID,e % 24.2 ± 4.3 (187) 24.0 ± 5.7 (87) 24.3 ± 6.3 (100) 0.97

Epigenetic clock 1f, y −0.73 ± 0.58 (199) −1.89 ± 0.95 (95) +0.38 ± 0.61 (104) 0.044

Epigenetic clock 2f, y −0.58 ± 0.57 (199) −1.39 ± 0.95 (95) +0.20 ± 0.59 (104) 0.15

Epigenetic clock 3f, y −0.98 ± 0.73 (199) −3.04 ± 0.98 (95) +0.99 ± 0.90 (104) 0.003

Abbreviations: CES-D = Center for Epidemiologic Studies–Depression; DNAm = DNA methylation; HEI = Healthy Eating Index; HS = high school; NSAID =
nonsteroidal anti-inflammatory drug; PIR = poverty income ratio; WRAT = Wide Range Achievement Test.
a Values are weighted mean ± SEM (n) or percent ± SEP (n). Largest sample size is 199.
b p Value was based on linear regressionmodels when row variable is continuous (svy:reg) with sex as predictor and design-based F test when row variable is
categorical (svy:tab).
c Cardiovascular disease include self-reported stroke, congestive heart failure, nonfatal myocardial infarction, or atrial fibrillation.
d Inflammatory conditions include multiple sclerosis, systemic lupus, gout, rheumatoid arthritis, psoriasis, thyroid disorder, and Crohn disease.
e NSAIDs include over-the-counter and prescription drugs in that category.
f Epigenetic clock 1: Universal epigenetic age acceleration is the residual obtained from regressing DNAm age predicted by the Horvath algorithm on
chronological age, with a positive residual value suggesting faster aging and a negative value reflecting a slower aging. Epigenetic clock 2: Intrinsic epigenetic
age acceleration is the residual obtained from regressing DNAm age (predicted by the Horvath algorithm) on chronological age and white blood cell
proportions. Epigenetic clock 3: Extrinsic epigenetic age acceleration uses the Hannum et al. algorithm and combines epigenetic age acceleration with white
blood cell proportions changes reflecting immunosenescence.
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Table 2 Cognitive performance test scores at baseline (visit 1), follow-up (visit 2), and change between visits, by sex, for
Healthy Aging in Neighborhoods of Diversity across the Life Span participants >50.0 years of age at baseline with
complete and reliable baseline or follow-up cognitive scores and complete data on epigenetic clock measures

All Women Men

Mini-Mental State Examination,
total score (# correct)

Visit 1 27.816 ± 0.213 (199) 28.126 ± 0.264 (95) 27.52 ± 0.322 (104)

Visit 2 27.451 ± 0.279 (175) 27.910 ± 0.219 (87) 26.994 ± 0.469 (88)

p (visit 2—visit 1) 0.299 0.53 0.355

California Verbal Learning Test, List A (# correct)

Visit 1 24.227 ± 0.671 (166) 25.392 ± 0.977 (79) 23.222 ± 0.903 (87)

Visit 2 16.818 ± 1.127 (174) 18.782 ± 1.738 (86) 14.886 ± 1.365 (88)

p (visit 2—visit 1) <0.001 0.001 <0.001

California Verbal Learning Test, free
delayed recall (# correct)

Visit 1 7.007 ± 0.252 (160) 7.084 ± 0.345 (76) 6.942 ± 0.367 (84)

Visit 2a 4.457 ± 0.394 (174) 5.276 ± 0.629 (86) 3.650 ± 0.466 (88)

p (visit 2—visit 1) <0.001 0.012 <0.001

Benton Visual Retention Test (# incorrect)

Visit 1 6.872 ± 0.527 (198) 7.002 ± 0.777 (94) 6.749 ± 0.723 (104)

Visit 2 8.994 ± 0.517 (173) 8.822 ± 0.648 (86) 9.163 ± 0.795 (87)

p (visit 2—visit 1) 0.004 0.073 0.025

Brief Test of Attention (# correct)

Visit 1 6.719 ± 0.229 (170) 6.985 ± 0.275 (82) 6.465 ± 0.369 (88)

Visit 2a 6.376 ± 0.292 (158) 6.99 ± 0.303 (78) 5.804 ± 0.474 (80)

p (visit 2—visit 1) 0.356 0.990 0.272

Animal Fluency

Visit 1 19.693 ± 0.584 (197) 19.931 ± 0.984 (95) 19.465 ± 0.638 (102)

Visit 2 19.4 ± 0.68 (173) 19.361 ± 0.947 (86) 19.439 ± 0.982 (87)

p (visit 2—visit 1) 0.743 0.676 0.982

Digits Span, Forward (# correct)

Visit 1 7.025 ± 0.248 (199) 6.889 ± 0.334 (95) 7.155 ± 0.361 (104)

Visit 2 7.343 ± 0.257 (156) 7.481 ± 0.409 (75) 7.216 ± 0.326 (81)

p (visit 2—visit 1) 0.374 0.262 0.900

Digit Span, Backward (# correct)

Visit 1 5.354 ± 0.243 (198) 5.64 ± 0.401 (94) 5.086 ± 0.275 (104)

Visit 2 5.518 ± 0.363 (156) 5.978 ± 0.487 (75) 5.095 ± 0.525 (81)

p (visit 2—visit 1) 0.708 0.592 0.988

Clock, command (# correct)

Visit 1 8.675 ± 0.127 (197) 8.77 ± 0.172 (94) 8.584 ± 0.186 (103)

Visit 2 8.671 ± 0.154 (171) 8.857 ± 0.175 (85) 8.486 ± 0.253 (86)

p (visit 2—visit 1) 0.984 0.722 0.754

Continued
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that was detected between men and women. Nevertheless, the
effect was only significant in men. These findings are
illustrated using predictive margins from the respective mixed-
effects regression models among men, adjusting for potentially
confounding covariates, including baseline chronological age,
sex, race, poverty status, education, and various lifestyle and
health-related factors (seeCovariates section) (figures 2 and 3).
None of the other associations, particularly those testing the
main hypotheses, passed correction for multiple testing. In
a sensitivity analysis that retained only significant covariates in
selected models with positive findings, results remained
somewhat unaltered. Specifically, for key finding 1 (EEAA,
BVRT in men), we excluded the following covariates: educa-
tion, hypertension, smoking, current drug use, and NSAID use.
In that mixed-effects linear regression model with 99 partic-
ipants and 179 observations, k = 1.8, the key measure (Epi-
Clock3 × time) remained statistically significant at a type I error
of 0.05 (γ11 = +0.037 ± 0.015, p = 0.012), though without
passing correction for multiple testing. Similarly, for key finding
2 (EEAA, TMT part A, in men), the reduced model excluded
the following covariates: poverty status, education, smoking,
current drug use, BMI, CES-D, HEI, hypertension, dyslipide-
mia, NSAID use, inflammation, and the inverse mills ratio. The
results remained virtually unaltered with p value = 0.003 for the
EpiClock3 × time measure (γ11 = +0.198 ± 0.068).

Discussion
Our study is among the first to examine longitudinal associa-
tions between EAA and cognitive decline in a socioeconomi-
cally and racially diverse sample of middle-aged urban adults.
Three baseline DNAm-based epigenetic clocks were estimated
on a subsample, using both the Horvath and Hannum et al.

algorithms. After rigorous adjustment, primary findings in-
dicated that among men, epigenetic clock 3, a measure of both
biological age acceleration and immunosenescence using the
Hannum et al. algorithm, was consistently associated with faster
decline on tests of visual memory/visuoconstructive ability
(BVRT: γ11 = 0.0512 ± 0.0176, p = 0.004) and attention/
processing speed (TMTpart A: γ11 = 0.219 ± 0.080, p = 0.007).

Only a few studies thus far have examined the DNAm–
cognition relation.1,14–18 Among those that have, few examined
a wide range of cognitive outcomes14,15,18 and longitudinally
measured cognitive decline,1,14,18 with most assessing global
cognition, using a single test or creating a composite score from
multiple cognitive tests1,14,16,18 and one in addition examining
multiple brain MRI measures.16 Finally, one study used a proxy
outcome for Alzheimer disease (AD) by examining risk factors
of AD in relation toDNAmage.17 In a substudy of theWhitehall
II cohort that included imaging data (n = 48, 24 cognitively
impaired), researchers identified 8 differentially methylated
regions known to be involved in the immune response that can
possibly alter transcription directly linked to performance on the
Montreal Cognitive Assessment. These results are consistent
with our findings but not directly related to the EAA measures.
Results from analyses of the epigenetic clocks were inconsistent,
with EEAA (i.e., Hannum et al. algorithm) showing a paradox-
ical relationship with increased fractional anisotropy (FA) and
reduced mean diffusivity (MD), a finding that contradicts pre-
vious studies of aging.16 In fact, most studies have shown no
change or decreased FA and increasedMD in preclinical familial
AD.16 Our findings are at odds with these results, given that we
have detected the epigenetic clock using the Hannum et al. al-
gorithm to be related to cognitive change over time amongmen,
in at least 2 domains of cognition, namely attention and
visuospatial/visuoconstruction ability.

Table 2 Cognitive performance test scores at baseline (visit 1), follow-up (visit 2), and change between visits, by sex, for
Healthy Aging in Neighborhoods of Diversity across the Life Span participants >50.0 years of age at baseline with
complete and reliable baseline or follow-up cognitive scores and complete data on epigenetic clock measures
(continued)

All Women Men

Trail-Making Test, part A
(time to completion in seconds)

Visit 1 39.228 ± 2.072 (197) 36.639 ± 2.524 (95) 41.715 ± 3.301 (102)

Visit 2 52.17 ± 7.379 (173) 47.908 ± 11.756 (86) 56.438 ± 8.956 (87)

p (visit 2—visit 1) 0.092 0.348 0.123

Trail-Making Test, part B
(time to completion in seconds)

Visit 1 167.051 ± 17.836 (195) 172.495 ± 25.896 (94) 161.803 ± 24.757 (101)

Visit 2 171.570 ± 21.489 (173) 149.007 ± 18.491 (86) 194.166 ± 37.175 (87)

p (visit 2—visit 1) 0.871 0.460 0.468

Values are XXXXXXX (n).
a p < 0.05 for null hypothesis of no difference in means of cognitive test scores by sex (referent category: women) within each visit. Wald test from svy:reg
command.
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Table 3 Cognitive performance test scores by epigenetic clock measures (in years), stratified by sex, for Healthy Aging in
Neighborhoods of Diversity across the Life Span participants >50.0 years of age at baseline with complete and
reliable baseline or follow-up cognitive scores: mixed-effects regression modelsa

All Women Men

Benton Visual Retention Test (# incorrect) (n = 154; k = 1.8) (n = 72; k = 1.9) (n = 82; k = 1.8)

Model 1

EpiClock1 −0.048 ± 0.084 −0.045 ± 0.126 −0.045 ± 0.104

EpiClock1 × time +0.015 ± 0.018 −0.009 ± 0.028 +0.002 ± 0.022

Model 2

EpiClock2 −0.069 ± 0.087 −0.034 ± 0.128 −0.085 ± 0.108

EpiClock2 × time +0.006 ± 0.019 −0.015 ± 0.029 −0.010 ± 0.022

Model 3

EpiClock3 +0.006 ± 0.067 −0.025 ± 0.098 +0.006 ± 0.089

EpiClock3 × time +0.036 ± 0.015b +0.012 ± 0.023 +0.051 ± 0.018b,c

Trail-Making Test, part A
(time to completion, in seconds)

(n = 153; k = 1.8) (n = 72; k = 1.8) (n = 81; k = 1.8)

Model 1

EpiClock1 +0.179 ± 0.291 +0.255 ± 0.420 +0.224 ± 0.337

EpiClock1 × time −0.021 ± 0.056 −0.042 ± 0.063 −0.022 ± 0.1000

Model 2

EpiClock2 +0.033 ± 0.299 +0.162 ± 0.428 +0.151 ± 0.348

EpiClock2 × time −0.039 ± 0.057 −0.040 ± 0.065 −0.062 ± 0.099

Model 3

EpiClock3 +0.331 ± 0.234 +0.191 ± 0.362 +0.185 ± 0.294

EpiClock3 × time +0.055 ± 0.045 −0.060 ± 0.115 +0.219 ± 0.080b,c

Trail-Making Test, part B (time to completion, in seconds) (n = 150; k = 1.8) (n = 70; k = 1.8) (n = 80; k = 1.7)

Model 1

EpiClock1 −0.027 ± 2.419 −5.572 ± 3.331 +5.127 ± 3.016

EpiClock1 × time +0.698 ± 0.468 +0.197 ± 0.435 +0.253 ± 0.800

Model 2

EpiClock2 −0.697 ± 2.481 −6.558 ± 3.366d +5.648 ± 3.108d

EpiClock2 × time +0.786 ± 0.473 +0.446 ± 0.447 +0.120 ± 0.811

Model 3

EpiClock3 +2.064 ± 1.953 −1.216 ± 2.643 +2.955 ± 2.681

EpiClock3 × time +0.410 ± 0.386 −0.373 ± 0.342 +0.173 ± 0.686

k = Number of observations/participant.
a Models were controlled for sociodemographic factors, namely age (centered at 50.0 years), sex, race, poverty status, education,marital status, literacy (Wide
Range Achievement Test score centered at 40), employment status, and the inversemills ratio. Additional covariates were included, namely current smoking
status, current drug use, body mass index (centered at 30), Center for Epidemiologic Studies–Depression total score (centered at 15), HEI-2010 (centered at
40), self-reported diabetes, hypertension, high cholesterol, cardiovascular disease, inflammatory conditions, and nonsteroidal anti-inflammatory drug use.
All covariates were interactedwith time. All inversemills ratios were centered at 0. Note that only cognitive tests with at least one keymeasurewith significant
findings are presented, for simplicity.
b p < 0.05 for null hypothesis that γ = 0.
c p < 0.009 for null hypothesis that γ = 0 for interaction between epigenetic clock and time.
d p < 0.05 for null hypothesis of no difference by sex, based on 2-way and 3-way interaction terms with epigenetic clock and time.
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Another larger cohort study examined both cross-sectional
and longitudinal associations (6-year follow-up) between an
epigenetic clock using the Horvath algorithm and cognitive
fitness, using a composite measure of 6 nonverbal tests from
the Wechsler Adult Intelligence Scale–3.14 The authors
found that higher DNAm age acceleration was linked to
poorer cognitive performance at one point in time, without
predicting rate of cognitive decline.14 Using epigenetic
clocks that utilized both Horvath and Hannum et al. algo-
rithms, a longitudinal study of 486 middle-aged mono-
zygotic twins found that chronological age and not biological
age could predict cognitive abilities.18 This result is consis-
tent with ours, given that we have not detected an associa-
tion between epigenetic clocks 1 or 2 (using Horvath
algorithm) and cognitive decline. Similarly, a large study of
Scottish adults (n = 5,100) examined both of these clocks in
relation to modifiable risk factors of AD and found that the

EEAA (i.e., Hannum et al. algorithm) was associated cross-
sectionally with lower education and a measure of socio-
economic deprivation, higher blood pressure, higher BMI,
and more pack-years of cigarette smoking. In addition to its
association with higher BMI and smoking, IEAA was linked
with a higher atherogenicity as measured by total:high-
density lipoprotein cholesterol ratio.17 Moreover, a recent
meta-analysis of epigenome-wide association studies using
blood DNAm (n = 6,809 healthy, older adults, 11 cohorts, 7
cognitive tests; white and AA), found that after multiple
covariate adjustment and correction for multiple testing,
performance on the MMSE was linked to cg12507869 (lo-
cated on chromosome 12), while phonemic fluency was
associated with cg12507869 (INPP5A gene located on
chromosome 10), indicating the significant role of DNAm in
cognitive function. While the methylation levels of both
CpGs in blood were associated with DNAm levels in the

Figure 2 Predictive margins for Benton Visual Retention Test (BVRT) by epigenetic clock 3 in male participants: mixed-
effects regression model

Epigenetic clock 3: extrinsic epigenetic age acceleration uses
the Hannum et al. algorithm and combines epigenetic age
acceleration with white blood cell proportion changes
reflecting immunosenescence. Model 3 for BVRT (# incorrect),
among men, table 3. 1 SD EpiClock3 ;6.2 years.

Figure 3 Predictive margins for Trail-Making Test (TMT), part A, by epigenetic clock 3 in male participants: mixed-effects
regression model

Epigenetic clock 3: extrinsic epigenetic age acceleration uses
the Hannum et al. algorithm and combines epigenetic age
acceleration with white blood cell proportion changes
reflecting immunosenescence. Model 3 for TMT, part A (time
to completion, in seconds), among men, table 3. 1 SD Epi-
Clock3 ;6.2 years.
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brain, specifically within the ventral temporal cortex, neither
was related to longitudinal changes in white matter brain
MRI measures. It was thus concluded that most of variation
in cognitive ability is ascribed to environmental factors.15

Finally, among 964 individuals followed from birth to mid-
life, 11 markers of biological aging were measured, including
telomeres, epigenetic clock, and biomarker-composite
quantifications.1 Given their poor intercorrelation, none of
the measures of biological aging was strongly associated with
health span–related characteristics (i.e., balance, grip
strength, motor coordination, physical limitations, cognitive
decline, self-rated health, and facial aging).1 More specifi-
cally, however, The 71–CpG epigenetic clock and biomarker
composites were consistently related to these aging-related
outcomes, including cognitive function and decline at age
38, based on an intelligence quotient score and its change
since childhood. However, effect sizes were modest.1 This is
in line with our findings, specifically with respect to the
Hannum et al. algorithm and among men.

Several forms of epigenetic modification vary during the aging
process. These variations, collectively termed epigenetic drift,
can negatively influence gene expression in the brain, potentially
mediating cognitive aging and neurodegeneration.3 Specific
alternations in the epigenetic modifications can affect the ex-
pression of certain genes that are important for memory for-
mation.48 Animal studies of learning and memory deficits
indicated that dynamic methylation changes occur at various
loci linked with synaptic plasticity and cognition, which include
BDNF, protein phosphatase 1 (a memory suppressor), BDNF,
and reelin (both memory promoters).3 Therefore, altered
DNAm due to aging or as a results of environmental exposure
could affect cognitive function. De novo and maintenance
DNAm are mediated by DNA methyltransferases (DNMTs):
DNMT1, in cooperation with UHRF1, is involved in mainte-
nance methylation (copies preexisting methyl marks), whereas
DNMT3A and DNMT3B catalyze de novo methylation at the
developmental or other stages. Demethylation is catalyzed by
several enzymes, including 10–11 translocation family enzymes
(TET1, TET2, and TET3).49 Expression changes in these
enzymes or gene mutations can result in DNAm loss, which has
been linked to tissue aging and cognitive deficits in mice.10 Our
main findings indicate a role played by immunosenescence in
cognitive decline, given that only epigenetic clock 3 included
immunosenescence as part of the measure (unlike epigenetic
clocks 1 and 2). Aging of natural killer (NK) cells resulting in
changes in their compartment may contribute to the lower
capacity of elderly individuals to fight against pathogens and
tumors. In AD, despite the fact that NK cell frequency is not
altered, NK cells tend to have an exaggerated response to
cytokines, thus dysregulating signaling pathways that lead to
altered behaviors linked to AD.50 This finding, however, was
restricted to men in our sample, suggesting that immunose-
nescence may not be an equally important factor in women, as
implicated in a recent study.51 In that latter study, women older
than 70 years exhibited a higher immature CD56 (bright) NK
cells to mature CD56 (dim) NK cells ratio compared to their

male counterparts.51 Similarly, mature NK cells among women
showed robust cytotoxic granule responses to K562 leukemia
cells and interferon-γ responses to NKp46 crosslinking that was
less shown inmen.51Moreover, femaleNK cells producedMIP-
1β to a greater extent than male NK counterparts in response to
various stimuli. Thus, it was concluded that sex can influence
NK cell activity in older adults. Nevertheless, more studies are
needed to replicate our findings and subsequently uncover
mechanisms behind those differences.51 It is also worth noting
that in our study, 2 of 3 epigenetic clocks indicated accelerated
aging amongmen, including epigenetic clock 3, as was shown in
at least one previous study.20 This accelerated aging that
involves immunosenescence in men may be driving cognitive
aging to a much greater extent than in women.

Our study has several notable strengths including having an
adequately sized sample with balanced baseline character-
istics, a longitudinal study design in order to ascertain tem-
porality of relationships, and the use of cognitive tests
spanning multiple cognitive domains. We used mixed-effects
linear regression adjusted for potential confounders that
considered sample selectivity.

Nonetheless, our study is not without limitations; elements of
our findings should be interpreted with caution. Despite
covariate adjustment, residual confounding may persist, par-
ticularly with regards to other socioeconomic variables not
measured by poverty, education, and literacy. Only 2 time
points were available for the cognitive outcomes of interest.
Although we found statistically significant results among men,
this could be due to random variations in cognitive perfor-
mance rather than significant over-time decline. Again, studies
with more than 2 repeated measures on outcome variables
would help resolve this concern. Moreover, although the ef-
fect sizes detected in our 2 main findings were large as
depicted in the predictive margins plots, absolute decline on
these tests was smaller, likely due to our start point of middle-
aged individuals (>50.0 years). Given the larger sample size
among men, a relatively less powered analysis among women
could explain sex differences in the association between epi-
genetic clock 3 and decline on Trails A and BVRT tests over
time. It is worth noting that variability in this epigenetic clock
was comparable between sexes (SD 9.17 amongmen and 9.55
among women). Similarly, variability in Trails A and BVRT
were also comparable across sexes, although men experienced
greater decline in BVRT over time compared to women,
which may impart a greater statistical power to observe dif-
ferences by epigenetic clock 3, all else kept equal. Finally,
given the limited sample size for participants and observa-
tions, future studies are needed to replicate our preliminary
findings, possibly by undertaking a meta-analysis.

Our study findings show that EAA related to immunose-
nescence was associated with a faster rate of cognitive decline
among men, specifically within domains of attention, process-
ing speed, and visual memory. These results highlight the role
of immune function decline on cognitive decline. Interventions

Neurology.org/N Neurology | Volume 94, Number 6 | February 11, 2020 e623

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


to slow epigenetic changes related to immunosenescence may
also slow the rate of cognitive decline, particularly among
middle-aged men. Further longitudinal studies would be useful
to expand on and corroborate our findings.
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