
88  www.e-neurospine.org

Review Article
Corresponding Author
Fabrizio Russo 

 https://orcid.org/0000-0002-8566-8952

Department of Orthopaedic and Trauma 
Surgery, Campus Bio-Medico University 
of Rome, Via Alvaro del Portillo 21, 00128; 
Rome, Italy
E-mail: fabrizio.russo@unicampus.it

Received: February 2, 2020 
Revised: February 22, 2020 
Accepted: February 24, 2020

Robotic Spine Surgery and Augmented 
Reality Systems: A State of the Art
Gianluca Vadalà, Sergio De Salvatore, Luca Ambrosio, Fabrizio Russo,  
Rocco Papalia, Vincenzo Denaro

Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy

Instrumented spine procedures have been performed for decades to treat a wide variety of 
spinal disorders. New technologies have been employed to obtain a high degree of preci-
sion, to minimize risks of damage to neurovascular structures and to diminish harmful ex-
posure of patients and the operative team to ionizing radiations. Robotic spine surgery com-
prehends 3 major categories: telesurgical robotic systems, robotic-assisted navigation (RAN) 
and virtual augmented reality (AR) systems, including AR and virtual reality. Telesurgical 
systems encompass devices that can be operated from a remote command station, allowing 
to perform surgery via instruments being manipulated by the robot. On the other hand, 
RAN technologies are characterized by the robotic guidance of surgeon-operated instru-
ments based on real-time imaging. Virtual AR systems are able to show images directly on 
special visors and screens allowing the surgeon to visualize information about the patient 
and the procedure (i.e., anatomical landmarks, screw direction and inclination, distance 
from neurological and vascular structures etc.). The aim of this review is to focus on the 
current state of the art of robotics and AR in spine surgery and perspectives of these emerg-
ing technologies that hold promises for future applications.

Keywords: Robotic spine surgery, Augmented reality, Computer-assisted surgery, Naviga-
tion, Telesurgery 

INTRODUCTION

Instrumented spine procedures have been performed for many 
decades to treat a variety of spinal disorders. In the last decade, 
the volume of elective instrumented lumbar spinal fusion pro-
cedures has steeply increased among patients aged over 65.1,2 
Such increment is mainly motivated by the higher demand of 
instrumented spine surgery for lumbar stenosis and spondylo-
listhesis, due to both the aging population and a lower thresh-
old to operate on older patients.3-6

For this reason, a great consensus to find new technologies to 
perform lumbar spinal fusion emerged over the last decades.7,8

Indeed, spine surgery has been revolutionized by technology 
in the past 20 years. Innovation has been mainly focused on mini-
mally invasive spine surgery (MISS).9,10 MISS was principally 
conceived for the need to perform invasive procedures with a 
high degree of precision while minimizing the risk of damaging 

contiguous neurovascular structures. In addition, further im-
plementations have facilitated the surgical access to deep struc-
tures, favoring operating room dynamics and logistics and di-
minishing harmful exposure to ionizing radiations.11

Robotic spine surgery comprehends 3 different categories12: 
telesurgical robotic systems, robotic-assisted navigation (RAN) 
and virtual augmented reality (AR) systems.

Telesurgical robotic systems include devices that can be oper-
ated from a remote command station utilizing a hand-held con-
trol, allowing to perform surgery via instruments directly ma-
nipulated by the robot. The main advantage of these systems is 
to perform surgery on the patient being far from the operating 
table, even remotely. The first telesurgical robotic system intro-
duced on the market was the da Vinci (Intuitive Surgical Inc., 
Sunnyvale, CA, USA).13

RAN technologies employ the robotic guidance of surgeon-
operated instruments utilizing pre- and/or intraoperative imag-
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ing in real time. However, no robotic control over instrumenta-
tion is needed. RAN has been originally used in spine surgery 
for the placement of lumbar pedicle screws in spinal fusion.14 
Still, pedicle screw insertion is not the only field of application. 
Indeed, RAN has been proved to be a safe technique for spinal 
decompression, oncologic spine surgery, and MISS including 
cage positioning.9,15-18

AR is a new promising technology consisting in dedicated soft-
ware and hardware capable of showing images directly onto spe-
cial lenses or monitors, hence allowing the surgeon to visualize 
key information about the patient and the procedure in real time.

This review aims to describe the current state of the art of ro-
botics and AR systems in spine surgery. The main systems al-
ready available and under development are summarized in the 
context of clinical applications and published results.

TELESURGICAL ROBOTIC SYSTEMS

1. da Vinci
Initially approved by the U.S. Food and Drug Administration 

(FDA) for laparoscopic surgery, the da Vinci (Fig. 1) has been 
subsequently utilized in different fields such as cardiac surgery, 
thoracic surgery, and urology. The da Vinci system allows the 
surgeon to operate from a control station, far from the operato-
ry table. The system allows the surgeon to have a 3-dimensional 
vision of the operatory field and can also give a magnification 
of up to 10x. Other advantages are tremor filtering, limitless 
wrist range of motion and improved surgeon ergonomics. With 
a stable internet connection, it is even possible to perform an 
operation remotely without the physical presence of the sur-
geon in the operating room.19 In spine surgery, the da Vinci has 
been used for laparoscopic anterior lumbar interbody fusion in 
2 small reports with good results.20,21 Using the robot, the visu-

alization of the disc space and surrounding structures was con-
sidered superior compared to the traditional laparoscopic ap-
proach.21 The main limitations of the da Vinci include the high 
costs of the surgical setup and the steep learning curve leading 
to an increase of operative time. Moreover, the da Vinci system 
is not cleared by the FDA for spinal surgery and therefore only 
a few cases and evidences are available.

ROBOTIC-ASSISTED NAVIGATION 
SYSTEMS

1. SpineAssist
SpineAssist (Mazor Robotics Inc., Caesarea, Israel) was de-

veloped and tested in 200422 and became the first FDA-approved 
robot for spine surgery. The system needed to be fixed to the 
spinous processes of the patient or attached to a frame triangu-
lated by percutaneously placed guidewires for MISS. The sys-
tem setup relied on a preoperative computer tomography (CT) 
scan to perform the operative planning. Subsequently, the robot 
evaluated the position of the pedicles and indicated the right 
trajectories of the instruments, such as wires or pedicle screws. 
The procedure was possible since the SpineAssist merged the 
preoperative CT scan with intraoperative fluoroscopy. The pre-
cision of the SpineAssist was very high: with its 6 degrees of 
freedom, it ensured less than 1-mm deviation of the implant 
from the preoperative template, resulting in 98% of correct screw 
placement.23 Additionally, the time of exposure to ionizing ra-
diations was decreased up to 50% compared to free-hand (FH) 
procedures.24 However, the main limitation of this system in-
cluded the necessity to employ pins and needles fixed to specif-
ic anatomical landmarks. Skidding and other dislocation of the 
cannula was also reported.25

2. Renaissance
Renaissance was the second-generation robotic system for 

spine surgery developed by Mazor Robotics Inc. (Caesarea, Is-
rael) and released in 2011 to replace SpineAssist. Apart from 
being smaller and lighter, the Renaissance system was improved 
with better ergonomics, enhanced sensitivity and a 10 times 
faster software processing with upgraded image recognition al-
gorithms.26 After loading the preoperative CT scan of the pa-
tient onto the platform, the system built up a 3-dimensional 
(3D) reconstruction of the spine with the possibility to select 
the desired vertebral segments, type of intervention, and char-
acteristics of the instrumentation. Following the choice between 
percutaneous or open surgical access, fluoroscopic images were 

Fig. 1. The da Vinci telesurgical system (Intuitive Surgical, Sun
nyvale, CA, USA). Image courtesy of Intuitive Surgical Inc.
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required in order to be matched with preoperative CT. Subse-
quently, based on acquired data, the computer determined the 
correct access point and the robot proceeded with its localiza-
tion. Besides transpedicular screw placement, the Renaissance 
system was utilized for spine tumor biopsies and vertebro-ky-
phoplasties. Overall, the robot demonstrated to be reliable and 
accurate with a 98.9% rate of successful screw placement.27 In a 
small randomized controlled trial, Hyun et al.28 compared MISS 
transpedicular screw placement performed with the classical 
fluoroscopy-guided technique versus the placement performed 
through Renaissance. The use of robotic guidance resulted in a 
100% accurate screw placement, while 2 pedicle breaches and 
one facet violation occurred in the fluoroscopy-guided group. 
Furthermore, radiation exposure and length of hospital stay 
were significantly reduced in the robotic group. However, some 
authors reported the risk of screw misplacement due to “skiv-
ing” of the drill tip or trocar along the side of the facet,29 an is-
sue already noticed with the SpineAssist.

3. Mazor X
Mazor X was introduced in 2016 and it is the latest robotic 

system for spine surgery from Mazor Robotics Inc. (Caesarea, 
Israel). This new model is an upgrade of the previous versions, 
assembled after the experience acquired by more than 1,000 
procedures performed with the SpineAssist and Renaissance. 
The Mazor X (Fig. 2) utilizes a fully automatic robotic arm which 
obviates the need for the patient-mounted track utilized by pre-
vious models.30 Mazor X allows for preoperative or intraopera-
tive planning and robotic execution of multiple trajectories. The 
robot is anchored to the operating bed and connected to the 
patient’s skeletal anatomy with a rigidly affix that is less invasive 
than the previous ones. There is no rail where the robot can move, 
but an external workstation functioning as a robotic arm. With 
an innovative imaging cross-modality registration process, each 
vertebral body is registered independently. The robotic guid-
ance system analyses and pairs images from different modali-
ties, such as matching a preoperative CT with intraoperative 
fluoroscopy or 3D surgical imaging, including images captured 
at different times and on different anatomical planes. A new 
feature introduced in this system is a 3D real-time camera able 
to perform a volumetric assessment of the surgical field so as to 
self-detect its location and avoid collisions with other compo-
nents of the system. Moreover, the robot is able to process im-
ages acquired through preoperative CT or other imaging mo-
dalities in order to segment out individual vertebral bodies, pro-
viding 3D axial, coronal, and sagittal slice data to assist the sur-

gical planning.31 Recent reports have confirmed the accuracy of 
the system, with a 98.7% rate of grade I (i.e., no breach or devia-
tion) screw placement and a mean time of screw insertion of 3.6 
minutes, which reduced both operative time and radiation ex-
posure. In addition, authors reported a favorable learning curve 
compared to older versions of the system.32

4. Mazor X Stealth Edition
Recently, Mazor Robotics Inc. has been acquired by Medtron-

ic (Minneapolis, MN, USA) and the Mazor X system has been 
implemented with Medtronic StealthStation technology. The 
upgraded Mazor X Stealth Edition comes with a surgical navi-
gation system capable of interfacing with multiple imaging mo-
dalities, including CT, magnetic resonance imaging, C-arms, 
and O-arms. This allows a 3D reconstruction of the patient’s 
spinal anatomy, which can be explored live and on different lay-
ers on a touch screen. Based on preoperative and intraoperative 
imaging, together with optical and electromagnetic sensors, 
surgical instruments are tracked in real time in respect of ana-
tomical landmarks. Furthermore, surgical trajectories can be 
simulated and stored prior or during surgery.33 As the Mazor X 
Stealth Edition was released only at the beginning of 2019, no 
study is currently available regarding its application.

Fig. 2. Transpedicular screw drilling using the Mazor X (Mazor 
Robotics Inc., Caesarea, Israel) robotic system.
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5. ExcelsiusGPS
ExcelsiusGPS (Globus Medical, Inc., Audubon, PA, USA) is a 

robotic system approved by FDA and CE-marked for spine sur-
gery (Fig. 3). Instruments are positioned and screws are placed 
under navigation through the guidance of a rigid robotic arm 
that precisely aligns to the pedicles and the preplanned direc-
tion. ExcelsiusGPS relies on the use of intraoperative CT or the 
combination of preoperative CT images and intraoperative 2-di-
mensional (2D) or 3D images, which are obtained with stereo-
tactic arrays placed bilaterally at the posterior superior iliac spines. 
The real core of the system is the software that provides a real-
time visualization of instrument positioning and screw place-
ment in respect to patient’s anatomy. Moreover, the system is 
equipped with sensors able to detect drill skiving or sliding of 
the reference frame, as well as to automatically compensate for 
patient movements.34 ExcelsiusGPS was validated in a cadaveric 
study demonstrating a 100% accuracy of screw placement with 
no breach > 2 mm, with reduced screw insertion time and ra-
diation exposure compared to the conventional approaches.35 
Huntsman et al.36 used the robot to place pedicle screws in 100 
cases and found that successful screw placement occurred with 
a rate of 99% and a 0% chance of reintervention. Similarly, God
zik et al.37 showed in their study an accuracy of 96.6% in the 

placement of 116 screws on 28 patients. Another recent investi-
gation conducted by Benech et al.38 reported the results on 53 
patients undergoing spine surgery with pedicle and cortical 
screws placement using the ExcelsiusGPS. According Gertz-
bein and Robbins classification system based on CT imaging, 
they found that 98.3% were graded A (screw completely in the 
pedicle) or B (breach< 2 mm), 1.0% screws were graded C (bre
ach< 4 mm), and only 0.7% screws were graded D (breach< 6 
mm). In a similar study from Vardiman et al,39 348 screws placed 
with navigated robotic assistance resulted in a high level of ac-
curacy (97.7% grades A and B).

6. ROSA Spine
ROSA Spine (Medtech, Montpellier, France) is a freestanding 

robotic assistant composed of an arm and a navigation camera 
with a floor-flexible base which does not need to be attached to 
the patient. Similar to Mazor X, it is equipped with a stereosco
pic camera to track patient movements and readjust robot posi-
tion in real time, providing an accurate and safe pedicle screw 
placement and avoiding the risk of neurological injuries.40 A 
preoperative CT is needed for the robot setup. Subsequently, af-
ter positioning a reference pin in the iliac wing and a fiducial 
box held by the robotic arm, images are acquired by a 3D or a 
2D intraoperative imaging systems thus allowing the ROSA to 
build up a 3D reconstruction of patient’s anatomy. It is then pos-
sible to merge preoperative and intraoperative scans in order to 
plan the surgical trajectory, along which the robot automatically 
aligns. A guide-tube needle is placed at the posterior aspect of 
the vertebral body, serving as a reference for the insertion of a 
wire which guides the placement of transpedicular screws.41 
Reported results are still limited but very promising. Indeed, in 
a perspective case-matched study, ROSA reached an accuracy 
of 97% in screw placement compared with an accuracy of 92% 
in the FH control group.42

7. TianJi
Differently from other robotic systems, TianJi (Beijing Tinavi 

Medical Technology Co., Beijing, China) does not need bone 
fixation. It is built with an image-navigated robotic positioning 
platform including a robotic arm, an optical tracking system, 
and a robotic workstation. During the procedure, images ob-
tained intraoperatively by a C‐arm are uploaded into the robot-
ic workstation and a 3D reconstruction is created. Subsequent-
ly, the planning of the screw orientation is directly performed 
on the workstation by the surgeon and the robotic arm with a 
guidance cannula automatically moves to the planned position. 

Fig. 3. The ExcelsiusGPS (Globus Medical, Inc., Audubon, 
PA, USA) surgical system allows to guide pedicle screw inser-
tion utilizing a patient-mounted reference array.
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In order to check for optimal pin trajectories, a fluoroscopic 
rescan by C‐arm is acquired and followed by definitive screw 
placement. TianJi was used in both oblique lumbar interbody 
fusion (OLIF) and transforaminal lumbar interbody fusion sur-
geries. Wu et al.43 performed OLIF using this system on 10 pa-
tients with good results, with 71% of the screws being graded A 
and 25% graded B according to Gertzbein and Robbins classifi-
cation, concluding that the robot granted a high level of accura-
cy for screw insertions and a high level of safety. Moreover, the 
TianJi system was successfully utilized for transpedicular screw 
placement at the thoracolumbar region in a prospective rando
mized controlled trial, which showed that 95.3% of the screws 
were perfectly positioned (grade A), 3.4% were graded B and 
the remaining few cases C and D according to Gertzbein and 
Robbins classification. In addition, the use of the robot resulted 
in reduced blood loss and surgeon exposure to ionizing radia-
tions when compared to the conventional FH techniques.44 Fur-
thermore, the TianJi was used to perform screw internal fixa-
tion in the upper cervical spine (C1 and C2) with excellent re-
sults.45,46 In a randomized controlled study, 98.3% of the screws 
were graded A with minimal deviation in respect to the pre-
planned trajectory.47

8. Cirq
Brainlab (Munich, Germany) has recently released a passive 

robotic arm provided with 7 degrees of freedom that can be 
implemented with a specific module for spine surgery (Fig. 4). 
The system works together with the manufacturer’s major navi-

gation systems and it is provided with a rigid affix that is safely 
anchored to the bone in order to allow passive precise position-
ing and alignment along a preplanned drilling trajectory. More-
over, an automatic robotic alignment module with a trackable 
trocar for drilling preparation will implement the system later 
this year. The use of Cirq has been successfully reported in a case 
of L3–4 instrumentation with percutaneous pedicle screws.48

AUGMENTED REALITY IN SPINE 
SURGERY

In the last decade, numerous AR systems have been described 
in the literature regarding the treatment of degenerative cervi-
cal, thoracic and lumbar spine diseases, vertebroplasty, kypho-
plasty, spine deformities, and biopsies.49 AR is based on com-
puter-generated data that becomes superimposed on the real 
world through the projection of digital images on special screens 
or wearable devices, thus being able to “augment” the quantity 
of information that can be inferred by the sole surgeon’s eyes. 
For example, AR may assist surgeons in transpedicular screw 
placement by visualizing the patient anatomy and preplanned 
drilling trajectories on a visor in real time.49,50 In 2 cadaveric 
studies, Elmi-Terander et al.51 utilized a hybrid system involv-
ing both navigation and AR and thus called augmented reality 
surgical navigation (ARSN). After acquiring a 3D CT scan, a 
3D reconstruction of the spine with automatic detection the 
pedicles allowed the planning of screw insertion. Subsequently, 
the surgical field recorded by 4 cameras with different angula-
tions was shown on a high-definition monitor with the super-
imposition of 2D and 3D images of the vertebral segments to-
gether with the drilling trajectory.52 The studies showed that 
ARSN resulted in a higher accuracy of thoracic pedicle screw 
placement compared to the FH technique without the need for 
intraoperative fluoroscopy or prior surgeon training.51 More-
over, the system proved to be efficacious even when adopting a 
minimally invasive approach with the percutaneous placement 
of Jamshidi needles to determine screw entry point and orien-
tation.52 The use of ARSN was further utilized to automatically 
track instrument position in order to provide the surgeon with 
a real-time feedback of the instrument location. Such imple-
mentation led to an improved identification of the bone screw 
entry point and angulation, with a 97.4%–100% accuracy of the 
virtual screw placement as extrapolated from positional data.53 
Given the promising results, the same authors recently pub-
lished the outcomes of a small prospective cohort study on 20 
patients undergoing pedicle screw positioning with ARSN. In 

Fig. 4. Cirq (Brainlab, Munich, Germany) robotic arm used 
for pedicle screw drilling in a case of L5–S1 grade II isthmic 
spondylolisthesis.



Robotic Spine Surgery and Augmented Reality SystemsVadalà G, et al.

https://doi.org/10.14245/ns.2040060.030 � www.e-neurospine.org   93

this study, 94.1% of the screws were perfectly placed in the ped-
icles, with a mean screw insertion time of 5.2± 4.1 minutes.54 
Furthermore, the mean radiation exposure of the surgical staff 
was significantly lower due to the absence of intraoperative flu-
oroscopic imaging.55

The same system was recently utilized in a pilot randomized 
clinical trial to test AR during percutaneous vertebroplasty. In 
this study, the virtual trajectory for the injection was superim-
posed to live images to guide vertebroplasty trocar placement. 
Such approach demonstrated to be technically feasible and ac-
curate. Time for trocar deployment was longer compared to the 
traditional fluoroscopic approach but the radiation exposure 
was significantly lower in the experimental group.56

Ma et al.57 presented a unique AR navigation system equipped 
with ultrasound-assisted registration for transpedicular screw 
placement. The system was tested on both an agar phantom and 
sheep lumbosacral specimen: although using Kirschner wires, 
the system allowed to provide an acceptable accuracy with the 
advantage of a reduced radiation exposure.

Also Google (Mountain View, CA, USA) invested in AR with 
Google Glass: a miniaturized computer, projector, and prism 
screen, combined in a pair of glasses. The eyeglasses can project 
any image, such as navigation or neuromonitoring, directly in 
front of the surgeon’s eyes. Yoon et al.58 used Google Glass dur-
ing pedicle screw placement in a clinical study on 10 patients. 
Neuronavigation images were directly visualized on the head-
up display and resulted in slightly reduced screw placement 
times. Google Glass was also successfully used for 3D visualiza-
tion of anatomical landmarks in sacroiliac joint screw placement 
in a cadaveric study.59

HoloLens (Microsoft Corp., Redmond, WA, USA) is a head-
set able to project realistic virtual experiences onto the surround-
ing environment in association to enhanced information on real 
objects: such technology is referred as mixed reality. Indeed, the 
visor can show high-quality 3D images generated by a hologra
phic computer in the visual field of the surgeon.60 Agten et al.61 
tested the HoloLens on a sawbone spine phantom embedded in 
hardened opaque agar for lumbar facet joint injections. After 
acquiring a CT scan of the phantom, a 3D reconstruction was 
generated and loaded onto the headset. The model was then 
projected as a hologram in the surgeon’s visual field, who pro-
ceeded with needle insertion. Results showed that 97.5% of nee-
dle placements were successful and the procedure itself demon-
strated to be significantly faster if compared to CT-guided in-
jections. A similar experimental setup was utilized for lumbar 
pedicle screw placement simulated by Kirschner wires inser-

tion. Visualization of the spine hologram through the HoloLens 
resulted in > 90% correct screw placement with faster insertion 
times62-64 and no significant difference in accuracy between AR-
navigated screw placement and conventional navigation.65 Com-
parable outcomes were reported in a cadaveric study conducted 
by Urakov et al.66 comparing the accuracy of screw placement 
with either AR or traditional fluoroscopic guidance. While no 
major breaches occurred under radiological assistance, the use 
of HoloLens was accompanied by 3 major medial breaches and 
3 major inferior breaches out of 19 screws, suggesting that the 
system is promising but still needs considerable improvements.66 
Furthermore, HoloLens has also been tested for assisting rod 
bending during spinal instrumentation. After transpedicular 
screw placement in a sawbone spine model, a custom-made 
pointing device has been sequentially positioned on the head of 
each screw. After all screws were captured, each point was con-
nected by a line, defining a rod template of the appropriate length 
and curvature in form of a 3D hologram that could be freely 
moved in the surrounding space. The use of AR resulted in sig-
nificantly shorter rod bending time and accuracy of rod length 
compared to the conventional technique without AR.67

The first and only AR headset that has received an FDA clear-
ance for spine surgery is xvision (Augmedics, Arlington Heights, 
IL, USA). This wireless system is equipped with near-eye dis-
plays showing 3D navigation data including patient’s anatomy 
and instrument position directly onto the surgeon’s retina (Fig. 
5). In a proof-of-concept cadaveric study, the use of xvision re-
sulted in 98.9% percutaneous screw placement accuracy and 
reduced the need of continuous shift from the operating field to 
separate screens to visualize procedure-related key information.68

The employment of AR has also found a possible application 
in microscope-based MISS. In fact, by using the heads-up dis-
plays of the operating microscope, a 3D representation of verte-
brae and implants from preoperative imaging was superimposed 
to the microscope video and implemented with navigation in 2 
recent studies on spinal tumors69 and degenerative spine dis-
ease.70 This approach greatly facilitated surgery due to intuitive 
understanding of the 3D anatomy and additionally yielded to a 
70% reduction of effective dose radiation.69 In addition, Ume-
bayashi et al.71 recently reported the use of AR in microscopic 
transvertebral anterior cervical foraminotomy and posterior 
cervical laminoforaminotomy: 2 minimally invasive although 
complex techniques requesting accurate planning and great 
surgical skills. During navigated surgery, O-arm imaging was 
used to build a 3D model of the patient’s vertebrae and the key-
hole tunnel was marked and subsequently transferred to the 
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microscope and merged with the live view, thus greatly facilitat-
ing the procedure. A similar system was also employed in a case 
of congenital vertebral deformity to accurately define resection 
volumes and osteotomy planes, in order to acquire a higher de-
gree of precision and surgical safety.72

Another device used in spine surgery is MicroOptical (Micro
Optical Corp., Westwood, MA, USA): a head-up display used 
for visualizing intraoperative fluoroscopy during open reduc-
tion and internal fracture fixations and spinal pedicle screw place-
ment in a study of 50 cases. The study demonstrated a reduction 
of surgical time since the surgeon had not to turn away from 
the patient to view the imaging monitor. Moreover, reduction 
of unprotected turn of the body minimized the risk of unwant-
ed fluoroscopy radiation.73

Due to its peculiar features, AR is also being discussed as a 
training tool. ImmersiveTouch (ImmersiveTouch Inc., Chicago, 
IL, USA) is a platform composed of a haptic instrument with 
trigger points and a high-resolution stereoscopic display that 
establish an AR environment in which the virtual patient, the 
virtual instruments and surgeon’s hands are represented. Such 
system has been tested to train fellows and residents in thoracic 
pedicle screw placement. After a practice session with fluoro-

scopic guidance, participants attended a test session without the 
aid of fluoroscopy during which AR-assisted transpedicular 
screw placement was assessed. Results showed a minor failure 
rate and a 15% rate of improvement between the 2 sessions, 
thus demonstrating the efficacy of the simulator.74 In a similar 
training session on percutaneous spinal needle placement with 
the use of ImmersiveTouch, participants showed improvements 
in accuracy and reduction of fluoroscopy exposure after the first 
attempt using the simulator.75

DISCUSSION

In the last decade, several robotic and AR systems for spine 
surgery have been released on the market and tested in numer-
ous clinical studies. Although representing a promising tech-
nology with evident benefits for both patient care and surgical 
performance, such devices still raise several questions regarding 
handling, feasibility, and cost/benefit ratio. Major features, ad-
vantages and disadvantages, and field of application of afore-
mentioned systems are summarized in Table 1.

Probably, the most important advantage of robotic surgery is 
lower radiation exposure, especially for the surgeon. It has been 
demonstrated that spine surgeons present a 40–50 times higher 
radiation exposure compared to other orthopaedic surgeons. 
Fomekong et al.76 proved that the cumulative radiation exposure 
remained below measurable levels with the use of robotic sys-
tems. Similarly, Fan et al.77 reported that the average fluoroscopy 
time for screw placement in RAN was 4.02 ± 1.6 minutes vs. 
8.89± 3.1 using the FH technique. Roser et al.78 found a trend to-
ward decreased radiation time with robotic assistance, whereas 
Ringel et al.25 reported similar intraoperative radiation times be-
tween the robotic-assisted and the FH methods. However, several 
variables, including the type of system, the surgeon’s learning 
curve and the difficulty of the case must be taken into account.79

Moreover, robotic spine surgery gives the possibility to oper-
ate with a lower risk of neurovascular damage if compared to 
FH approaches, thanks to the use of motors and stabilizers.80

As far as the reoperation rate is concerned, Kantelhardt et al.81 
demonstrated that only 1% of robotic procedures (including 
both percutaneous and open approaches) needed revision sur-
gery, compared to the 12.2% reoperation rate showed for con-
ventional procedures. Moreover, the study reported postopera-
tive infections in 2.7% of the patients undergoing robot-guided 
procedures compared to 10.7% in open nonrobotic ones. Fan et 
al.77 showed that under robotic guidance blood loss was also re-
duced (362±120 mL using RAN vs. 557±261 in FH procedures).

Fig. 5. The xvision headset (Augmedics, Arlington Heights, 
IL, USA) utilized to assist percutaneous screw placement in a 
cadaveric human torso. Written consent has been regularly 
obtained for publication.
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Kim et al.82 documented a decrease in time to ambulation af-
ter robotic surgery, with an average of 39.7 hours for FH tech-
nique versus a mean of 36.2 hours using the Renaissance sys-
tem. This was also reflected on the length of stay of patients op-
erated with the use of robotic surgery: in fact, Hyun et al.28 showed 
an average length of stay of 9.4 days for FH procedures vs. 6.8 
days for robotic surgical procedures. Likewise, Fan et al.80 dem-
onstrated a decrease of number in postoperative days from 6.3±  
1.2 in the RAN group vs. 8.9± 1.8 in the FH group.

The accuracy of screw placement has been widely investigat-
ed. In a recent meta-analysis, Yu et al.14 compared 2,062 thorac-
ic and lumbar pedicle screws implanted in 750 patients using 
RAN or FH technique. They found that only 4.6% of RAN screws 
breached > 2 mm from the predicted trajectory compared to 
16% of screws placed by FH techniques. Therefore, significant 
superiority of robotic surgery in accuracy of screw placement 
compared with FH has been extensively demonstrated.83

Despite many studies show the evidence of advantages of ro-

botic surgery in timing, rates of infections and complications, 
there are evidences of the contrary. Indeed, some limitations of 
robotic spine surgery have been described. Regarding operative 
time, there is no uniform consensus. Wagner et al.84 found that 
the mean operatory time was incremented in robotic surgery 
and associated with an increase in clinical complications. Con-
trariwise, in a study by Fan et al.85 no significant differences in 
timing between RAN and FH were reported.

Other complications include hardware or software failure, can-
nula misplacement or skidding of the drilling tip on the pedicle 
surface due to peculiar bone anatomical configurations, a noto-
rious defect encountered with SpineAssist and Renaissance.25,29,86 
The possibility of clinical complications such as hemothorax87 
and pulmonary embolism88 was also reported.

Moreover, another issue with this technology is the demand-
ing learning curve. In fact, this surgery needs a moderate quan-
tity of time to be completely experienced. Schatlo et al.89 report-
ed that robotic spine surgery required almost 25 cases per sur-

Table 1. Summary of main robotic systems for spine surgery including relevant information

System Main features Clinical applications Accuracy Limitations References

da Vinci Telesurgical robotic system remotely operated from 
a command station

ALIF - High cost, steep learning 
curve, not cleared by 
FDA for spine surgery

19-21

Spine
Assist

First navigated robotic system approved for spine 
surgery

Transpedicular screw 
placement

98% Need for rigid bone fixa-
tion, skidding and dis-
location of the cannula

22-25

Renais-
sance

Second version of the SpineAssist Transpedicular screw 
placement 

Tumor biopsies
Vertebro-kyphoplasties

98.9%–
100%

Skiving of the trocar or 
the drill tip

26-29

Mazor X Third upgrade of previous systems. Enhanced  
imaging elaboration, fully automated robotic  
arm and 3D volumetric assay of the surgical field

Transpedicular screw 
placement

TLIF

98.7% Still limited clinical  
evidence available

30-33

Excel-
sius-
GPS 

Able to track instruments in real time, sense can-
nula dislocations and compensate for patient’s 
movements

Transpedicular screw 
placement

96.6%–99% Need for rigid bone  
fixation

34-39

ROSA 
Spine

Robotic arm with a floor-flexible base capable  
of readjust its position in real time and track  
patient’s movements

Transpedicular screw 
placement

96% Need for rigid bone  
fixation

40-42

Tianji Built with a robotic arm and an optical tracking 
system, the robot moves to preplanned position 
without the need for bone fixation

Transpedicular screw 
placement

OLIF
TLIF
Atlantoaxial fixation

96%–98.3% Still limited clinical  
evidence available

43-47

Cirq Robotic arm with 7 degrees of freedom developed 
to work together the manufacturer’s navigation 
system

Transpedicular screw 
placement

- Still limited clinical  
evidence available

48

ALIF, anterior lumbar interbody fusion; FDA, U.S. Food and Drug Administration; 3D, 3-dimensional; TLIF, transforaminal lumbar interbody 
fusion; OLIF, oblique lateral interbody fusion.
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geon to acquire a high degree of accuracy. In the first 10–20 cas-
es there was the necessity of a skilled supervision to avoid mis-
match during the screw placement, due to the risk of inaccura-
cy in inexperienced surgeons.

However, the biggest limitation of robots is the high cost of 
the instruments, which importantly reduces the possibility of a 
wider development of this surgery and consequently the aver-
age knowledge level for the single surgeon.

Thus, upcoming systems should be more competitive on the 
market while easier to approach and set up. Curexo Inc. (Seoul, 
Korea) is releasing CUVIS-spine, a robotic system for transpe-
dicular screw placement able to reconstruct patient’s spinal anat-
omy upon either fluoroscopic 2D images or 3D images acquired 
with an O-arm and to guide screw insertion along preplanned 
trajectories within 1 mm of error range. In addition, real-time 
patient position monitoring can be used to correct the surgery 
plan in real time and can help reduce the radiation exposure for 
both the patient and the medical staff because only 2 or 3 X-ray 
images are needed for operation.90,91

In a recent study, we described a novel robotic drilling system 
equipped with force and position sensors that are able to iden-
tify the specific vertebral bone layers by relying on tissue aver-
age impedance.92,93 In this pilot study, we demonstrated that av-
erage impedance along the drilled tunnel closely correlated with 
bone mineral density calculated in Hounsfield units at the post-
procedural CT scan of the tunnel, thus being predictive of the 
drill tip location without the need of additional radiation expo-
sure (data not published yet).

CONCLUSION

Robotic systems and AR represent promising technologies. 
They have shown evident advantages in spine surgery as far as 
accuracy, radiation exposure, blood loss, hospital stay, and de-
creasing rate of complications are concerned. However, costs 
and learning curve are still too high to be routinely performed 
in all spinal procedures. For this reason, further cost-benefit 
analyses and larger clinical studies are necessary.
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