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Abstract

This study aims to develop and evaluate a new computer-aided diagnosis (CADx) scheme based 

on analysis of global mammographic image features to predict likelihood of cases being 

malignant. An image dataset involving 1,959 cases was retrospectively assembled. Suspicious 

lesions were detected and biopsied in each case. Among them, 737 cases are malignant and 1,222 

are benign. Each case includes four mammograms of craniocaudal and mediolateral oblique view 

of left and right breasts. CADx scheme is applied to pre-process mammograms, generate two 

image maps in frequency domain using discrete cosine transform and fast Fourier transform, 

compute bilateral image feature differences from left and right breasts, and apply a support vector 

machine (SVM) to predict likelihood of the case being malignant. Three sub-groups of image 

features were computed from the original mammograms and two transformation maps. Four 

SVMs using three sub-groups of image features and fusion of all features were trained and tested 

using a 10-fold cross-validation method. The computed areas under receiver operating 

characteristic curves (AUCs) range from 0.85 to 0.91 using image features computed from one of 

three sub-groups, respectively. By fusion of all image features computed in three sub-groups, the 

fourth SVM yields a significantly higher performance with AUC = 0.96±0.01 (p<0.01). This study 

demonstrates feasibility of developing a new global image feature analysis based CADx scheme of 

mammograms with high performance. By avoiding difficulty and possible errors in breast lesion 

segmentation, this new CADx approach is more efficient in development and potentially more 

robust in future application.
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Introduction

Mammography is the only clinically acceptable imaging modality to detect breast cancer in 

current population-based breast cancer screening [1]. Due to the quite low cancer detection 

yield (i.e., detecting 3.6 cancers per 1000 (0.36%) mammography screenings [2]) and higher 

recall rate (i.e., ~10%) in breast cancer screening environment, reading and interpreting 

screening mammograms is difficult and time-consuming for radiologists [3]. To assist 

radiologists more accurately and efficiently reading mammograms and reducing inter-reader 

variability, computer-aided detection (CADe) schemes of mammograms have been 

developed and used in the clinical practice as “a second reader” for the last two decades [4]. 

Although previous observer performance studies reported that using CADe might help 

radiologists detect more cancers that may be previously missed or overlooked by 

radiologists (i.e., [5]), the clinical data analysis studies showed that using CADe increased 

false-positive recalls and reduced radiologists’ performance measured by areas under the 

receiver operating characteristics curves (i.e., [6]). Thus, the specificity of current 

mammographic imaging remains lower in clinical practice. Approximately only one in four 

lesion biopsies are proved to be malignant [7]. The higher false-positive recall rates add 

anxiety with potentially long-term psychosocial consequences [8] and physical harms to 

many cancer-free women who participate in mammography screening due to cumulative x-

ray radiation and unnecessary biopsies [9]. The high false-positive recall rates also associate 

with a high economic burden on the healthcare system [10], Thus, in order to help improve 

efficacy of mammography screening, developing the computer-aided diagnosis (CADx) 

schemes that aim to assist radiologists in their decision-making to better assess risk of the 

detected suspicious breast lesions being malignant and reduce the unnecessary biopsies of 

benign lesions have been attracted broad research interest for the last two decades [11].

Despite great research effort, CADx schemes of mammograms have not been accepted and 

used in clinical practice. It still faces multiple technical challenges to improve CADx 

performance and robustness. For example, previous schemes typically include 3 steps which 

(1) apply image processing algorithms to segment suspicious lesions depicting on 

mammograms, (2) compute images features from the segmented regions, and (3) train multi-

feature fusion-based machine learning classifiers [12]. However, due to the overlap of dense 

fibro-glandular tissue on mammograms, accurate lesion segmentation is often difficult and 

unreliable, which can substantially affect performance and robustness of CADx schemes 

[13]. To overcome this difficulty, researchers recently investigated and applied deep learning 

techniques to develop CADx schemes without lesion segmentation and hand-crafted feature 

computation [14, 15]. Although deep learning approach can avoid difficulty in lesion 

segmentation and manually defining image features, it requires a large and diverse image 

dataset to train the scheme to minimize the risk of overfitting and validate its performance, 

which is another difficult task.
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To address these challenges, we recently investigated feasibility of developing new 

computer-aided quantitative image feature analysis schemes or machine learning models 

based on the global mammographic image features to predict risk of developing breast 

cancer in a short-term [16, 17] or risk of depicting suspicious lesions on mammograms [18]. 

Similar global image feature analysis schemes can also be developed using different imaging 

modalities to predict other clinical outcomes, such as response of breast cancer patients to 

neoadjuvant chemotherapies using breast MRI [19] and response of ovarian cancer patients 

to chemotherapy using CT images [20]. By avoiding difficulty and errors in lesion 

segmentation, our studies have demonstrated advantages of developing and applying the 

global image feature analysis schemes in CAD-related quantitative image informatics field, 

which has potential to be more efficient and robust.

In this study, we hypothesized that the similar global image feature analysis schemes can be 

developed and applied to predict likelihood of cases being malignant if the suspicious 

lesions (i.e., soft tissue-based masses) are detected by the radiologists on mammograms. 

Thus, we proposed to investigate a new CADx scheme with 2 unique approaches. First, the 

new CADx scheme identifies and selects image features computed from the entire breast 

area depicting on the mammograms of left and right breasts. This global approach is 

different from previous local region or lesion-based CADx schemes that either require lesion 

segmentation or define regions of interest (ROI) with the fixed size to cover the suspicious 

lesions. Second, the new CADx scheme uses the bilateral asymmetrical image features 

computed from left and right breasts. As a result, unlike the conventional single-image based 

CADx scheme, this is a multi-image fusion based CADx scheme. Although this is new 

approach, advantages of developing multi-image fusion-based CADe schemes over the 

single-image based CADe schemes have been demonstrated in previous studies (i.e., [21]). 

If successful, this new approach may enable to provide radiologists a new CADx-generated 

image marker or risk prediction score to support their decision-making in classifying 

between malignant and benign lesions to increase diagnostic accuracy (including reduction 

of false-positive recalls and unnecessary biopsies of benign lesions). Thus, objective of this 

study is to test our hypothesis using a relatively large and diverse digital mammography 

image dataset.

MATERIALS AND METHODS

Image Dataset

We retrospectively assembled a full-field digital mammography (FFDM) image dataset, 

which involves the fully anonymized images acquired from 1,959 patients who underwent 

routine annual mammography screening with the age ranging from 35 to 80 years old. In 

these patients, suspicious lesions were detected by radiologists in the original mammogram 

reading and diagnosis. All detected suspicious lesions were recommended and performed 

biopsy. Based on the histopathology examinations of the biopsy-extracted lesion specimens, 

737 cases were confirmed as positive for cancer, while other 1,222 cases had biopsy-

approved benign masses.

Each mammography case involves 4 images of craniocaudal (CC) and mediolateral oblique 

(MLO) view of the left and right breasts. The original FFDM images have a pixel size of 
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70μm. Like the conventional CAD schemes of mammograms, all images were subsampled 

using a pixel averaging method with a 5 × 5 pixel frame to make the image size of 818 × 666 

pixels and 12-bit pixel depth. Each pixel size is increased to 0.35mm [22]. Table I 

summarizes and compares case distribution of patient age and mammographic density rated 

by radiologists using BIRADS guidelines. The patients in benign groups are relatively 

younger than those in malignant group, but there is no significant difference in BIRADS 

density rating (p=0.878).

Background of Image Features

After segmenting breast area from the surrounding area region depicting on each 

mammogram [17], we applied a computerized scheme to extract and compute global image 

features from the original mammograms in spatial domain and the transformed maps in 

frequency domain. Specifically, the feature extraction algorithm relies on the basic fact that 

mammography images are highly structured, which means their pixels exhibit strong 

dependences. Under presence of cancer the pixel dependency would change not only in the 

region of lesions, but also the surrounding parenchymal tissues in breast area. In addition, 

since radiologists are quite sensitive to bilateral image feature differences related to the 

structural information between left and right breasts in detecting suspicious lesions and 

distinguish malignancy cases from benign ones, we will extract and compute the global 

bilateral image feature difference between the left and right CC or MLO view images to 

build the machine learning model for predicting risk of the cases being malignant.

From the original FFDM images, we computed image features and applied the structural 

similarity index (SSIM) to measure the similarity between 2 bilateral images of the left and 

right breasts. SSIM was originally proposed to assess image quality based on structural 

similarity [23]. It has been widely used in medical imaging field with higher correlation to 

human visual system adopted to extract structural information of images including our 

previous studies (i.e., [16]). For the SSIM assessment, if we assume two nonnegative image 

signals like x = {xi|i = 1,2,…,M} and y = {yi|i = 1,2,…,M} as two patches of each image 

that have been aligned to each other, we can calculate SSIM index using the following 

equation [24]:

SSIM x, y = 2μxμy + C1 2σxy + C2
μx2 + μy2 + C1 σx2 + σy2 + C2

(1)

where σxy = 1
M ∑i = 1

M xi − μx yi − μy , μx = 1
M ∑i = 1

M xi, σx = 1
M ∑i = 1

M xi − μx
2, 

σy = 1
M ∑i = 1

M yi − μy
2and C1,C2 are two positive constant.

Thus, SSIM index values range between zero and one. The maximum value is achieved 

when the input images are identical. The more the two input images are bilaterally different 

to each other, the smaller the corresponding calculated SSIM index values are.

In addition, to take the advantages of computer vision that can be relatively easy to acquire 

and analyze image features in the frequency domain, we performed two transformations to 

compute bilateral image feature differences in the frequency domain. Specifically, we 
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applied discrete cosine transform (DCT) and fast Fourier transform (FFT) as two similar and 

complementary ways to facilitate detecting and analyzing useful image contents change 

across the whole image just in a small number of components. In general, under these 

transformations lower spatial frequency coefficients contain more information than higher 

frequency components.

For DCT transformation, by assuming f (x,y) as an image with size M by N, we applied the 

following general equation to the image to calculate 2D DCT of the input image:

F m, n = 2
MN2 C m C n * ∑

x = 0

M − 1
∑

y = 0

N − 1
f x, y cos 2x + 1 mπ 2M * cos

2y + 1 nπ 2N
(2)

In this equation C m = C n = 1 2 for m, n = 1 and C(m) = C(n) = 1 otherwise.

DCT transforms the information contained in pixels of special domain to frequency domain. 

The element in the top left corner of 2D DCT matrix is the DC term and contains a value 

that is almost always of a great magnitude, which is summation of all pixel values. On a 

zigzag scanning from the top left to the bottom right corner, the farther away from the DC 

term, it will have components with the higher frequency with the smaller corresponding 

magnitude [25].

FFT transformation computes the discrete Fourier transform of its input sequence. If the 

input image has a specific pattern, this transform can detect it in the magnitude spectrum 

components. By assuming f (x,y) as an image with size M by N, we used the following 

general equation to calculate 2D discrete Fourier transform of the input images:

F u, v = 1
MN ∑

x = 0

M − 1
∑

y = 0

N − 1
f x, y exp 2πi xu

M + yv
N ; u = 0, 1, …, M − 1

v = 0, 1, …, N − 1 (3)

where u,v are special frequencies and F u, v = FRe
2 u, v + FIm

2 u, v  represents magnitude 

spectrum, which is useful to extract specific patterns [26].

Texture of each image shows important properties of distribution pattern of the fatty and 

fibro glandular tissues of breast. Texture also determines local spectral or frequency content 

of an image. In frequency domain, it is mostly projected to the low frequency coefficients. 

On the other hand, the noise unrelated to any specific pattern (like additive noise pattern) 

because of their randomness nature are mostly projected to the high frequency components. 

Furthermore, in [27] it has been shown that if scanning DCT coefficients in a zigzag order, 

the absolute DCT coefficient values are somehow correlated to each other, which means that 

the absolute DCT coefficient values are horizontally, vertically, and diagonally correlated to 

each other. Magnitude spectrums of FFT components also have the same characteristics in 

each local area. We will take advantage of these attributes for feature extraction.
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Moreover, because of particular characteristics of benign and malignant tumors like 

intensity, shape and texture [28], the structural patterns of breasts depicting benign or 

malignant tumors would be different. The larger or higher grade of the malignant tumor for a 

case is, the larger disturbance or bilateral structural differences caused by the cancer 

manifests become more obviously. The disturbance can be enlarged in the difference of 

absolute value of extracted image features from the frequency coefficients of left and right 

breast by considering fact that the presence of a tumor can disturb the correlation of 

frequency coefficients.

Data Preprocessing

CADx scheme applies an image preprocessing phase to the whole FFDM images. This step 

includes two algorithms namely, a cropping operation and an image enhancement. Cropping 

is just applied to the MLO view to detect and remove chest wall area, and enhancement is 

done on both CC and MLO views of images to remove or reduce image noise on the black 

background area as well as written labels.

MLO view images typically have advantage over CC view because almost all the breast area 

is visible, which means we can extract more information from this view, especially for the 

global feature extraction methods. The main disadvantage of this view is that images also 

include chest wall and part of the pectoral muscle regions. Pectoral muscle area is typically 

brighter compared to the breast tissue and will have negative affect on the extracted features. 

Due to the great variation or heterogeneity of mammograms in different cases, although 

developing automated schemes to segment pectoral muscle has been tried before (i.e., [29]), 

it remains difficult to achieve robust results when applying to a large and diverse dataset. In 

this study, we used a hand craft method to remove pectoral muscle area. For each MLO 

image two points are determined at the margin of chest wall, then by plotting a straight line 

between these two points, the chest wall is determined and the pectoral muscle region is 

deleted to select the remaining breast region for further analysis. Other non-breast areas (i.e., 

labels) are also automatically deleted. An example of this preprocessing phase is given in 

Fig. 1. After the pre-processing phase all images in the dataset are saved in Portable 

Network Graphics (PNG) format of a lossless mode for feature extraction phase.

Image Feature Extraction

After image pre-processing, the computer-aided scheme is applied to extract and compute 

relevant image features from the entire breast area segmented on FFDM images. These 

features are divided into 3 subgroups from both spatial domain and frequency domain. First, 

from the original FFDM images (spatial domain), the scheme computes SSIM-related 

features of left and right images of CC or MLO view in a tree structural shape base, which is 

inspired by the commonly used hierarchical methods in video data processing area for 

motion estimation purpose [30]. Since each FFDM image has an original size of 818 × 666 

pixels, each left and right image is first divided to 4 sub-blocks with a size of 409 × 333 

pixels each. SSIM is computed using Equation (1) for all pairs of 4 sub-blocks in the 

matched position of the left and right breast. The sub-block with the smallest SSIM value, 

which means the highest bilateral asymmetry among these 4 pairs of the matched sub-

blocks, is selected. Next, the scheme continues to divide the selected sub-blocks into 4 sub-
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blocks again with a size of 205 × 167 pixels each. Four SSIM indices are computed and the 

new sub-block with the smallest SSIM index value is selected again. Such a process is 

repeated 6 times or iterations. In the last iteration, the size of the sub-block is reduced to 13 

× 11 pixels. From these 6 iterations, the scheme selects 6 SSIM index values representing 

the highest bilateral asymmetry of breast tissue patterns with gradually deceased sub-block 

size. Fig. 2 illustrates a block diagram of this process.

In computing SSIM index value, several parameters need to be determined by the 

experiments. Based on our experimental results in computing SSIM of bilateral FFDM 

images for cancer risk assessment [16], the default parameter values are set up as 0.05 for 

constants C1 and C2, and 8 for window size used in Equation (1). Additionally, due to the 

heterogeneity of clinical cases (i.e., the variation lesion size and surround parenchymal 

tissues), it is not possible to predetermine an optimal sub-block size to compute SSIM index. 

Thus, in this study, we selected all 6 smallest SSIM index values computed in above 

iterations to build a SSIM feature pool or vector.

Second, after DCT and FFT transformation, the scheme computes 2 two-dimensional (2D) 

DCT and FFT matrixes of the whole input image using Equations (2) and (3), respectively. 

Hence, each image has a 2D matrix of DCT coefficients and a 2D matrix of FFT 

coefficients. By filtering out the last 10 percent of high frequency components, the 

redundant information is mostly filtered out with respect to the information related to the 

pattern of the breast. In this way, frequency domain coefficients are more suitable for feature 

extraction rather than pixel domain coefficients.

After preprocessing on the frequency coefficients, the 2D matrixes are changed to row 

format to reduce computational complexity of feature extraction phase. Hence, a sequence 

like X = (x1, x2, …, xk) represents these coefficients in row format. Then, the following 

features are extracted and computed.

From the DCT and FFT frequency domain, our scheme computed following statistical 

moments related features. Based on [31], by assuming that a sequence like X = (x1, x2, …, 

xN) is a finite population of size N, the scheme can compute an unknown probability density 

function (PDF) р(x) for this targeted population. The nth row moment for this population is 

given by:

mn = 1
N ∑

i = 1

N
xin (4)

where the 1st row moment (n = 1) is mean (μ) of this population. By centralizing this 

equation, the scheme calculates the next centralized momentums for the population with:

mn = ∑
i = 1

N
pi xi − μ n

(5)

That is an unbiased estimate of nth moment:
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mn = EXn = ∫
−∞

∞

p x xndx (6)

According to Equation (6), p(x) is weighted by xn, so that any change in the р(x) is 

polynomially reinforced in the statistical moments. Thus, by considering DCT and FFT 

components as finite populations of the input images, any changes in their PDF due to 

presence of malignant lesions is polynomial reinforced in the statistical moments of the 

computed coefficients. In this study, we utilized the statistical moments to catch bilateral 

image feature differences in both DCT and FFT maps of left and right breasts. Using 

Equation (4), the scheme computes mean of the frequency components, and using Equation 

(5) for n – 2,3,4, the scheme computes variance, skewness, and kurtosis of the frequency 

components. Additionally, the scheme also computes other popular statistical features 

including entropy, correlation, energy, root mean square level, uniformity, max, min, 

median, range, and mean absolute deviation from the DCT and FFT maps. Then, the 

absolute differences of these matched image features from the left and right view maps are 

computed to represent global bilateral differences of the left and right breasts in DCT and 

FFT based frequency domains. Table II also lists the 14 features computed from DCT and 

FFT maps.

In summary, our scheme computes 34 features from two bilateral images or maps of the left 

and right breasts (as shown in Table II). Since each case has two sets of bilateral images 

acquired from CC and MLO view, the totally computed image features are 68.

Fig. 3 shows a schematic diagram of the feature extraction phase to show how the scheme 

extracts each sub-group of features from each of 4 individual images (LCC, RCC, 

LML,RML) of a case and combine them to create the final feature vector (Ffusion) of 34 

features in each of CC or MLO views. Specifically, lccFdct and lccFfft are DCT and FFT 

features computed from CC view image of left breast, while rccFdct, rccFfft are DCT and 

FFT features computed from CC view image of right breast. Similarly, lmlFdct, lmlFfft and 

rmlFdct, rmlFfft are DCT and FFT features computed from MLO view images of left and 

right breast, respectively. Last, Fssimcc is vector of SSIM features related to two bilateral CC 

view images (LCC, and RCC), and Fssimml is vector of SSIM features related to two 

bilateral MLO view images (LML and RML).

After computing these 34 image features from the bilateral images of one view, we 

computed and generated 2 correlation matrices for CC and MLO view (Fig. 4). The results 

indicate that majority of these features are not highly correlated (i.e., r < |0.25| as shown by 

the light to dark blue color in Fig. 4), which can provide complementary information to 

predict the likelihood of the case being malignant.

Classification Phase

In this phase, we built multiple feature fusion-based machine learning models to predict the 

likelihood of the cases being malignant. Although many different types of machine learning 
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classifiers (i.e., artificial neural network, Bayesian belief network, and logistic regression 

model) can be used for this purpose, based on our previous experience in developing the 

variety of CAD schemes of medical images, we chose to train and build support vector 

machine (SVM) based machine learning models to predict the likelihood of the cases being 

malignant. To achieve high robustness, a popular RBF kernel was selected to build the SVM 

model, which has demonstrated good performance and low computational cost in our 

previous studies [32, 33]. Specifically, in each CC or MLO view images, we built 4 SVM 

models using image features computed from (1) the original FFDM image (6 SSIM based 

features), (2) DCT maps (14 features), (3) FFT maps (14 features), and fusion of 34 features 

computed. After comparing the performance of the SVMs trained using only one view 

images, we also fuse the image features computed from the two view images to retrain and 

test 4 new SVM models.

Each SVM-based prediction model is applied to the entire image dataset of 1,959 cases to 

predict likelihood of the cases being malignant. To train each SVM and assess its 

performance, we applied a 10-fold cross-validation method. The SVM model produces 

likelihood or prediction scores ranging from 0 to 1 in the testing phase. The higher score 

indicates the higher risk or likelihood of the case being malignant. Using the prediction 

scores computed from all 1,959 cases, a receiver operating characteristic (ROC) curve is 

generated and the area under the ROC curve (AUC value) is computed as an evaluation 

index.

Then, to evaluate an absolute classification accuracy for the proposed scheme, we also 

applied an operating threshold (T = 0.5) on the SVM-generated prediction scores. All cases 

are divided into two malignant and benign classes to generate a confusion matrix. From the 

confusion matrix, the overall prediction or classification accuracy, sensitivity, specificity and 

odds ratio (OR) are calculated as well. Furthermore, we sort the SVM-generated detection 

scores for all cases in an ascending order and select 5 threshold values to segment all cases 

into 5 sub-groups. Then, based on the available multivariate statistical model included in a 

statistical software package (R version 2.1.1, http://www.r-project.org), we calculated the 

adjusted OR values and detected the possible ORs increasing trend with the increased 

classification scores.

In addition, to test whether we can further reduce dimensionality of the feature space to 

identify better features, we applied Principal Component Analysis (PCA) as a feature 

analysis and regeneration method to reduce feature vector size and train SVM models. The 

performance levels of the SVM models trained with and without applying PCA method were 

compared. All computation tasks were conducted using MATLAB R2019a package. Fig. 5 

illustrates a complete block-diagram of the proposed scheme and testing method.

RESULTS

Fig. 6 shows CC and MLO images of one malignant and one benign case. Using the global 

bilateral image feature analysis, the SVM-generated prediction scores are 0.82 and 0.37 in 

these 2 cases, respectively. Table III shows and compares AUC values and overall 

classification accuracy after applying the operation threshold (T = 0.5). The results show that 
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using the image features computed from the bilateral MLO view images yielded 

significantly higher performance than using image features computed from bilateral CC 

view images (p < 0.05).

Table IV summarizes and compares the computed AUC values of 4 SVM models trained 

using image features computed from both CC and MLO view images. Fig. 7 shows 4 

corresponding ROC curves. The results indicate that using 3 subgroups of features computed 

from the original FFDM images and 2 transformation maps, AUC values range from 0.85 to 

0.91. After fusion of all image features computed from 3 subgroups, AUC value of the 4th 

SVM model significantly increases to 0.96±0.01 (with p<0.01). In addition, the standard 

deviation after fusion of 3 subgroups of image features is also substantially decreased as 

comparing to the use of one subgroup of image features, which indicates the increase of 

reliability of the 4th SVM model performance (AUC value).

Table V shows and compares 4 confusion matrices generated by the SVM-generated 

prediction scores after applying an operational threshold (T = 0.5). From these confusion 

matrices, additional performance indices can be computed as shown in Table VI. It shows 

that SVM trained using subgroup of DCT features yields the highest overall prediction 

accuracy as comparing to other two SVMs trained using SSIM and FFT features. However, 

by fusion of all 68 features, the SVM model yields further increased overall prediction 

accuracy (92%).

After dividing 1,959 testing cases into 5 subgroups of approximately equal number of cases 

(~392) based on the SVM-generated prediction scores (Table VII), the adjusted odd ratios 

(OR) increased from 1.0 in the baseline subgroup with lowest classification scores to 25,220 

in the 5th subgroup with the highest prediction scores (the highest chance of being 

malignant). Regression analysis of the adjusted OR data also shows an increase trend of 

odds ratios with the increase in SVM-generated prediction scores. The slope of the 

regression trend line between the adjusted ORs and SVM-generated scores is significantly 

different from zero slope (p < 0.01).

By applying a PCA algorithm to reduce feature space dimensionality, we trained and tested 

SVM models with the increased number of the PCA-regenerated features. The highest AUC 

value is 0.94 and the highest overall prediction accuracy after applying the same operation 

threshold of T = 0.5 is 91%, which involves 65 numeric components produced by the PCA 

algorithm. The performance is slightly lower than the SVM trained using all 68 features as 

shown in Tables IV and VI.

Moreover, to test the significance of preprocessing phase (as shown in Fig. 1) of whether 

removal of pectoral muscle regions can boost performance of the CADx scheme, we 

recomputed all image features from the bilateral MLO view images without applying 

removing the pectoral muscle and retrained SVM classification models. Table VIII compares 

the classification performance of the SVM models trained and tested using the image 

features computed from MLO view images with and without removing pectoral muscle 

areas depicted on the images. The result shows significant improvement of classification 

performance by removing the pectoral muscle areas from the MLO view images (p<0.05). 
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For example, the AUC value of the SVM model using all image features computed from the 

original mammograms and two transformation maps increases more than 15% (from 0.79 to 

0.94).

DISCUSSION

This study has several unique characteristics and generates several new interesting 

observations. First, although many CADx schemes of mammograms (i.e., as reviewed in 

[12]) have been previously developed and tested to classify between malignant and benign 

lesions, their performance is often limited by the difficulty and errors of lesion segmentation 

due to the fuzziness of lesion boundary and irregular tissue overlap in 2D mammograms 

[13]. Since unlike CADe schemes that aim to automatically detect suspicious lesions in 

which correctly cuing location of the lesion is important, CADx schemes apply to the cases 

in which suspicious lesions and their locations have already been detected by radiologists. 

The important issue in CADx schemes is to determine the likelihood of the case or the 

detected lesion being malignant. However, accurately predicting the likelihood of the 

detected suspicious lesions being malignant remains a difficult task for radiologists, which 

result in higher false-positive recall rates and higher rates of benign biopsy in current clinical 

practice. Thus, developing a more accurate and robust CADx scheme as an assistant tool to 

support radiologists in their decision-making is important no matter whether the CADx 

scheme uses local (region) or global image feature analysis. In this study, we explored a new 

approach to develop a unique case-based CADx scheme based on the detection, computation 

and analysis of globally asymmetrical image features computed from two bilateral images of 

left and right breasts and assessed its performance using a relatively large image dataset of 

1,959 cases. Thus, this new CADx scheme is a multiply image-based scheme that integrates 

image feature differences computed from 4 view images, which makes it significantly 

different from other previously single or region-based CADx schemes.

Second, we explored and tested 3 types or subgroups of global image features computed 

from the original FFDM images and their transformation maps aiming to more accurately 

predict likelihood of cases being malignant. From a pair of bilateral mammograms, SSIM is 

used in a quadratic-tree based format that searches through different sub-blocks of original 

images (in a spiral way) to select areas with the highest level of bilateral asymmetry between 

left and right images of each case. In this way, area outside of the breasts are removed 

automatically because of high SSIM values, while the area with the smallest SSIM value, 

which represents the highest bilateral difference, is selected. The physical meaning of the 

proposed SSIM-based algorithm can be well described to mimic the image features used by 

the radiologists to asses and interpret tumors in the clinical practice. However, there is large 

variation of lesion size and asymmetrical structure of the surrounding parenchymal tissue 

patterns in the different clinical cases. In order to automatically compensate such variations, 

we used an iteration approach to compute a SSIM vector with 6 SSIM index values, which 

represent 6 pairs of the matched sub-blocks with gradually reduced size (from 409 × 333 to 

13 × 11 pixels). The correlation coefficients of these 6 SSIM index values are relatively low 

(as shown in Fig. 4). Thus, fusion of these 6 SSIM features can increase prediction power of 

using SSIM applying to a large and diverse image dataset.
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Third, to further take the potential advantages of computer vision over human vision, we 

explored image features computed from the frequency domain. For example, FFT and DCT 

have been widely used as two popular frequency domains for image feature extraction in 

many CADx schemes to classify between malignant and benign lesions (i.e., [13]), and 

predict tumor response to chemotherapy (i.e., [34]). In this study, we extracted absolutely 

asymmetrical feature values computed from two bilateral view images (CC or MLO view of 

the left and right breasts) and investigated their feasibility to predict likelihood of cases 

being malignant, which is also a new approach in CADx schemes of mammograms. We 

observed that the DCT-based features yielded the highest AUC value (as shown in Table IV), 

which shows the importance of identifying an optimal transformation map in the frequency 

domain for image feature extraction.

Fourth, the previous studies have reported that quantitatively detect and analysis of image 

features computed from MLO view images typically yielded higher performance than using 

image features computed using CC view images, such as applying CAD schemes to predict 

breast cancer risk [35] and detect suspicious lesions [36]. In this study, we systematically 

analyzed and compared correlation coefficients of image features computed from CC and 

MLO view images. The results showed that the image features computed from the MLO 

view images had lower distribution of the correlation coefficients than the image features 

computed from CC view images (Fig. 4). This supports the results that SVMs trained using 

MLO view images yield higher prediction accuracy than the SVMs trained using CC view 

images (i.e., Table III). In addition, by applying a PCA algorithm to search for and 

regenerate the optimal feature vectors, the best prediction performance yielded when using 

65 numeric components produced by the PCA algorithm remains lower than the SVM 

trained using all 68 image features computed in 3 subgroups. The results indicate that 

although 68 features build a relatively large feature vector or space, when considering size of 

our dataset of 1,959 cases, the ratio between the numbers of the cases per class and image 

features remains relatively bigger (i.e., >10 per class). Thus, this size of feature vector is 

acceptable in this study.

Fifth, the study also shows that image features computed from the original mammograms 

and transformation maps contain the complementary information or discriminatory power. 

Thus, optimally combining or fusing multiple features computed from different feature 

domains to build a machine learning model or classifier can further significantly increase 

CADx prediction performance (i.e., AUC value and overall accuracy after applying an 

operating threshold). Automatically and optimally integrating image features from the 

different domains is an advantage of using machine learning based schemes over human 

observers. Additionally, the study results also show that removing pectoral muscle regions 

from the MLO view images can help increase prediction power to more accurately 

distinguish between malignant and benign cases. Thus, it is still important to develop 

algorithms that can more accurately and robustly detect chest wall and remove pectoral 

muscle regions in mammograms [29].

Sixth, many CADx studies have been previously reported in the literature to classify 

between malignant and benign lesions. For example, reference [12] presents a table that 

summarizes 8 previous CADx studies, which used image datasets ranging from 38 to 1,200 
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cases and yielded performance of AUC values ranging from 0.70 to 0.86. Another CADx 

scheme that used a dataset of 560 regions of interest and a deep learning model to classify 

between malignant and benign breast masses reported an AUC of 0.79 [14]. This study used 

a larger dataset involving 1,959 cases. Although we cannot directly compare the 

performance between this new case-based CADx scheme and previous CADx schemes 

reported in the literature due to the use of different image datasets, the high prediction or 

classification result (i.e., AUC value) of this study is encouraging. Unlike CADe schemes, 

which detect specific lesions and information of lesion location is important, determining 

lesion location is less important in CADx schemes because the suspicious lesions have been 

visually detected and located by radiologists. Thus, both the conventional CADx schemes 

based on analysis of the image features computed from the segmented lesions and this new 

CADx scheme based on analysis of the global image feature difference can play the same 

role to support radiologists in their decision-making of predicting likelihood of the detected 

lesions being malignant. By avoiding the difficulty and possible errors of breast lesion 

segmentation, developing a new CADx scheme based on global mammographic image 

feature analysis approach can potentially be more efficient and robust.

Last, despite the encouraging results and many new observations, we recognize that this is a 

laboratory based retrospective data analysis study with several limitations. First, although we 

assembled a relatively large and diverse image dataset, case selection bias is always an issue 

of concern. Second, the ratio between malignant and benign classes does not represent the 

actual cancer prevalence ratio in the general clinical practice. Hence, the performance and 

robustness of this new CADx scheme need to be further assessed and validated in future 

studies with new image datasets that better represent clinical practice. Third, based on the 

experience of our previous studies, we only explored and tested the limited numbers and 

types of image features, as well as the simple SVM models in this study. This may not be an 

optimal approach. How to identify and select optimal features and machine learning models 

need to be further investigated in future studies. Furthermore, this is a primary technology 

development study. Its clinical utility or impact on radiologists’ performance in diagnosis of 

breast cancer using mammograms has not been tested. In summary, despite these limitations, 

this study has presented a new and novel approach to develop CADx scheme based on the 

global image feature analysis to predict the likelihood of case being malignant once the 

suspicious lesions are detected by the radiologists and demonstrated feasibility of this new 

approach, which may create a new opportunity for researchers in the CAD-related medical 

imaging informatics field to develop and optimize new computer-aided decision-making 

supporting tools for future clinical applications.
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Fig.1. 
Preprocessing phase. a) the original image, b) chest wall removal step, c) denoising black 

area, and written labels removal.
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Fig. 2. 
Block diagram of the proposed method for SSIM feature extraction.
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Fig. 3. 
Feature extraction phase of the proposed method.
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Fig. 4. 
Correlation coefficient matrices of 34 image features computed from CC (top) and MLO 

(bottom) view images.
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Fig. 5. 
A summarized block diagram of the proposed scheme for classification of benign and 

malignant tissues in mammography imaging.
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Fig. 6. 
Illustration of one malignant case (the first row) and one benign case (the second row). The 

detected masses are circled (Green Color) in the images.
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Fig. 7. 
Comparison of 4 ROC curves generated by four SVMs trained using image features 

computed from both CC and MLO view images.
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TABLE I

Case number and percentage distribution of patients age and mammographic density rated by radiologists 

using BIRADS guidelines.

Subgroup Malignant Cases Benign Cases

Density BIRADS 1 39 (5.3%) 58 (4.7%)

2 286 (38.8%) 412 (33.7%)

3 401 (54.4%) 702 (57.4%)

p-value = 0.878 4 11 (1.5%) 50 (4.1%)

Age of Patients (years old) A < 40 25 (3.4%) 50 (4.1%)

40 ≤ A < 50 141(19.2%) 561(45.9%)

50 ≤ A < 60 189(25.6%) 335(27.4%)

60 ≤ A < 70 180(24.4%) 187(15.3%)

70 ≤ A 202(27.4%) 89(7.3%)
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Table II

The computed SSIM, DCT and FFT image Features

Feature category Feature Description

SSIM features computed from original 
FFDM images

Six SSIM indices computed using Equation (1) from the six pairs of sub-blocks with the 
gradually reduced size.

Features computed from frequency domain 
of DCT and FFT transformed maps

1.Mean, 2. variance, 3. skewness, 4. kurtosis, 5. entropy, 6. correlation, 7. energy, 8. root mean 
square level, 9. uniformity, 10. max, 11. min, 12. median, 13. range, 14. mean absolute deviation
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TABLE III

AUC and Accuracy for different sub-group of features on CC view in compare with MLO view.

Feature
sub-groups Number of features AUC ± STD Accuracy (%)

FFT, CC view 14 0.63 ± 0.025 66

FFT, MLO view 14 0.84 ± 0.017 77

DCT, CC view 14 0.62 ± 0.026 64

DCT, MLO view 14 0.89 ± 0.015 83

SSIM, CC view 6 0.53 ± 0.026 63

SSIM, MLO view 6 0.78 ± 0.021 71

Fusion, CC view 34 0.65 ± 0.027 67

Fusion, MLO view 34 0.94 ± 0.009 89
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TABLE IV

Computed area under ROC curve using individual group of features on both CC and MLO views.

Feature sub-group Num. of features AUC STD 95% CI

FFT features 28 0.85 0.018 [0.80, 0.90]

DCT features 28 0.91 0.013 [0.89, 0.95]

SSIM features 12 0.89 0.016 [0.85, 0.92]

Fusion of all features 68 0.96 0.007 [0.95, 0.97]
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TABLE V

Four confusion matrices generated using 4 SVMs trained using features computed from both CC and MLO 

view.

Feature Group Predicted Actual Positive Actual Negative

SSIM Positive 528 106

Negative 209 1116

DCT Positive 501 54

Negative 1168 236

FFT Positive 437 135

Negative 300 1087

Fusion Positive 656 61

Negative 81 1161
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TABLE VI

Accuracy, sensitivity, specificity, and odd ratio of using 4 SVMs trained using different features computed 

from both CC and MLO views

Feature sub-group Accuracy (%) Sensitivity (%) Specificity (%) Odds Ratio

FFT features 78 59 89 11.47

DCT features 85 68 96 52

SSIM features 83 71 90 24

Fusion 92 89 95 154
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TABLE VII

Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) at five subgroups with increasing values of 

SVM-generated prediction scores.

Subgroup (bin) Number of Cases (Positive/Negative) Adjusted OR 95 % CI

1 2–390 1.00 Reference

2 9–383 4.58 0.93–21.34

3 41–351 22.78 5.47–94.85

4 297–95 609.6 149.05–2493.35

5 388–3 25220 4190.90–151766.40
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TABLE VIII

Comparison of prediction performance of SVMs trained with and without removal of pectoral muscle areas in 

MLO view images.

Feature sub-group Number of features AUC ± STD Accuracy (%)

FFT without chest removal 14 0.70 ± 0.021 72

FFT with chest removal 14 0.84 ± 0.017 77

DCT without chest removal 14 0.68 ± 0.022 69

DCT with chest removal 14 0.89 ± 0.015 83

SSIM without chest removal 6 0.62 ± 0.026 61

SSIM with chest removal 6 0.78 ± 0.021 71

Fusion without chest removal 34 0.79 ± 0.017 83

Fusion with chest removal 34 0.94 ± 0.009 89
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