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Abstract

Radiomics uses computers to extract a large amount of information from different types of images, form various quantifi-
able features, and select relevant features using artificial-intelligence algorithms to build models, in order to predict the out-
comes of clinical problems (such as diagnosis, treatment, prognosis, etc.). The study of liver diseases by radiomics will con-
tribute to early diagnosis and treatment of liver diseases and improve survival and cure rates of liver diseases. This field is
currently in the ascendant and may have great development in the future. Therefore, we summarize the progress of current
research in this article and then point out the related deficiencies and the direction of future research.
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Introduction

Due to the rapid development in the field of computer science in
the last several decades, especially in artificial intelligence (AI),
concepts like machine learning, deep learning, and big data
have been applied in many aspects. As for medical imaging,
since judgment and diagnoses made by radiologists are usually
the combination of multiple years of training, working experi-
ence, and individual interpretation, the results of the same med-
ical image can be subjective and variable among different
experts. Also, a large scale of information that cannot be
exploited by the human eye resides in medical imaging, which
may contribute to the correctness of diagnosis. Taking a mass
lesion in a liver as an example, though a list of phenomena such
as its shape, density, time, and degree of contrast enhancement
has been summarized to distinguish between benign and malig-
nant lesions, many cases belonging to the gray area are always
difficult to judge for sure. Therefore, it raises the question of
whether the techniques of AI can be taken advantage of to uti-
lize information in medical imaging to a larger extent and thus
help us to make more objective and accurate clinical decisions.

Terminology and general approach

In 2012, Lambin et al. [1] proposed the approach of radiomics,
which refers to high-throughput mining of data from medical
imaging in order to improve the accuracy of clinical decision-
making. Usually, a radiomics study can be divided into five
steps:

• First, based on the prediction target such as diagnosis, prognosis,

therapeutic selection, or gene expression, investigators choose

the appropriate imaging protocol like CT, MRI, ultrasonography,

etc.
• Second, the region of interest (ROI), an area from which the data

are extracted, should be designated either manually by physi-

cians or automatically achieved by algorithms. The ROI can con-

tain the region of tumors only, or with tumors’ habitats, or even

include the whole area of the organ, decided by the type of ques-

tion that is of interest.
• Then, quantitative features are extracted from the ROI by differ-

ent algorithms. For instance, texture analysis is a commonly

used method to extract features that depict the texture
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information of an ROI by quantifying the distribution of the gray

level of every pixel. It can be further divided into first- and sec-

ond-order texture analysis to describe the intensity distribution

only or the spatial relationship of the different gray levels re-

spectively [2]. Obviously, there are other strategies to extract dif-

ferent aspects of features, which is not the key point of this

review.
• Next, the extracted features are then connected to the clinical in-

formation to see whether they are correlated or irrelevant.

Features that are highly correlated may have the potential to

predict clinical outcomes and will be involved in building the

prediction model. Different machine-learning algorithms, in-

cluding logistic regression, LASSO Cox regression, random forest,

etc., are brought into the process of feature selection. Notably,

deep-learning methods such as neural networks do not extract

features, but feed the networks with primitive data. Even though

it is difficult to understand the way in which deep learning

works, as there is no clear feature in constructing the model and

the practical effect awaits more research to testify, it is a more

promising method by simulating the feedback mechanism like

neurons do in the human brain.
• Finally, the prediction model will be validated and its perfor-

mance improved by further data sets. Radiomics can analyse ev-

ery tiny part of the medical images, including both the ROI such

as the tumor sites and the surrounding tissue. Also, the medical

images can be done multiple times with little harm at any point

to longitudinally monitor the course of the disease or recovery.

Thus, compared with conventional methods like biopsy, radio-

mics is very suitable for investigating oncology, since tumors

have high spatial and timing heterogeneity [3]. Nowadays, much

of the radiomics research has focused on the cancer field, such

as lung, colorectum, brain, and so on. Nevertheless, there are

also a series of emerging non-oncologic applications of radio-

mics, such as in assessing fibrosis of lung and liver.

To be more specific, the application of radiomics to study
primary liver cancer and other liver diseases will help its early
diagnosis and treatment and improve the disease survival and
cure rate. Hence, it has broad application prospects. At present,
relevant research is just emerging and developing rapidly, but
still awaiting further maturity. In other words, present publica-
tions and literature give more questions than answers.
Therefore, we summarize the progress of current research in
this article, then point out the related deficiencies and the direc-
tion of future research.

Hepatocellular carcinoma (HCC)

The radiomics research in liver disease is mainly focused on HCC
[4–12] (Table 1). Radiomic features could be classified into differ-
ent categories based on the approaches applied to calculate
them, such as statistics-based, model-based, and transform-
based (Table 2). The statistics-based features reflect the intensity
distribution of the pixels or voxels within the ROI and they can be
further classified into first-order, second-order, or high-order fea-
tures, depending on whether they take spatial and topological in-
formation into consideration. In addition, features can be
calculated not only on the base image, but also on images trans-
formed using different filters, such as wavelet and Gabor filters.
Those features belong to transform-based categories. So far, there
are several available software programs to do radiomic analyses,
which facilitate standardized settings for feature extraction.
Representative open-source software packages include imaging
biomarker explorer (IBEX), Chang Gung Image Texture analysis,

and MaZda. Other software packages are commercial, like
TexRADTM (Feedback plc, Cambridge, UK) and RADIOMICSTM

(OncoRadiomics, Maastricht, The Netherlands). It is worth men-
tioning that the features reported by current articles are often not
standard and may have multiple meanings, which will influence
the reproducibility and validation of the studies. Further research
should report based on the reference manual of the image bio-
marker standardization initiative [13].

Diagnosis

In real clinical practice, the detection of HCC by visual analysis
in most cases is not hard. However, some other hypervascular
lesions in the liver may look like HCC and confuse the diagnosis
of HCC, especially some benign lesions like focal nodular hyper-
plasia (FNH), hemangioma, and adenoma. Misclassification of
HCC from those benign lesions will lead to failure to reach the
best clinical decision, like unnecessary surgery or missing the
best time for surgery.

Raman et al. [4] retrospectively evaluated the arterial-phase
images of pathologically proven FNH, hepatic adenomas, HCC,
and normal liver parenchyma with 17, 19, 25, and 19 cases, re-
spectively, using computed tomography texture analysis
(CTTA). Then they extracted 32 features (mean gray-level pixel
intensity, entropy, standard deviation [SD], kurtosis, and skew-
ness in unfiltered images, and 5 different filters, plus the size of
the ROI and lesion enhancement) by Commercial CTTA soft-
ware (TexRAD Ltd) and then construct a predictive classification
model using the random-forest method with all of the 32 fea-
tures. The accuracy of the model in distinguishing the lesion
types and normal liver was up to 90% compared with two hu-
man readers with accuracies of 72.2% and 65.6%. In addition,
pairwise comparison of each of the 32 features shows that 84%
features in mean, SD, and entropy categories are statistically
significant, whereas only 13% features in the kurtosis and skew-
ness categories are associated with the lesion types. However,
when comparing adenoma and HCC, none of the 32 features
showed a significant difference. This raises a question: how
does the random-forest model make the prediction between ad-
enoma and HCC? Notably, the sample size is relatively small
and the validation process of this research used a subset of the
data used for building the model, which will result in higher ac-
curacy than actuality and thus need further external validation.
Future, with the aid of radiomics, it is possible to recognize be-
nign liver lesions like FNH precisely and select the best treat-
ment regimen.

Whether portal-vein thrombosis (PVT) is benign or malig-
nant can determine the tumor stage and selection of treatment
options, although it is easy to be misjudged by a radiologist’s
subjective evaluation. The standard method of biopsy of PVT is
invasive and may lead to false-negative results. In addition, it
can cause complications like bleeding and metastasis, though
with relatively low incidence. Canellas et al. [5] investigated 117
portal-venous-phase CT of 109 patients with 63 neoplastic and
54 benign thrombi using CTTA. The results showed that two
features (mean value of positive pixels and entropy) discrimi-
nated the type of PVT accurately, with an area under the curve
(AUC) of 0.99 for the model combining those two features.
Although the differentiation by thrombus-density measuring
with Hounsfield units (Hu) is also significant, the threshold val-
ues of Hu are determined by scanning protocols and the dose of
contrast media. Comparing radiomics features selected by mod-
els to that, radiomics is more constant and reliable.
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Staging and grading

The staging and grading of HCC are vital to decide the optimal
treatment and prognosis. Theoretically, that depends on the his-
topathological features of the tumor tissues after surgical resec-
tion. Fine-needle biopsy is a common way to assess HCC
malignancy preoperatively. However, it is not fully desirable in
daily clinical practice due to some occasional complications like
bleeding and metastasis, though not very common. On the con-
trary, non-invasive radiomics analysis can detect the whole tu-
mor tissue and surrounding parenchyma, which makes a
potential way to evaluate biological aggressiveness in the future.

In order to find the correlation between the features and his-
tological grading, Zhou et al. [6] utilized the method of texture
analysis to extract the features of Gd-DTPA contrast-enhanced
MRI images from 46 consecutive patients with resected HCC.
The result showed that two features called the mean intensity
value and gray-level run-length non-uniformity (GLN) had bet-
ter performances in arterial-phase images. Specifically, the low-
grade HCCs (Edmondson grades I and II) have significantly
larger mean intensity values and smaller GLN than high-grade
HCCs (Edmondson grades III and IV) (P< 0.0005).

Therapeutic selection and prognosis assessment

Li et al. [7] investigated 130 patients with single HCC (>5 cm) in
Barcelona Clinic Liver Cancer (BCLC) stage B or C who

underwent either liver resection (LR) or transcatheter arterial
chemoembolization (TACE) by CTTA. They found that the pa-
rameter Wavelet-2-H in LR patients and wavelet-2-V in TACE
were correlated with overall survival (OS). Then, based on that
result, patients were divided into four groups (LRþ, LR–, TACEþ,
TACE–) according to the median of the parameter. Further, they
estimated whether, if LRþ patients were treated with TACE,
they would have severe compromises in OS. In contrast, TACE–
patients would get better therapeutic outcomes by undergoing
LR and similarly TACE is beneficial to LR– and TACEþ patients.
Thus, such radiomic parameters have the potential to help in
selecting the correct therapeutic plans for each individual.

Other research has focused on whether HCC patients who
have undergone TACE should receive sorafenib simultaneously
in order to control the level of vascular endothelial growth fac-
tor (VEGF) [8]. Radiomic features from 197 patients who had re-
ceived TACE therapy were extracted. The results showed that
Gabor-1–90 (filter 0) and wavelet-3-D (filter 1.0) were highly cor-
related with time to progression (TTP) and OS, respectively. The
TACE group with higher Gabor-1–90 (>3.6190) or wavelet-3-D
(>12.2620) had shorter TTP or OS compared with the other
patients in the TACE group and TACE plus sorafenib group
(n¼ 64), even though the baseline characteristics between these
groups are comparable. So we have reason to believe that such
subgroups may have a better prognosis if they are treated with
TACE plus sorafenib.

Table 1. Radiomics on hepatocellular carcinoma (HCC) in practice

Objective Image
type

No. of
patients

Features Results Reference

Diagnosis CT 80 Mean gray-level pixel intensity, entropy,
standard deviation, kurtosis, and
skewness in unfiltered images and 2-,
3-, 4-, 5-, and 6-mm filter, in total 30
features

The model, in distinguishing the lesion
types (focal nodular hyperplasia, ade-
noma, or HCC) and normal liver, is up
to 90%

[4]

Diagnosis CT 109 Mean value of positive pixels, entropy The model combining those two features
discriminated the type of portal-vein
thrombosis accurately, with an AUC of
0.99

[5]

Staging and
grading

MRI 46 Mean intensity value, GLN The low-grade HCCs have significantly
larger mean intensity value and
smaller GLN than high-grade HCCs
(P< 0.0005)

[6]

Therapeutic
selection

CT 130 Wavelet-2-H, wavelet-2-V Features were correlated with OS;
patients can then be divided into
groups to select the proper therapy

[7]

Therapeutic
selection

CT 197 Gabor-1-90 (filter 0), wavelet-3-D (filter
1.0)

TACE group with higher Gabor-1-90
(>3.6190) or wavelet-3-D (>12.2620)
may get better results if treated with
sorafenib

[8]

Prognosis
assessment

CT 127 – 8 and 15 features can predict DFS and OS,
respectively

[9]

Prognosis
assessment

PET 47 – A scoring system is generated to predict
PFS and OS

[10]

Prognosis
assessment

CT 138 OS: compacity Local control: energy,
gray-level non-uniformity for run

A single radiomics feature is significant
to the OS of patients treated with volu-
metric modulated arc therapy and two
are significant for local control

[11]

Surveillance CT 215 21 radiomics features A radiomics signature was built by se-
lected features, which was signifi-
cantly associated with early recurrence
(P< 0.001)

[12]

GLN, gray-level run-length non-uniformity; TACE, transcatheter arterial chemoembolization; OS, overall survival; DFS, disease-free survival; PFS, progression-free survival.
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Moreover, Akai et al. [9] used a random forest that selected 8
and 15 texture features from a total of 96 features to predict the
disease-free survival (DFS) and OS, respectively, based on 127
patients who underwent LR for HCC. The model trained on
these features and divided the patients into two groups—high
and low predicted individual risk. A multivariate Cox propor-
tional-hazards model showed that a high predicted individual

risk was an independently bad prognostic factor. Henceforth,
patients with resectable HCC can be assessed preoperatively by
such factors to decide whether they should undergo surgery di-
rectly or receive other adjuvant treatments first.

Similarly, the prognosis for unresectable HCC patients who
have received non-surgical treatment can also be predicted by
radiomics analysis. Blanc-Durand et al. [10] retrospectively

Table 2. The classification and meaning of commonly used and mentioned imaging features

Classification Feature family Description Representative
features (infor-
mal name)

Meaning

Statistics-based First-order Morphology Describe geometric
aspects of ROI

Volume Counting of voxels in given volumes
Compactness

(compacity)
Measure for how sphere-like the volume

is
Sphericity Also describe how sphere-like the vol-

ume is using a different algorithm
Intensity-based

statistics
Describe how gray levels

are distributed within
the ROI. Do not re-
quire discretization

Mean (mean in-
tensity value)

The mean gray level of all the pixels
within the ROI, including all the posi-
tive and negative gray levels. It reflects
the average brightness of the ROI

Mean value of
positive pix-
els/ mean
positive
pixels

The mean gray level of all the pixels
within the ROI that have a positive
gray level

Standard
deviation

The SD of all the pixels within the ROI,
which reflects the width of the distri-
bution of intensities

Kurtosis (me-
dian kurtosis)

The peakedness of the gray-level distri-
bution within the ROI

Skewness (me-
dian
skewness)

A measure of asymmetry in the gray-
level distribution within the ROI

Energy Calculated based on specific algorithm
Intensity

histogram
Describe how gray levels

are distributed within
the ROI by discretizing
into gray-level bins

Entropy An information-theoretic concept, dis-
cretize using a fixed bin size algorithm
with 25 HU bins, extracted from a CT
image, which reflects the irregularity
of the ROI

Second-order Gray-level co-
occurrence
matrix

Describe how combina-
tions of discretized
gray levels of neigh-
boring pixels or voxels
are distributed along
one of the image
directions

Dissimilarity Assess gray-level variations

High-order Gray-level run-
length matrix

Assess run length,
which is defined as
the length of a consec-
utive sequence of pix-
els or voxels with the
same gray level along
one of the image
directions

Gray-level run-
length non-
uniformity
(gray-level
non-unifor-
mity for run)

To assess the distribution of runs over
the gray values

Transform-based Wavelets Transformation using
wavelet filter

Wavelet-2-H A feature extracted after the transforma-
tion of images by wavelet

Wavelet-2-V A feature extracted after the transforma-
tion of images by wavelet

Wavelet-3-D A feature extracted after the transforma-
tion of images by wavelet

Gabor Transformation using
Gabor filter

Gabor-1-90 A feature extracted after transformation
by Gabor filter

ROI, region of interest.
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analysed the pretreatment 18F-FDG PET of 47 patients assigned
to transarterial radioembolization using Yttrium-90 (90Y-TARE)
from the features extracted by texture and intensity analyses of
the entire liver instead of the ROI. They generated a scoring sys-
tem (pPET-RadScores) using the method of LASSO Cox regres-
sion. The cut-off value of this score system can divide the
patients into high- or low-risk groups, which is significantly cor-
related with progression-free survival (PFS) and OS (both
P< 0.01). In addition, together with the BCLC staging system and
alpha-fetoprotein (AFP) level, pPET-RadScores is confirmed to
be an independent predictor for PFS and OS.

In another study, Cozzi et al. [11] identified a single radiomics
feature of ‘compacity’, which is significant to OS of patients
treated with volumetric modulated arc therapy, by analysing
the ROI in non-contrast-enhanced CT images (P< 0.00001,
AUC¼ 0.8014). And two other features, namely ‘energy’ and
‘gray-level non-uniformity for run’, are significant to local con-
trol, although the AUC is only around 0.6. Another group of
patients are undergoing a validation study.

Surveillance

Undoubtedly, partial hepatectomy is the optimal choice to cure
most cases of HCC. However, with the 5-year recurrence rate
reaching �50% [14], a large number of post-operative patients
still suffer from the disease and recurrence becomes the main
cause of their death. Previous research has revealed that HCC
patients with recurrence after <1 year would have a poorer
prognosis than those with late recurrence (>1 year) [15]. Thus, if
we can detect the patients who have a high possibility of suffer-
ing from early recurrence, then it is possible for us to intervene
by a closer follow-up schedule and post-operative adjuvant
therapy, aiming to sustain a longer survival after surgical
resection.

Zhou et al. [12] constructed a model based on 21 radiomic
features chosen from 300 candidates that are significantly asso-
ciated with early recurrence (P< 0.001), with AUC, sensitivity,
and specificity of 0.817, 0.794, and 0.699, respectively. The result
is better than the model based on clinical features (including
age, gender, HBsAg, HCV-Ab, AFP level, ALT, c-GGT, AST, Child–
Pugh grade, BCLC stage, and history of preoperative adjunctive
treatment). The model combined with radiomics and clinical
features had even better results, with AUC, sensitivity, and spe-
cificity of 0.836, 0.824, and 0.7082, so it may become a potential
powerful tool for stratifying patients on recurrence risk
preoperatively.

Non-HCC malignant lesions

Likewise, it should also be a promising field to investigate other
kinds of malignant lesions like cholangiocarcinoma, liver sar-
coma, and liver metastases by means of radiomics. But, maybe
because of the restraint of relatively lower morbidity, the
amount of research is very limited.

Some imaging features summarized by the experience of
radiologists have validated clinical significance. Aherne et al.
[16] recruited 66 patients with surgically resected intra-hepatic
cholangiocarcinoma and were eager to find the associations be-
tween preoperative CT-imaging features and OS. They found
that three features (necrosis, satellite nodules, and vascular en-
casement) were significantly associated with OS. Although the
three features described are qualitative findings recognized by
radiologists, they inspire a way to explain the biological implica-
tions of radiomic features. In other words, if we can replicate

the research above by extracting radiomic features and try to
find the connection between radiomic and qualitative features,
we may provide a more easily understand explanation of the
potential clinical meaning of radiomic features.

Liver metastasis is another important type of liver lesion.
Lubner et al. [17] performed CTTA on pretreatment contrast-
enhanced CT from 77 patients with single liver metastasis, find-
ing that mean positive pixels, entropy, and SD are significantly
related to tumor grade and entropy is also predictable for OS.
They also compared the results of texture analysis using 2D pix-
els from a single slice with the results using 3D voxels from
multiple slices, though there was no significant differences.
Reimer et al. [18] tried to assess the therapy response to TARE
for liver metastases through radiomic analysis of post-
treatment MRI images. They revealed that median kurtosis in
arterial-phase MRI and median skewness and kurtosis in the ve-
nous phase could significantly discriminate patients on
whether they have a progressive disease. And, compared to re-
sponse-evaluation criteria in solid tumors 1.1 (RECIST 1.1), those
radiomics features could predict the therapy response even ear-
lier. Future research should focus on whether radiomics can tell
the differences between liver metastasis and primary liver can-
cer. Besides, are there any possibilities of detecting the origin of
liver metastasis by means of radiomics?

Benign liver diseases
Non-alcoholic fatty liver disease (NAFLD)

Since radiomics can not only detect on extremely subtle re-
gional change, but also analyse the average situation of the
whole organ or tissue, it is appropriate for radiomics to evaluate
the range and severity of diffuse lesions like liver steatosis.
NAFLD is the most common liver disease in developed coun-
tries. Taking the USA as an example, the results of the US
National Health and Nutrition Survey showed that the preva-
lence of NAFLD increased from 5.5% during 2005–2008 to 11%
during 1988–1994, holding the proportion of 75% in chronic liver
disease from 47% [19]. The early diagnosis and intervention of
NAFLD are the most important tasks in the field of liver disease
in the future.

The natural course of NAFLD patients may progress from
non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis
(NASH), which leads to liver fibrosis and eventually progresses
to cirrhosis. Patients with NAFL have a lower risk of fibrosis
than NASH patients [20]. Besides, NAFLD has been recently
identified as a risk factor for HCC. Patients with NASH has an es-
timated HCC incidence of 1.6% over 15 years [21]. So early recog-
nition of NASH is critical to delaying the progression of NAFLD.
However, there is currently no imaging method routinely used
to identify NAFL and NASH, and liver biopsy is needed for diag-
nosis [22]. Radiomics provides the possibility of non-invasive
classification of NAFLD.

Naganawa et al. [23] first applied texture analysis on non-
contrast-enhanced CT to detect NASH. A total of 88 patients
suspected of NASH based on abnormal liver function were di-
vided into the learning data set (n¼ 53) and the validation data
set (n¼ 35), and then subdivided by the level of serum hyal-
uronic acid (cut-off, 50 lg/L), since it can predict fibrosis, which
would affect the results of texture analysis. The reference diag-
nosis of patients with or without NASH was confirmed by liver
biopsy. For patients without suspicion of fibrosis, the NASH pre-
diction model was based on features of mean (without filter)
and skewness (2-mm filter) with an AUC of 0.94 for the
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validation data set. In contrast, the model for patients with sus-
picion of fibrosis was not satisfying, with an AUC of only 0.60.
One of the limitations of this study is that the sample only in-
cluded patients with a suspicion of NASH, which caused the
pretest possibility of NASH to be higher than the normal popu-
lation and may lead to better results than in reality. Besides, for
patients with pre-existing liver fibrosis, since the predictive
model did not perform well, an alternative test should be sought
for them.

Research has suggested that MRI, compared with transient
elastography and CT, is a more promising technique to accu-
rately diagnose NAFLD [24]. Especially, calculating the proton
density of the fat fraction based on MRI (MRI-PDFF) has the po-
tential to replace liver biopsy as the gold standard for the diag-
nosis and grading of NAFLD [25]. Future studies should use MRI
as the source of information.

Liver fibrosis

The application of texture analysis to CT images can also be
used to analyse the extent of liver fibrosis [26, 27]. Radiomics
can be applied not only to conventional imaging examinations
such as CT and MRI, but also to those specific tests in the liver-
disease field like 2D shear-wave elastography (2D-SWE), which
may have the potential to improve the accuracy of the diagnosis
of liver fibrosis.

Although 2D-SWE has been used widely to assess the stiff-
ness degree of the liver, different hospitals have utilized differ-
ent cut-off values for diagnosing liver fibrosis, which has made
it unfeasible to compare among different institutions. Wang et
al. [28] conducted a prospective study to use the method of
deep-learning radiomics to analyse 2D-SWE, including 398
patients with chronic hepatitis B with 1,990 images from 12 hos-
pitals. The AUCs of the model created to predict different stages
of liver fibrosis were 0.97 for cirrhosis (F4), 0.98 for �F3, and 0.85
for �F2, which were significantly superior to 2D-SWE (except for
�F2), AST-to-platelet ratio index, and fibrosis index based on
four factors. It also showed that the inclusion of more images
would improve the diagnostic accuracy of the model. So, we
have reason to believe that the model will achieve a better diag-
nostic efficacy with the gradual training of the model as more
information from new patients is added to the data set.

Since the result of the SWE will be affected when facing the
situation of ascites, obesity, and steatosis, Li et al. [29] combined
different modalities of ultrasonography, including original radio-
frequency, contrast-enhanced micro-flow, and conventional fea-
tures, in order to improve the accuracy of discriminating
significant fibrosis (�F2). They also compare the performance of
different machine-learning algorithms. Although the result was
not improved, similar ideas can be applied in future research.

Portal hypertension

Portal-vein hypertension, mainly caused by liver cirrhosis, is re-
lated to esophagogastric varices and hypersplenism, which may
lead to a bad clinical outcome. The measurement of the pres-
sure of the portal vein, however, is invasive and thus cannot be
easily accepted by routine patients in spite of minimal side
effects [30]. Liu et al. [31] tried to detect for clinically significant
portal hypertension, which is defined as a hepatic venous pres-
sure gradient >10 mmHg, by contrast-enhanced CT using the
method of radiomics. The performance of this model was vali-
dated by external cohorts, with a C-index �0.800 (95% confi-
dence interval: 0.614–0.986). The result of this study supports

the potentiality of the non-invasive measurement of portal
pressure in the future.

Liver disease and radiogenomics

The biological behavior of a tumor is closely related to its gene-
expression profile. Biopsy and tumor resection are the two
major existing methods to assess gene expression with certain
accuracy. The shortcomings of biopsy, obviously, are hemor-
rhage and tumor metastasis, which hinder its routine practice
in spite of a very low incidence. In addition, genetic evaluation
before surgical intervention is needed for appropriate individu-
alized management. Therefore, preoperative and non-invasive
examination of tumor-gene expression is a clinically ideal tar-
get. A study by Pinker et al. [32] showed that 78% of HCC gene-
expression profiles could be reconstructed with 28 image fea-
tures and radiogenomics—the method of judging gene expres-
sion by radiomics [33]—has potential clinical advantages.

Hepatocellular carcinoma

Microvascular invasion (MVI) has been identified as a powerful
independent predictor for early recurrence and poor prognosis
after surgical resection of HCC [34]. But the diagnosis of MVI
relies on histopathological testing after surgery. Thus, for clini-
cal decision-making on HCC patients, a non-invasive test that
can detect the presence of MVI is important. Traditional imag-
ing cannot reveal MVI because of the poor resolution. Moreover,
the results for predicting MVI with the traditional imaging trait
of a ‘non-smooth tumor margin’ in preoperative CT imaging are
unsatisfactory, with a sensitivity of 66% and specificity of 86.5%
[35].

Chen et al. [36] isolated 91 gene-expression profiles associated
with MVI in HCC. Based on this conclusion and the method of radio-
genomics, Banerjee et al. [37] isolated a cluster of radiomic features
that were correlated with MVI gene-expression profiles and then
established a model called RVI (Radiogenomic venous invasion) for
predicting MVI. Its sensitivity, specificity, and accuracy can reach
89%, 76%, and 94%, respectively, which are better than the results
when using traditional imaging traits. They also found that RVI is
associated with HCC early recurrence and poor prognosis. Renzulli
et al. [38] found that the combination of non-smooth tumor mar-
gins, peritumoral enhancement, and the radiogenomic features
could rule out the effect of tumor size on predicting MVI and was an
independent predictor with a positive predictive value of 0.95.

Liver metastasis

Radiogenomics can be used to determine the KRAS-mutation
status of colorectal cancer liver metastasis (CRLM) and thereby
the prognosis of surgical resection. A study by Margonis et al.
[39] showed that, in CRLM patients with KRAS mutations, surgi-
cal resection reduced the risk of recurrence and prolonged DFS,
whereas patients with KRAS wild-type tumor did not benefit
from surgical resection. Ji et al. [40] proposed that radiogenomics
could be used to predict the KRAS mutation of CRLM preopera-
tively. At present, radiogenomic studies for predicting the
KRAS-mutation status of solid tumors are still limited.

Perspective

Essentially, the significance of radiomics is to dig deeper for in-
formation on traditional medical imaging to make up for the
shortcomings of the human eye. Therefore, radiomics should
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no longer be dedicated to what can already be achieved by radi-
ologists, such as the diagnosis of liver cancer and fatty liver.
Conversely, topics such as the assessment of disease severity,
selection of therapeutic options, and prognosis prediction,
which are impossible to achieve by traditional radiology, should
be the focus of future radiomic research. As for liver disease, the
prognostic prediction of hepatic malignancies including, but not
limited to, HCC, the accurate discrimination of NASH from
NAFL, and the evaluation of its severity are promising aspects
that need to be further studied.

At present, research on radiomics is still in its infancy and
there are no standardized and unified standards for the compli-
cated research process. For the selection of ROI, there is cur-
rently no suitable algorithm to calibrate tumor regions. Most
studies calibrated ROI by radiologists, which increases the
amount of pre-work, while calibration by different people will
have an impact on the subsequent establishment of the model,
leading to limited reproducibility of the results and comparabil-
ity between studies [41]. Also, a lack of standardization in
reporting the results of research often makes it confusing for
readers. For example, some of the features mentioned above are
not declared fully and formally, such as there are different fea-
ture ‘means’ in both intensity-based statistical features and in-
tensity histogram features with different ways of calculation.
We propose that future studies should report features based on
the ‘Image biomarker standardisation initiative’ using formal
nomenclature and corner marks. Furthermore, traditional ma-
chine-learning algorithms such as random forests and deep-
learning algorithms like the neural network that have emerged
in recent years can both be used for the establishment of radio-
mics models. The algorithms used by each type of research are
different. Still, there is no research to prove which algorithms
are the most suitable for such work. Finally, most of the current
research results are still in the training sample stage, so the
high accuracy of the model does not reflect its actual predictive
ability. Whether the model is really effective or not depends on
the validation phase by the test sample.

In conclusion, while initial studies looking at radiomics have
been very promising, there has been poor standardization and
generalization of radiomic results, which limit the translation of
this approach into clinical practice. Clear limitations of this field
are emerging, especially with regard to data-quality control, re-
peatability, reproducibility, generalizability of results, and issues
related to model overfitting. To address those problems, we pro-
pose that future radiomic research should be assessed via the
radiomics quality score established by Lambin et al. [3]. By doing
so, radiomics studies can be more comparable and increase its
potential to be applied in future clinical practice. Foreseeably, the
advance in radiomics will largely contribute to the development
of personalization and precision medicine.
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