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Abstract

Genomic test results collected during the provision of medical care and stored in Electronic Health 

Record (EHR) systems represent an opportunity for clinical research into disease heterogeneity 

and clinical outcomes. In this paper, we evaluate the use of genomic test reports ordered for cancer 

patients in order to derive cancer subtypes and to identify biological pathways predictive of poor 

survival outcomes. A novel method is proposed to calculate patient similarity based on affected 

biological pathways rather than gene mutations. We demonstrate that this approach identifies 

subtypes of prognostic value and biological pathways linked to survival, with implications for 

precision treatment selection and a better understanding of the underlying disease. We also share 

lessons learned regarding the opportunities and challenges of secondary use of observational 

genomic data to conduct such research.
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1. Introduction

The vision of the Learning Healthcare System relies on the routine collection and ongoing 

use of clinical data to systematically extract medical knowledge and to apply it to patient 

care decisions [1]. Doing so at scale and in the context of Precision Oncology requires 
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automated handling and integration of both clinical and genomic data, as well as effective 

approaches to mine data already acquired to date to enable retrospective knowledge 

generation. In practice, patients’ genomic test results are yet to be integrated into most EHR 

systems [2] and are thus underutilized for predicting clinical outcomes or optimizing patient 

care in a systematic and automated fashion.

To a large extent, bioinformatics research into cancer has relied on a limited set of publicly 

available datasets such as The Cancer Genome Atlas (TCGA) [3] and National Center for 

Biotechnology Information Gene Expression Omnibus (NCBI GEO) [4], which are clean, 

annotated, and multidimensional (containing multi-omics data). However, these datasets 

have several limitations. Clinical annotations are limited in scope and often manually 

curated, with curation relying on an ongoing directed effort rather than taking advantage of 

large-scale pre-existing passively collected data, such as the electronic health records data. 

These public datasets are decoupled from longitudinal clinical patient records, thus limiting 

our ability to leverage this data to study disease progression, response to treatment, or 

applications to inform clinical decisions. The curated snapshot data may harbor biases and 

may not be representative of the real-world population. Finally, many genomic variants are 

rare, and their identification would require a study of large cohorts, which is only possible to 

accomplish in the community at large in the clinical setting. For these reasons, the secondary 

use of clinical genomic test results represents a practical opportunity for expanding data 

acquisition for ongoing research, as well as for the development of genomic decision support 

systems.

On the other hand, genomic patient data routinely collected for oncology patients to support 

clinical decisions presents several challenges. First, it may be less comprehensive since only 

subsets of genes may be regularly tested in practice, and only results deemed clinically 

relevant at the time of interpretation are recorded and made available for downstream 

analysis. In addition, depending on the bioinformatics pipeline employed and inclusion of 

normal samples for filtering, the data may be biased by the inclusion of germline variants. 

Finally, genomic test reports may only be available in unstructured text format and are at 

least partially composed manually; extracting structured data from these reports is a 

laborious text mining task that may be error-prone and costly.

Cancer can be viewed as a disease of disrupted informational networks or pathways. In the 

seminal work on the landscapes of cancer, Vogelstein et al. (2013) showed that disruptions in 

12 pathways governing cell fate, proliferation, and genome maintenance confer a selective 

growth advantage to cells and lead to tumorigenesis [5]. As a manifestation of cancer 

heterogeneity, patients may present with different mutated genes, but those genes may 

participate in the same biological process and therefore exert similar physiological effects 

and result in similar disease phenotypes. Elucidation of disrupted gene pathways from gene 

expression data is an area of active research in systems biology [6,7], and several gene 

pathway or network knowledge bases have been developed, including Reactome [8], KEGG 

[9], and Gene Ontology [10]. Zhao et al. [11] and Yang, Ge, and Zheng [12] have developed 

approaches to apply network topology knowledge to integrate gene expression data with 

somatic gene mutations on the network level. Kuijjer et al. [13] and Hofree et al. [14] 

demonstrated that grouping patients within cancer types based on somatic gene mutations 
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alone mapped to altered pathways resulted in cancer subtypes of prognostic value. Altieri et 

al. [15] proposed a method applying a color coding technique to somatic mutation data 

overlaid on a protein-protein interaction network to identify a subnetwork of genes most 

predictive of survival within cancer-specific cohorts, while Fang and Gough [16] used Cox 

regression analysis with similar data to identify a subset of genes on a pan-cancer basis. All 

six teams used publicly available datasets from TCGA for their research. In the clinical 

setting, somatic mutations from cancer patient biopsies are routinely identified, particularly 

for more complex clinical cases. However, most often such tests are performed for a panel of 

genes (on the order of 500 genes) with known actionable associations with cancer, rather 

than the full exome. To our knowledge, this study is the first work demonstrating the 

application and utility of pathway analysis for cancer subtyping to real world data extracted 

from clinical cancer pathology reports.

In this research, we evaluate the use of pathology reports of genomic tumor sequencing and 

clinical data obtained from the electronic health records of the patients for mining cancer 

subtypes of prognostic value with the view to inform clinical care decisions as well as to 

derive a deeper understanding of cancer biology. We hypothesized that pathology test reports 

for a relatively large cancer panel would lend themselves to this approach despite certain 

limitations. These limitations include reported variants being limited to only cancer-

associated genes, significant manual data curation that may not be generalizable to other 

datasets and may not scale for larger datasets, and potential biases introduced by filtering 

performed by bioinformatics pipelines. We combined biological pathway knowledge in the 

Reactome knowledgebase with somatic mutation data mined from clinical genomic tests, 

then applied unsupervised hierarchical clustering to identify clusters of patients with 

similarly mutated biological pathways. We obtained three sub-phenotypes of cancer patients 

across multiple cancer types that show significant differences in survival outcomes. We then 

identified biological pathways associated with worse survival outcomes and replicated a 

large subset of these pathways in a replication dataset.

Our key methodology contributions include an algorithm for patient similarity and disease 

subtyping in a pan-cancer cohort using a relatively small subset of somatic mutations 

mapped to affected biological pathways and a methodology to identify novel pan-cancer 

mechanisms implicated in worse survival outcomes based on differences among patient 

groups. This work demonstrates potential applications of the secondary use of genomic data 

obtained during routine provision of health care for research and clinical decision support.

2. Datasets

We analyzed a set of genomic test pathology reports ordered for 2906 patients of The 

NewYork Presbyterian Hospital (NYP), administered between March 7, 2011 and June 7, 

2018. Test reports selected for analysis included 1414 reports for Columbia Combined 

Cancer Panel (CCCP), a panel of 467 cancer-associated genes analyzed with next-generation 

sequencing (NGS), with additional information on copy number variations (CNV). Samples 

were obtained during the provision of healthcare, sequenced and processed by the 

bioinformatics pipeline of the Columbia University Medical Center Laboratory of 

Personalized Genomic Medicine. Results were curated and reported in the genomic 
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pathology reports finalized by a molecular pathologist, as previously reported [17]. Also 

included in this analysis were 366 test results from clinical cancer whole exome sequencing 

and transcriptome sequencing, with bioinformatics analysis and reporting performed as 

previously described [18]. A total of 10,791 gene variants, 1318 CNV events, and 196 gene 

fusions were automatically extracted from 1310 genomic test reports. Gene variants with a 

high probability of deleteriousness, as evaluated by CADD score [19] and MutPred [20], and 

all CNVs and fusions were retained. Genes were mapped to Reactome [8] pathways 

downloaded from reactome.org on April 13, 2019 (see Fig. 1).

Clinical information for the same set of patients was obtained from Columbia University 

Irving Medical Center (CUIMC) Observational Health Data Sciences and Informatics 

(OHDSI) database containing data extracted from the NYP EHR. For 1554 patients that had 

a valid genomic test report, conditions and medications were extracted from OHDSI on July 

30, 2018, and death dates were extracted on September 10, 2018. Clinical data represents 

893,951 records of medical conditions for the period between November 17, 1985 and 

February 2, 2018 and 521,458 records of medications between October 18, 1996 and 

February 2, 2018. We mapped conditions to SNOMED-CT codes [21] representing all 

neoplastic diseases and retained for further analysis for 1155 patients diagnosed with a 

neoplastic disease. Primary cancer sites were obtained by mapping the SNOMED-CT 

disease codes to ICD-O-3 topology codes [22].

We obtained additional cancer-related data from the NYP Tumor Registry containing 

information for 38,776 NYP patients diagnosed with cancer between 1966 and 2017. This 

dataset included ICD-O-3 topological tumor classification, tumor grade, and dates of cancer 

diagnosis and death. Out of 1155 patients with genomic test results and a neoplastic disease 

diagnosis, 916 patients had a record in the Tumor Registry.

We performed validation of the proposed methodology and key findings on the integrated 

TCGA dataset of 3281 tumors across 12 tumor types along with key clinical data prepared 

and made available by Kandoth et al. – [23]. This dataset differs from the NYP dataset in a 

number of significant ways. Firstly, it does not apply manual selection or curation of 

significant genes and includes variants in 20,947 genes; however, it does not include gene 

fusions or CNVs. In contrast, the majority of our cases were derived from the Columbia 

cancer panel which reports on variants in only 467 genes and a smaller subset of cases 

derived from cancer whole exome and transcriptome sequencing (in total, 558 genes where 

reported between the two types of test reports), and these reported variants underwent 

manual curation. Since the validation dataset is not curated, it is significantly larger, with a 

total of 617,354 variants across 3281 tumor samples, compared to 12,305 variants for 2906 

patients in the NYP dataset before pre-processing (8732 variants for 1155 patients after 

filtering). Finally, the validation dataset includes a different combination of primary tumor 

types and manually annotated verified clinical data such as survival, tumor type, and tumor 

stage.
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3. Methods

The proposed analytical pipeline is outlined in Fig. 2 and consists of genomic and clinical 

data processing with subsequent analysis aimed at discovering cancer subtypes and 

predicting clinical outcomes.

3.1. Mining and classifying genomic test data

We extracted gene variants, gene amplifications, deletions, and fusions from the text of 

genomic test reports in R using regular expressions based on manually identified patterns. 

For example, gene variants were found by matching patterns like “Gene: SRSF2 Variant: 
NM_001195427 c.284C > A, p.P95H”, with small variations on punctuation. Detecting copy 

number variations and fusions required splitting text by sentences and phrases; gene name 

recognition; and identification of key phrase constructs like “presence of a LMNA-NTRK1 
fusion”, “amplification of CDK4, MDM2, and TERT”, etc. Regular expressions used to 

extract gene variants, CNVs, and fusions are listed in Supplementary Table 1.

Variants in the reports had been classified and tiered by molecular pathologists by 

considering factors such as actionability, presence in targeted pathways, known roles in 

tumorigenesis, presence in population or cancer databases, predicted effect on the protein, 

and in silico functional predictions for missense variants. For our analysis, we considered all 

reported variants, including variants classified as variants of uncertain significance (VUS). 

We then removed gene variants that were predicted to have no functional impact on the gene 

product by in silico algorithms. In order to estimate functional impact of gene variants, we 

mapped gene variant transcripts to chromosomal coordinates using Mutalyzer [24], then 

annotated the variants with CADD score of variant deleteriousness [19] and MutPred’s top 5 

predicted functional consequences [20] using Ensembl Variant Effect Predictor (VEP) [25]. 

The 9,499 initial gene variants (excluding CNVs and fusions) extracted from all reports were 

mapped to 9,436 unique chromosomal coordinates, and 9,279 variants were annotated by 

VEP. 7,631 variants were classified as potentially deleterious and retained for further 

analysis based on satisfying at least one of the following criteria: CADD score > 15[26]; 

mutations classified as stop gained, frameshift, start lost or stop lost, and splice variant 

changes, as these mutations are expected to result in truncated proteins [27,28]; or mutations 

with predicted consequences by MutPred. Variants that were not successfully mapped to a 

chromosomal location, not successfully annotated by VEP, or not deemed to be potentially 

deleterious were excluded from further analysis.

Out of 9,279 variants recognized by VEP, only 1,242 (13.4%) had a ClinVar significance 

value [29], meaning that some laboratory had submitted a clinical interpretation of these 

variants to the ClinVar database. Among mutations without a known ClinVar interpretation, 

1,881 mutations are frameshift or premature stop codon variants expected to have high 

impact.

For patients with multiple reports, we combined mutations and CNVs across all reports. For 

the purposes of this analysis, we did not address tumor evolution, as would be necessary for 

use cases such as studying the emergence of drug-resistant phenotypes.
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3.2. Extracting and harmonizing clinical data

We extracted clinical data from OHDSI and tumor registry for the relevant set of patients 

and harmonized data inconsistencies between the two datasets or within each dataset. 

Number of months elapsed between the first cancer diagnosis and the last observation or 

death was later used in survival analysis.

3.2.1. Disease classification—We obtained a set of 4,239 SNOMED-CT disease 

codes for malignant neoplastic diseases by traversing the hierarchical (“Is-A”) relationships 

in the SNOMED-CT database [21] (US Snapshot database, March 1, 2018 release), starting 

at node 363346000 (“Malignant neoplastic disease”), and identified 1,165 patients with this 

diagnosis code. We then attempted to classify patients by the primary cancer site. Both the 

OHDSI and the Tumor Registry datasets had information on the primary cancer site; 

however, this information was often incomplete or inconsistent across datasets or even 

within the dataset. Moreover, patients genuinely present with various primary cancers at 

different points in their clinical history. For patients with a single entry in the Tumor 

Registry, we used the primary cancer site recorded in the Tumor Registry. For patients with 

no record in the Tumor Registry, the ICD-O-3 topology code associated in SNOMED-CT 

with the first primary neoplastic condition recorded in OHDSI was used as the primary 

cancer site. For patients with multiple Tumor Registry entries or conflicting primary sites 

obtained from the Tumor Registry and OHDSI, the primary cancer site was coded as 

“multiple”. Clinical staging was obtained from the Tumor Registry. We summarize clinical 

data for the cohort in Table 1.

3.2.2. Dates for survival analysis—In order to handle the right-censored nature of 

survival data, survival analysis considers the period from diagnosis to death or from 

diagnosis to the last observation, with the indicator whether the event of death has occurred. 

We obtained dates of first diagnosis, last observation, and death for all patients from both 

OHDSI and the Tumor Registry and attempted to reconcile inconsistencies between the two 

data sources. We obtained the date of the first cancer diagnosis by using the earlier of the 

first OHDSI diagnosis date with neoplastic disease and the diagnosis date in the Tumor 

Registry, filtering out invalid dates. For the last observed date, we used the maximum of the 

last observed date in the Tumor Registry and the date of the last condition or medication 

record in OHDSI.

Death dates across OHDSI and Tumor Registry also required harmonization: 9 patients had 

multiple death dates listed in OHDSI death Table 3 patients had multiple dates in the Tumor 

Registry; 139 patients had a date of death only in OHDSI, and 75 only in the Tumor 

Registry. Out of 174 patients that had a date in both datasets, both dates did not agree in 42 

cases. Moreover, in 16 cases, OHDSI contained records of conditions or medications after 

that date; and 27 that had a genomic test, which was first administered on March 7, 2011, 

had recorded dates of death in OHDSI prior to that date. We removed invalid dates of death 

by filtering out those that occurred before March 7, 2011 and used the Tumor Registry date 

as the consensus date if available, as our manual review showed it to be more reliable. If no 

more than one medication or condition record occurred after the reported death date, we 

considered those records spurious, and retained the death date; however, for cases of 

Lyudovyk et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2020 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



OHDSI-reported death dates with more than one condition or medication following that 

date, we treated the reported death event as unreliable.

3.3. Subtyping based on pathways harboring mutated genes

Proteins encoded by genes form functional and regulatory networks or pathways; cancer, as 

well as other diseases, can be viewed as the disease of disrupted processes due to mutations 

altering healthy pathways. Many gene mutations, including mutations that are rare within the 

population, can result in the same altered pathway, leading to the same functional 

consequences [5,6,7,8,11].

For each patient, we mapped gene mutations, CNVs, and fusions to the corresponding 

affected biological pathways using the Reactome pathway database [8] downloaded on April 

13, 2019 and containing 1829 pathways for Homo sapiens. We removed pathways that 

contained 500 genes or more and those containing fewer than 4 genes, as those pathways 

would be less informative for analysis; removed duplicate pathways with the same 

participating genes; and filtered pathways that do not contain any genes in the gene mutation 

dataset, resulting in 870 Reactome pathways for further analysis. Retaining patients that had 

mutations in the remaining pathways resulted in a cohort of 1143 patients.

We applied one-hot encoding to the matrix containing patients as rows and pathways as 

columns, where a value of 1 in the ith row and jth column indicates that the ith patient has a 

mutation in at least 1 gene in the jth pathway. We then performed unsupervised hierarchical 

clustering with binary distance on the resulting one-hot encoded matrix of pathways and 

patients using hclust function in stats R package [30], with method parameter set to 

“ward.D2”. We determined the optimal number of clusters k = 3 using fviz_nbclust function 

in factoextra R package [31], which iterates through various k’s and plots within-cluster sum 

of squares (“elbow plots”) and average silhouette width for each k. We repeated one-hot 

encoding and clustering on the initial set of genes as well. Hierarchical clustering based on 

pathways and genes is illustrated in Fig. 3A–B.

3.4. Predicting survival

Prognosis (survival time, or time from diagnosis to death) is an example of right-censored 

data where some events are observed, while others have not occurred in the observation time 

period. We performed Kaplan-Meier survival analysis [32] using SurvFit in survminer R 

package [33] to determine whether cluster assignment on pathway or gene level was 

informative of survival, in other words, whether the subtypes identified by hierarchical 

clustering had prognostic value. We then identified differentially altered pathways between 

clusters associated with better and worse survival outcomes and evaluated correlation of 

aberrations in those pathways with survival.

3.5. Reproducibility of clustering methodology and key findings

We applied the proposed methodology to the validation dataset: we annotated the reported 

variants with VEP and filtered based on CADD and MutPred values using the same criteria 

as described earlier. We then mapped the genes affected by mutations to Reactome 

pathways, performed one-hot encoding of pathways and genes separately, and applied 
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hierarchical clustering to identify clusters of similar patients based on altered pathways and 

affected genes. We then performed survival analysis to determine whether identified clusters 

are associated with survival outcomes.

We then investigated whether Reactome pathways identified previously as differentially 

altered between clusters of better and worse survival in the original dataset are in fact 

predictive of survival in the validation dataset.

4. Results

4.1. Variant and CNV extraction

We evaluated extraction of gene variants from genomic test reports by manually reviewing 

randomly selected genomic test reports for 5% of patients (77 patients). To evaluate 

extraction of CNVs and fusions, in addition we manually reviewed reports for 40 patients 

randomly selected among those who had reports containing one of the following key 

phrases: “fusion”, “overexpression”, “high copy number”, “increased copy number”, 

“overexpressed”, “over expressed”, “amplification”, “gain”, “copy number loss”, “deletion”, 

“decreased copy number”, “copy loss”, “low level of expression”, “low expression level”, 

“loss”. We measured the accuracy of automatic extraction compared to manual review with 

F1 metric, Precision (Positive Predictive Value), Recall (True Positive Rate), and Specificity 

(True Negative Rate). Table 2 lists evaluation measures and demonstrates that overall 

extraction of all variation was rather accurate, with F1 metric between 0.9969 for gene 

variants and 0.8485 for CNV. Extraction of gene variants was highly precise, sensitive, and 

specific; extraction of CNVs was highly specific but less sensitive; and extraction of fusions 

was highly sensitive and specific but less precise.

4.2. Patient subtyping with hierarchical clustering

Our dataset consisted of a set of genes smaller than the genome-wide sets of somatic 

mutations and copy number alterations typically used for bioinformatics analyses to identify 

biological markers of survival or elucidate disease phenotypes. Analysis of mutations 

extracted from genomic test reports, when mapped onto pathways using the Reactome 

pathway database, was able to group patients into three subtypes that had statistically 

significant prognostic value with a p-value of 0.0207, confirmed by log-rank test. Clusters 2 

and 3 had the most marked difference in survival, with a p-value of 0.017. In contrast, 

clustering patients based on mutated genes themselves did not produce any prognostically 

significant patient subtypes.

We assessed that cluster assignment was not driven primarily by the overall mutational load 

(number of mutations in each patient): Pearson correlation between the number of mutations 

and cluster assignment with Reactome pathways at k = 3 was 0.027, p-value 0.3558. It is 

notable that the primary cancer site had more prognostic value (Log-rank p-value = 0.0084, 

Fig. 4B) than the 3 Reactome-based subtypes, suggesting that subtyping could be further 

improved when performed within each cancer type separately, given sufficient cohort sizes.

Stability of cluster assignments was evaluated using clusterboot method in fpc R package 

[34] with the number of bootstrap iterations set to the default value of 100. Bootmean value 
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measures the mean Jaccard similarity between clusters in each bootstrap iteration and the 

original cluster assignment, with values closer to 1 indicating higher stability. Clusters with 

Jaccard similarity less than the default value of 0.5 between the bootstrap clusters and the 

initial cluster assignments are considered dissolved, with the smallest number of dissolutions 

across all bootstrap iterations indicating higher cluster stability. Hierarchical clustering 

based on pathways produced more stable cluster assignments than clustering based on 

altered genes, as seen in Table 3.

Cluster assignments were evaluated for correlation with primary site, sex, age at diagnosis, 

tumor stage at diagnosis, and the number of different cancer sites recorded in a patient’s 

clinical history, using Pearson correlation (cor.test function in stats R package [30]). Cluster 

1 assignment was positively correlated with age at diagnosis, total number of cancer sites in 

EHR, gynecological and lung cancer primary sites (p-values of 0.0027, 0.0000, 0.0000, 

0.0001 respectively). Cluster 2 was negatively correlated with age at diagnosis (p-value 

0.0002) and positively correlated with stage at diagnosis (p-value 0.00000), with a higher 

proportion of CNS (including brain cancer) and hematopoietic cancer cases (p-values 

0.00000 and 0.00004) and a lower representation of pancreatic, GIST, and gynecological 

cancer. In essence, Cluster 2 represents a younger cohort of patients with cancers more 

frequent in that age group. Cluster 3 had an over-representation of pancreatic cancer cases 

and a lower representation of CNS, breast and other primary sites. All statistically significant 

correlations with p-value < 0.01 are listed in Supplementary Table 2.

4.3. Visualization of cluster separation

Differences in pathway-level mutational signatures among 3 clusters are visualized in Fig. 

3E using igraph R package [35]. Pathways are represented with yellow circles, with edges 

indicating connections to patients. The relative size of each pathway represents its degree of 

connectedness, or in other words the number of patients with a mutation in that pathway. 

Cluster 2 and Cluster 3, represented by edges of red and green color respectively, show a 

visible separation. Pathways that are differentially affected among patients within these two 

clusters were studied as candidate survival-related biomarkers in further analysis.

Additionally, we visualized the separation of patient clusters based on the similarity of 

altered pathways and on the similarity of mutated genes, separately, applying Principal 

Coordinate Analysis (PCoA) with cmdscale function in stats R package [30], with plotting 

support from vegan R package [36]. PCoA is a technique used to reduce complexity in high-

dimensional data while retaining most of the information and its inherent structure or 

patterns [37]. PCoA plot of patient clusters based on altered pathways in Fig. 3C highlights a 

visible separation among the three clusters, while the PCoA plot of clusters based on genes 

(Fig. 3D) displays a much less clear separation.

4.4. Differentially altered pathways between clusters

Results of survival analysis based on Reactome pathway subtyping with 3 clusters showed a 

significant difference in survival between clusters 2 and 3. If these sub-phenotypes have 

prognostic value, then identifying differences between them may lead to prognostic markers. 

We identified Reactome pathways with significant differences between clusters 2 and 3 by 
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calculating fold-change between the number of patients in cluster 2 and 3 with alterations in 

each pathway, normalized for the size of each cluster, taking into account pathways altered 

for at least 10 patients. Statistical significance of the difference in altered pathways between 

clusters was determined by the chi-square test, with p-values adjusted for multiple 

comparisons for false discovery rate (FDR). A subset of altered pathways with the most 

significant difference between clusters 2 and 3 is shown in Fig. 5, and the complete list of 

pathways, their fold-change between clusters, and their association with survival are 

provided in Supplementary Table 3.

4.5. Identifying prognostic markers

Differentially altered pathways (chi-square test adjusted p-value < 0.05) between clusters 2 

and 3 were evaluated for their impact on overall survival with Kaplan Meier estimator [38, R 

implementation:33]. Kaplan Meier plots in Fig. 6 illustrate the impact of mutations in the 

top 9 of these pathways to overall survival [33]. Data for all pathways differentially altered 

between Clusters 2 and 3 is provided in Supplementary Table 3.

Among pathways found to be associated with survival and differentially altered between the 

two clusters, many represent processes known to be associated with cancer, such as those 

involving TP53, VEGFR2, PUMA, EGFRvIII, SHC1, GRB2, ERB2 [39–43]. Several 

pathways, however, have only recently been implicated in tumorigenesis or response to 

chemotherapy, and their mechanism of action is not yet fully understood. For example, 

although the connection of Gastrin to gastric cancers has been known [44], the mechanism 

of action via EGFR transactivation has only recently been elucidated [45]. Similarly, until 

recently, few studies implicated PI5P in signaling linked to oncogenesis, largely due to the 

difficulty of detection of this molecule [46]. The pathway we found to have the strongest 

association with survival (“TP53 regulates transcription of additional cell cycle genes whose 

exact role in the p53 pathway remain uncertain”, p = 0.0052 by Kaplan-Meier Log-rank test) 

suggests that further research into genes participating in p53 pathway may lead to a better 

understanding of potentially pan-cancer mechanisms of the cell cycle.

4.6. Validating methodology and findings

Although cluster assignments themselves could not be directly compared between the 

original NYP dataset and the validation dataset, applying the same computational approach 

to the validation dataset lead to clusters predictive of the clinical variable of interest. In 

addition, a significant number of pathways identified as associated with survival in the 

original dataset were also predictive of survival in the validation dataset, despite differences 

in the cohort composition and the overall set of genes included in the two datasets.

Annotating the validation dataset with VEP and filtering out mutations expected to not have 

a significant impact based on CADD and MutPred criteria yielded 450,230 variants across 

18,775 genes. We mapped these genes to 1,374 Reactome pathways belonging to the Homo 

Sapiens species and containing between 4 and 499 genes. We used hierarchical clustering to 

determine similarity between patients based on the common altered biological pathways. 

Setting the number of clusters at k = 3, 4, 5, 6, and 7 resulted in cluster assignments which, 

when used in Survival analysis, resulted in statistically significant correlations with survival 
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outcomes. For example, at k = 3, cluster assignment was highly linked to survival, with log-

rank test value of 4.11538e-05. This relationship to the survival outcome was retained even 

when prior to clustering the validation dataset was filtered to only the genes in the original 

NYP dataset (long-rank test of cluster assignment at k = 3 to survival outcome: 

1.139372e-05).

In the original dataset, 27 pathways were significantly more frequently altered in the cluster 

of poor prognosis compared to the cluster of good prognosis. Of those 27 pathways, we 

found that 14, or 52%, were also both significantly altered in the poor survival cluster and 

predictive of poor survival in the validation dataset (log-rank p-value < 0.05, adjusted with 

Benjamini & Yekutieli correction). In contrast, only 3% of all pathways with mutations 

reported in the validation dataset, or 54 out of 1,374 pathways, were predictive of survival. 

When we ranked all pathways in the validation dataset by their relationship to survival, as 

measured by the adjusted log-rank test, 17 of the 27 pathways identified as significant in the 

NYP dataset were in the top 10% by significance in the validation dataset.

Our validation demonstrates that both the computational approach and the key findings of 

our analysis are generalizable to a much larger dataset that is not restricted to genes 

previously implicated in cancer and composed of a different pan-cancer combination of 

primary tumors (see Table 4).

4.7. Comparison to existing approaches

Prior published algorithms have been evaluated in either simulation data or full exome 

sequencing datasets with mutation data for 5–30 times larger sets of genes and often on 

cancer-specific cohorts. Thus, direct performance comparison of the proposed approach on a 

highly restricted gene panel data to existing algorithms is difficult. However, the proposed 

approach yields a comparable and often superior predictive power of identified clusters on 

the full exome validation dataset when compared to existing approaches within cancer-

specific cohorts. A summary of existing approaches and log-rank test results for Kaplan 

Meier estimator, wherever available, is provided in Table 5.

5. Discussion

Ongoing systematic analysis of all available clinical data is one of the tenets of the Learning 

Healthcare System. For diseases with a genomic component, such as cancer, this analysis 

should include genomic sequencing report data. Implementing truly automated decision 

support systems based on clinical and genomic data in support of precision medicine 

requires addressing challenges involving cohort sizes, data incompleteness, biases, and data 

inconsistency among various sources pointing to potential data inaccuracies.

Much of clinical knowledge resides in unstructured patient notes. While genomic test results 

represent the inherently structured output of bioinformatics pipelines, in practice the original 

structured data may be inaccessible, and text extraction from unstructured text format 

represents another challenge. Moreover, current bioinformatics knowledgebases reflect the 

incomplete state of knowledge in areas such as assessing the functional impact of genomic 

variation and mechanisms of action of genes and gene networks. Additionally, although 
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datasets such as the one used in this analysis have the advantage of manual curation by 

experts, which can reduce germline variants and sequencing or other technical artifacts from 

contaminating downstream analyses, this curation also restricts the available dataset, reduces 

the statistical power, and introduces the opportunity for data bias. Finally, clinical data used 

for such analysis may harbor data inconsistencies and other quality issues. Despite potential 

data incompleteness, inconsistency and biases, we demonstrate that data contained in 

genomic pathology test results can be successfully applied to patient classification and pan-

cancer research.

We illustrate the application of pathway analysis to clinical genomic data and show that it 

can reveal structure in the data that is obscured by tumor heterogeneity when looking at 

individual gene mutations. In future work, pathway-level cancer subtype profiles can be 

extracted using Principal Component Analysis and combined with clinical features such as 

primary site, stage, age at diagnosis, and treatment modalities to develop a patient 

classification model. Such classification models can be trained retrospectively on a cohort of 

patients within the EHR system and then applied to classify new patients.

This analysis validates known biological pathways and identifies novel ones as predictive of 

patient survival on a pan-cancer basis, using observational clinical records and clinical 

pathology report data. In future work, biological pathway information can be obtained from 

additional datasets such as KEGG [9] and Gene Ontology [10]. Further validation of novel 

pathways can lead to a better understanding of biological processes implicated in cancer 

development. Incorporating transcriptome data, the directionality of impact of the gene 

alteration to a pathway can further improve this analysis. Moreover, patient similarity based 

on altered biological pathways can be extended to identify an appropriate course of therapy 

for patients based on the similarity of their tumor mutational profile to best responders of 

different therapy modalities or targeted therapies.

Limitations of this work include potential data biases introduced by batch effects of test 

methodologies changing over the course of data collection, as well as different groups of 

patients and tumor types undergoing testing over time. In addition, this approach yields an 

ability to distinguish between patient subtypes which may reflect various structural 

differences among patients’ mutational profiles, not limited to survival and other clinical 

outcomes. These limitations are partially addressed by validation on an independent dataset 

and regression of obtained patient subtypes and differences among subtypes on clinical 

variables of interest. The intention of this work is to study pan-cancer subtypes and 

mechanisms linked to survival, while further work within cancer types could yield cancer 

type-specific subtypes and uncover pathways associated with survival or other clinical 

outcomes.

This analysis was undertaken on mutational data extracted from textual pathology reports. 

Capturing and reporting in EHR the underlying structured data from the pathology tests 

would avoid potential information loss and inaccuracies caused by data extraction from text 

and would enable easier data reuse for downstream research and application of precision 

healthcare.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Obtaining patient cohort from genomic test reports and observational clinical data.
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Fig. 2. 
The data processing and analytical workflow.
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Fig. 3. 
Hierarchical clustering based on the similarity of mutated pathways and genes. A-B: 

Hierarchical clustering of cancer cases based on altered Reactome pathways (A) and 

affected genes (B). C-D: PCoA plot of clusters based on altered Reactome pathways (C) and 

affected genes (D). E: Graph visualization of cancer cases (red circles) connected to altered 

Reactome pathways (yellow circles), with edges representing presence in a patient’s 

pathology report of a mutation, CNV, or fusion of a gene participating in the corresponding 

pathway. F: Heatmap representation of patient clusters based on affected Reactome 

pathways (150 pathways with most variation among patients are shown). Color bar 

represents the cluster assignment of those patients. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
A: Survival analysis with Kaplan-Meier plot based on subtypes derived from altered 

pathway profiles of 3 patient clusters. B: Kaplan-Meier survival plot stratified by the 

primary tumor site.
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Fig. 5. 
Reactome pathways with the most significant difference in alteration rates between Cluster 2 

and Cluster 3, measured by log fold change.
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Fig. 6. 
Reactome pathways with the highest difference in alteration frequency between Clusters 2 

and 3 and the highest impact on survival outcomes, as evaluated across the full cohort by 

Log Rank test.
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Table 1

Demographic and clinical summary of patient cohort (Hema: Hematopoietic, GI: Gastrointestinal Tract; CNS: 

Central Nervous System; Gyne: Gynecological).

Cohort summary N= 1155

Age at diagnosis Sex

> 18 762 Male 476

< = 18 146 Female 431

Unknown 247 Unknown 248

Primary tumor site Clinical tumor stage

Hema. 207 0 7

GI 130 1 122

CNS 122 2 88

Pancreas 106 3 85

Gyne. 71 4 174

Liver 58 Unknown/ Not staged 689

Lung 49

Breast 47

Skin 44

Multiple 46

Other 275
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Table 2

Evaluation of data extraction accuracy for gene variants, CNVs, and gene fusions.

Accuracy measure Gene variants CNVs Fusions

F1 Metric 0.9969 0.8485 0.9020

Sensitivity (TPR) 0.9979 0.8092 1.0000

Specificity (TNR) 0.9993 0.9969 0.9991

Precision (PPV) 0.9958 0.8917 0.8214
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Table 3

Cluster stability evaluation with Clusterboot.

Cluster stability

Based on pathways Cluster 1 Cluster 2 Cluster 3

bootmean 0.7805 0.8963 0.9578

# times dissolved 3 0 0

cluster size 213 718 212

Based on genes Cluster 1 Cluster 2 Cluster 3

bootmean 0.4468 0.4000 0.6782

# times dissolved 71 98 0

cluster size 119 314 722
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