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Abstract

The organization of estrogenic signaling in the CNS is exceedingly complex. It is comprised of 

peripherally and centrally synthesized estrogens, and a plethora of types of estrogen receptor that 

can localize to both the nucleus and the plasma membrane. Moreover, CNS estrogen receptors can 

exist independent of aromatase (aka estrogen synthase) as well as oligomerize with it, along with a 

host of other membrane signaling proteins. This ability of CNS estrogen receptors to either to 

physically pair or exist separately enables locally produced estrogens to act on multiple spatial 

levels, with a high degree of gradated regulation and plasticity, signaling either in-phase or out-of 

phase with circulating estrogens. This complexity explains the numerous contradictory findings 

regarding sex-dependent pain processing and sexually dimorphic opioid antinociception. This 

review highlights the increasing awareness that estrogens are major endogenous arbiters of both 

opioid analgesic actions and the mechanisms used to achieve them. This behooves us to 

understand, and possibly intercede at, the points of intersection of estrogenic signaling and opioid 

functionality. Factors that integrate estrogenic actions at subcellular, synaptic, and CNS regional 

levels are likely to be prime drug targets for novel pharmacotherapies designed to modulate CNS 

estrogen-dependent opioid functionalities and possibly circumvent the current opioid epidemic.

1. Introduction

Most hormones and neurotransmitters that are present in males and females utilize similar 

molecular mechanisms in both sexes. Interestingly, this is not the case with opioids, which 

can act via substantially different mechanisms in males vs. females to achieve the same end 

result. Assuming that sex-dependent responsiveness to exogenous opioids reflects analogous 

divergence in endogenous opioid systems, the lack of parallelism in mechanisms underlying 

opioid actions in males and females not only reveals an extraordinary degree of plasticity 

among systems mediating opioid actions, but also provides insight into the ways in which 

endogenous opioid systems might be manipulated for medicinal purposes. Although sexual 

dimorphism in pain and opioid antinociception has long been recognized (Craft, 2003; 

Fillingim & Gear, 2004; Fillingim, King, Ribeiro-Dasilva, Rahim-Williams, & Riley, 2009; 

Ibironke & Aji, 2011; Liu & Gintzler, 2013; Loyd, Morgan, & Murphy, 2007; Mogil, 
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Chesler, Wilson, Juraska, & Sternberg, 2000; Teepker, Peters, Vedder, Schepelmann, & 

Lautenbacher, 2010), we are only now beginning to understand its biochemical and 

molecular underpinnings, and the ability of endogenous estrogens to act as key arbiters of 

mechanisms utilized by opioids and sexual dimorphism thereof.

Estrogens (predominantly comprised of estradiol and estriol) belong to the steroidal class of 

hormones, which are derivatives of cholesterol. Enzymes largely control the synthesis and 

release of steroidal hormones since they are exceedingly lipid soluble and cannot be stored 

in vesicles. The ovaries are the predominant source of estrogens. However, we now know 

that throughout the central nervous system (CNS) there is expression of aromatase 

(Balthazart, Baillien, & Ball, 2001, 2006; Balthazart, Cornil, et al., 2006; Cornil, Ball, & 

Balthazart, 2006; Evrard, 2006; Evrard et al., 2000; Evrard & Balthazart, 2003; Evrard, 

Willems, Harada, & Balthazart, 2003; Jakab, Harada, & Naftolin, 1994; Liu, Chakrabarti, 

Schnell, Wessendorf, & Gintzler, 2011; Liu, Murugaiyan, Storman, Schnell, Wessendorf, et 

al., 2017b) (a key enzyme in the synthesis of estrogens), along with multiple types of 

estrogen receptor (ER) (Hazell et al., 2009; Merchenthaler, Lane, Numan, & Dellovade, 

2004; Mitra et al., 2003; Perez, Chen, & Mufson, 2003; Shughrue & Merchenthaler, 2001). 

This resulted in a profound change in the functional categories used to describe estrogenic 

actions, i.e., not exclusively as hormones, but also as neuroactive agents that are intrinsic to 

the CNS. Additionally, the realization that the CNS is an estrogen-producing organ, and that 

some CNS-derived estrogens are poised to be secreted into the periphery (Storman, Liu, 

Wessendorf, & Gintzler, 2018), illustrates that the brain should be considered as an 

neuroendocrine organ.

Estrogens are known to influence a myriad of CNS functions. These include mood, memory, 

cognition, neuroprotection and, more recently, nociception (pain processing) and opioid 

antinociception (pain relief) (reviewed in Boulware & Mermelstein, 2005). This review will 

focus exclusively on the effect of estrogens on opioid functionality (exogenous as well as 

endogenous), the importance of estrogens to sex-dependent analgesic responsiveness, and 

related underlying mechanisms.

Estrogens and their receptors are now established to influence the physiological 

consequences and underlying analgesic mechanism(s) used by morphine (Liu, von Gizycki, 

& Gintzler, 2007), endomorphin 2 (EM2) (Liu & Gintzler, 2013) (a highly mu-opioid 

receptor (MOR)-selective opioid (Zadina, Hackler, Ge, & Kastin, 1997)), and dynorphin 

(kappa opioid receptor (KOR) agonist) (Gear, Gordon, et al., 1996; Gear, Miaskowski, et al., 

1996; Miaskowski & Levine, 1999), as well as the heterodimerization of MOR with KOR 

(Chakrabarti, Liu, & Gintzler, 2010; Liu et al., 2011), the endogenous release of spinal 

opioids (e.g., EM2, dynorphin) (Kumar, Storman, Liu, & Gintzler, 2015; Liu, Murugaiyan, 

Storman, Schnell, Kumar, et al., 2017a), and the physiological collaboration among them 

(e.g., EM2 and dynorphin) (Liu, Murugaiyan, Storman, Schnell, Kumar, et al., 2017a). 

Complicating the influence of estrogens on opioid sequelae is the fact that at least two 

physiological distinguishable pools of estrogens exist: peripheral (ovarian) and estrogens 

produced within CNS. Furthermore, CNS-produced estrogens are not necessarily 

synchronized with the synthesis of ovarian estrogens, i.e., the production of CNS-derived 

estrogens can be either in-phase or out-of-phase with the ebb and flow of circulating 
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estrogens (Storman et al., 2018). This complicates associating estrogen-dependent CNS 

functionalities with a particular stage of reproductive cycle. Additionally, nuclear ERs also 

traffic to the plasma membrane (Bjornstrom & Sjoberg, 2005; Boulware & Mermelstein, 

2005; Dewing et al., 2007; Levin, 2005, 2008, 2009a, 2009b, 2009c; Razandi et al., 2003; 

Vasudevan & Pfaff, 2007), where they can either oligomerize with aromatase (estrogen 

synthase) or exist independent (or “free”) of it (Storman et al., 2018). This effectively 

creates multiple subpopulations of ERs that differ in function and regulation.

2. Sexually dimorphic opioid mechanisms mediate comparable opioid 

analgesia

Estrogens can profoundly influence the mechanisms that underlie analgesic responsiveness 

to the spinal application of morphine and their sexually dimorphic presentation. The spinal 

application of morphine produces thermal antinociception that is similar in magnitude and 

time course in rats of both sexes. However, despite the similarity in analgesic responsiveness 

in males and females, the antinociception results from strikingly sex-specific differential 

recruitment of spinal opioid analgesic components (Liu et al., 2007). Activation of spinal 

MOR, the predominant opioid receptor that is targeted for medicinal pain management, is 

critical for spinal morphine antinociception in both sexes. However, in females, but not 

males, activation of spinal KOR is also a prerequisite for spinal morphine antinociception, as 

is the recruitment of spinal dynorphin (an endogenous KOR-selective agonist) (Liu et al., 

2007).

Gonadal hormonal action can be either “activational” or “organizational” (Phoenix, Goy, 

Gerall, & Young, 1959). The sexually dimorphic dynorphin/KOR component of spinal 

morphine analgesia is strikingly dependent on organizational actions of ovarian steroids. 

Elimination of acute activational effects of gonadal steroids via ovariectomy or orchiectomy 

fails to eliminate in females or unmask in males the dynorphin/KOR component of spinal 

morphine analgesia (Liu et al., 2007). This indicates that activational actions of gonadal 

hormones are not a determinant of phenotypic responsiveness to intrathecal morphine. In 

striking contrast, the spinal KOR component of spinal morphine antinociception is not 

manifest in sexually mature female rats that had been androgenized during the neonatal 

period (Liu et al., 2007). Thus, organizational effects of ovarian sex steroids are critical to 

the ability of intrathecal morphine to recruit KOR antinociceptive mechanisms. Notably, 

neonatal castration does not unveil a KOR component of spinal antinociception in sexually 

mature males. Thus, it is the presence of ovarian sex steroids during development, not the 

absence of testicular steroids, that is the critical ingredient for the ability of spinal morphine 

to harness KOR antinociception in females.

3. Influence of estrogens on the physical relationship of MOR and KOR

The female-specific dependence of spinal morphine antinociception on the concomitant 

utilization of spinal MOR and KOR/dynorphin bespeaks of an organization between spinal 

MOR and KOR in females that is not manifest in males. Indeed, MOR/KOR heterodimers 

are vastly more prevalent in the spinal cord of females than males, and in the spinal cord of 

proestrous than diestrous females (Chakrabarti et al., 2010).
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Female-specific and estrous cycle stage-dependent formation of spinal MOR/KOR 

heterodimers suggests estrogens to be critical determinants of MOR/KOR oligomerization. 

Furthermore, the parallel occurrence of MOR/KOR heterodimerization and dynorphin/KOR 

mediation of spinal morphine antinociception during proestrus (when circulating levels of 

estrogens are high), but not during diestrus (when circulating estrogens are low) 

(Chakrabarti et al., 2010), is consistent with the ability of spinal dynorphin to activate the 

KOR protomer within heterodimeric MOR/KOR (Chakrabarti et al., 2010), providing the 

required KOR component of spinal morphine antinociception during proestrus. These 

findings strongly indicate MOR/KOR to be an estrogen-dependent female-specific 

molecular transducer for spinal morphine antinociception.

Abundant formation of spinal MOR/KOR during proestrus but not diestrus (or in males) 

suggests, but does not definitively establish, that estrogens are the driving force. This was 

validated by demonstrating the effect on MOR/KOR of spinally administered ER antagonists 

and ovariectomy. These studies indicated that CNS-derived as well as ovarian-derived 

estrogens are essential determinants of the ebb and flow of the heterodimerization of MOR 

and KOR (Chakrabarti et al., 2010) and thus the spinal antinociceptive mechanisms that are 

available, i.e., KOR-dependent and KOR-independent. Additionally, this oligomerization 

also requires concomitant, but non-additive, activation of multiple spinal mERs (ERα,ERβ 
and ER1 {aka GPR30, a G protein coupled ER}) (Liu et al., 2011).

Importantly, spinal estrogenic signaling, or lack thereof, interconverts the mechanistic 

underpinnings of spinal morphine analgesia (without altering its magnitude or temporal 

characteristics), shifting it between KOR-dependent and KOR-independent. There are 

substantial physiological and medicinal implications of the parallel existence of readily 

exchangeable morphine-activated spinal analgesic systems, which oscillate in accordance 

with stage of cycle. For example, in proestrous females (or the corresponding menstrual 

cycle stage in women), when spinal morphine analgesia requires dynorphin activation of the 

KOR protomer of MOR/KOR, impaired spinal dynorphin release could result in lack of 

analgesic responsiveness to spinal morphine. However, spinal morphine analgesic 

responsiveness can be rescued by interfering with spinal estrogenic signaling (via either 

spinal aromatase inhibition, or blockade of spinal mERs). This realization suggests that the 

spinal application of fadrozole (an aromatase inhibitor) or selective antagonists of mERα, 

mERβ, or GPR30 are likely to be effective adjuvants with intrathecal morphine in these 

situations.

4. Estrogens can influence the balance between antinociception and 

pronociception induced by dynorphin-KOR signaling

Dynorphin and KOR have been proposed to be pronociceptive (pain promoting) (Dubner & 

Ruda, 1992; Hollt, Haarmann, Millan, & Herz, 1987; Lai, Ossipov, Vanderah, Malan, & 

Porreca, 2001; Ruda, Iadarola, Cohen, & Young III, 1988; Stiller, Grubb, & Schaible, 1993; 

Wang et al., 2001) as well as antinociceptive (pain reducing) (Guirimand, Strimbu-Gozariu, 

Willer, & Le Bars, 1994; Han & Xie, 1982; Herman & Goldstein, 1984; Menendez, Andres-

Trelles, Hidalgo, & Baamonde, 1993; Pelissier, Paeile, Soto-Moyano, Saavedra, & 
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Hernandez, 1990; Przewlocki et al., 1983; Schmauss, 1987; Schmauss & Yaksh, 1984; 

Watkins, Wiertelak, & Maier, 1992). Formation of spinal cord MOR/KOR heterodimers 

provides a way to adjust the balance between antinociceptive vs. pronociceptive functions of 

the spinal dynorphin/KOR opioid system. The estrogen-driven chemical partnering of KOR 

with MOR facilitates spinal KOR-mediated antinociception to be manifest without being 

compromised by the pain-promoting functions that have also been associated with spinal 

KOR. Thus, dimeric MOR/KOR represents an estrogen-dependent female-specific signaling 

molecule that could underlie reports of much greater KOR-mediated antinociception in 

women than men (Gear et al., 2003; Gear, Gordon, et al., 1996; Gear et al., 1999; Gear, 

Miaskowski, et al., 1996; Holtman & Wala, 2006). The more robust, estrogen-driven 

heterodimerization of MOR and KOR in spinal cord of females than males suggests that in 

females dynorphin is capable of sub-serving antinociception, whereas in males dynorphin is 

much more likely to act as a pronociceptive agent.

5. Spinal ER-mGluR1 signaling suppresses EM2 analgesia

In addition to modulating the mechanistic underpinnings of analgesic responsiveness to 

spinal morphine (without altering the analgesia itself), estrogens are also endogenous 

modulators of the analgesia elicited by EM2 (the predominant endogenous MOR ligand in 

the spinal cord (Martin-Schild, Gerall, Kastin, & Zadina, 1999)). Antinociception elicited by 

spinal EM2 manifests not only a striking sexual dimorphism, but also dependence on stage 

of cycle. In females, the spinal EM2 antinociceptive system oscillates between analgesically 

active and inactive states. During diestrus, when circulating estrogens are low, spinal EM2 

antinociception is minimal, whereas during proestrus spinal EM2 antinociception is robust 

and comparable in magnitude to that observed in males. Additionally, in proestrous females, 

spinal EM2 antinociception also requires spinal dynorphin and KOR activation, concomitant 

with MOR activation (Liu & Gintzler, 2013), as was observed for morphine.

However, instead of altering the mechanistic underpinnings of comparable analgesic 

responsiveness (as occurs for spinal morphine), estrogens actively suppress the spinal EM2 

analgesia that is elicited by intrathecal EM2. This effect is mediated via mERα activation of 

mGluR1 (Liu & Gintzler, 2013). Furthermore, illustrating the complexity of estrogenic 

modulation, estrogenic suppression of spinal EM2 analgesia occurs, paradoxically, during 

diestrus (when circulating estrogens are low).

This lack synchronicity with circulating estrogens of spinal estrogenic signaling that 

suppresses spinal EM2 analgesia results from the actions of mERα within a spinal 

membrane-bound oligomer that contains aromatase (aka estrogen synthase), metabotropic 

glutamate receptors (mGluR1,mGluR2/3), MOR and KOR (Liu, Murugaiyan, Storman, 

Schnell, Kumar, et al., 2017a; Liu, Murugaiyan, Storman, Schnell, Wessendorf, et al., 

2017b). In the case of EM2, during diestrus, suppressive spinal estrogenic signaling is 

mediated by mERα that signals via mGluR1 (Boulware et al., 2005; Liu, Murugaiyan, 

Storman, Schnell, Wessendorf, et al., 2017b). Estrogen-activated mERα-mGluR1 signaling 

reduces spinal dynorphin release, lessening KOR activation (Liu, Murugaiyan, 

Storman,Schnell, Kumar, et al., 2017a). This impedes spinal EM2 analgesic responsiveness 
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since it requires both dynorphin and KOR activity, as is the case during proestrus (Liu & 

Gintzler, 2013).

6. Estrogenic signaling suppresses endogenous spinal EM2 release

The ability of estrogens to inhibit release of spinal dynorphin is not restricted to this opioid. 

Spinal estrogenic signaling is also a critical regulator of the utilization of endogenous spinal 

EM2. However, whereas mERα signaling (when coupled to mGluR1) is sufficient to 

suppress spinal dynorphin release, suppression of spinal EM2 release requires the 

concomitant activity of both mERα and GPR30 (Kumar et al., 2015). The need for 

cooperative signaling by mERα and GPR30 is consistent with earlier reports of their co-

expression by neurons of the spinal dorsal horn (Liu et al., 2011), and their cooperative 

effects on gene transcription (Albanito et al., 2007) and formation of spinal MOR/KOR 

heterodimers (Liu et al., 2011).

Notably, the ability of mERα/GPR30 activity to inhibit EM2 release is sexually dimorphic; 

mERα/GPR30 blockade does not have any effect on spinal EM2 release in spinal cord of 

males (Kumar et al., 2015). Furthermore, the magnitude of estrogenic inhibition of spinal 

EM2 release is dependent on stage of estrous cycle (Kumar et al., 2015); blockade of spinal 

mERα/GPR30 during proestrus results in the largest increase in spinal EM2 release, an 

intermediate increase during diestrus, and no detectable increment during estrus (when 

circulating estrogens are at their lowest).

The negative correlation between the magnitude of basal EM2 release and circulating 

estrogens levels (i.e., basal EM2 release is highest during estrus, when circulating estrogens 

are lowest), suggests that spinal estrogenic activity acts as a physiological clamp to suppress 

EM2 release. Strikingly, the enhancement of spinal EM2 release by concomitant blockade of 

ERα and GPR30 is eliminated by either inhibition of spinal aromatase (via intrathecal 

fadrozole) or ovariectomy (Kumar et al., 2015). This indicates that both ovarian and spinally 

synthesized estrogens act collaboratively to regulate release of spinal EM2.

7. Estrogenic signaling enables coordination of spinal EM2 utilization with 

physiological demand

It is interesting to note that suppression of spinal EM2 release by estrogens directly parallels 

estrogen-dependent heterodimerization of MOR and KOR, which is also greater in proestrus 

than diestrus (Chakrabarti et al., 2010; Liu et al., 2011). Many studies have concluded that 

monomeric spinal KOR subserves pronociception (see Lai et al., 2001 for review) but not 

antinociception (Piercey & Einspahr, 1989; Przewlocka, Dziedzicka, Lason, & Przewlocki, 

1992; Schmauss, 1987; Stevens & Yaksh, 1986). However, activation of KOR with MOR 

within MOR/KOR reveals antinociceptive attributes of KOR. Thus, during diestrus, when 

levels of MOR/KOR are low, the pronociceptive functions of spinal KOR prevail, while 

during proestrus, the pronociceptive functions of monomeric KOR are counterbalanced by 

the increased formation of MOR/KOR. So, during proestrus, when there is maximum 

estrogenic suppression of the release of EM2, this opioid would be less essential for 
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counterbalancing endogenous dynorphin/KOR pronociception than during diestrus, when 

levels of pronociceptive monomeric KOR are high.

8. Collaboration between spinally- and ovarian-produced estrogens

Several studies have reported the relevance of either peripheral or central estrogens in 

nociception. As examples, ovariectomized rats demonstrate diminished sensitivity to 

formalin-induced pain (Gaumond, Arsenault, & Marchand, 2002); inhibition of spinal 

aromatase decreases pain sensitivity in both male and female quail (Evrard & Balthazart, 

2004); in proestrous female rats, inhibition of spinal aromatase reduces MOR/KOR 

dimerization and eliminates the dynorphin/KOR dependency of morphine antinociception 

(Liu et al., 2011). There are much fewer examples of collaboration between peripheral and 

central estrogens in nociception and opioid antinociception. Nevertheless, their functional 

interrelationship remains subject of much speculation (Schlinger, Remage-Healey, & Rensel, 

2014).

CNS-derived estrogens are synthesized by CNS aromatase, which is located near synaptic 

structures. CNS-derived estrogens are thereby poised to activate nearby mERs relevant to 

pain modulation (Evrard, 2006;Evrard & Balthazart, 2004; Hojo et al., 2004; Naftolin et al., 

1996; Peterson, Yarram, Schlinger, & Saldanha, 2005). Such estrogenic signaling would be 

expected to be highly spatially restricted. In contrast, peripherally synthesized estrogens 

reach the CNS by penetrating the blood-brain barrier and diffusing from cerebrospinal fluid 

into extracellular fluid (Guyton & Hall, 2010) to act on CNS ERs. Such signaling, at first 

blush, would be expected to produce uniform activation of all CNS ERs, which is 

inconsistent with segregated, partitioned CNS functionality and is incongruous with the 

graded (not all or none) suppression of spinal EM2 release over the estrous cycle (Kumar et 

al., 2015). Thus, it is more likely that peripheral and central estrogens cooperate to modulate 

CNS functionality (the relative contributions of each and specific points of intersection 

remaining largely unknown). The mechanism(s) underpinning hypothesized synergistic 

interactions between centrally and peripherally synthesized estrogens remain obscure. Given 

reports that diffusion of centrally synthesized estrogens, and, by extension, diffusion of 

peripherally synthesized estrogens into the CNS, is highly spatially restricted (Charlier et al., 

2011; Fokidis, Prior, & Soma, 2013; Remage-Healey, Maidment, & Schlinger, 2008; 

Schlinger et al., 2014), it is possible that CNS-and ovarian-derived estrogens activate 

different populations of spinal ERs that are functionally convergent and act in a cooperative, 

possibly synergistic fashion.

9. Multiple subpopulations of CNS aromatase and mERα

The plethora and complexity of the actions of estrogens on the CNS is undergirded by a 

multiplicity of types of ER (e.g., ERα, ERβ, GPR30,Gq-mER, ER-X). The multi-faceted 

nature of estrogenic modulation of neuronal function is supported by the ability of ERs to 

localize to the nucleus to regulate transcription, as well as to the plasma membrane (Filardo, 

Quinn, Bland, & Frackelton, 2000; Razandi, Pedram, Greene, & Levin, 1999; Revankar, 

Cimino, Sklar, Arterburn, & Prossnitz, 2005), where they activate (within sec to min) 

Gintzler et al. Page 7

Vitam Horm. Author manuscript; available in PMC 2020 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



signaling cascades identical to those initiated by G protein-coupled receptors (Levin, 2009c; 

Mermelstein, 2009; Micevych & Dominguez, 2009; Vasudevan & Pfaff, 2008).

Actions of estrogens fall into five main categories: endocrine, paracrine, autocrine, 

synaptocrine and oligocrine. The first three differ only with respect to the distance between 

the point of synthesis and the site of action (reviewed in Saldanha, Remage-Healey, & 

Schlinger, 2011). A fourth category, synaptocrine (Saldanha et al., 2011), involves specific 

modulation of estrogen concentrations at the synapse. Synaptocrine estrogenic signaling is 

enabled by the presence of aromatase and ERs on dendritic/somatic membranes and 

presynaptic terminals (Beyer, Pawlak, & Karolczak, 2003; Blaustein, 1992; Blaustein, 

Lehman, Turcotte, & Greene, 1992; McEwen et al., 2001; McEwen & Alves, 1999; 

Schlinger & Callard, 1989; Wu et al., 2009). The fifth category, oligocrine, was defined by 

our recent finding that aromatase and mERs are present in the same oligomer along with 

other plasma membrane-associated signaling molecules. Oligocrine signaling, the ability of 

estrogens to function as intracellular messengers whose synthesis and actions occur within 

the same macromolecular signaling complex, confers exquisite discrete spatial and temporal 

specificity to estrogenic signaling. Furthermore, the presence of aromatase activity within a 

signaling complex containing mERs permits the differential activation/deactivation of 

discrete subcellular ER-coupled signaling, independent of variations in circulating levels of 

estrogens—either out of phase (as occurs for estrogenic suppression of spinal EM2 

antinociception) or in-phase with ovarian steroid production (as occurs for estrogenic 

regulation of MOR/KOR heterodimerization).

Oligocrine estrogenic signaling in the CNS complements endocrine (ovarian estrogens 

acting on CNS ERs) and neurotransmitter-like synaptocrine estrogenic signaling. Maximum 

physiological utilization of the multiple modalities of CNS estrogenic signaling suggests the 

importance of coordinating the actions of peripheral and central estrogens. Additionally, the 

ability of the CNS as well as the ovary to make estrogens means that there are at least two 

functional pools of aromatase. This duality is further complicated by the presence of 

aromatase in a CNS plasma membrane oligomer that contains mERs, as well as other 

signaling proteins. This organization creates two additional populations of mERs and 

aromatase, those that are oligomerized with each other and those that exist separately, i.e., 

“free.” Thus, the multi-dimensional nature of estrogenic actions in the CNS, particularly as 

pertains to modulating nociception and opioid antinociception, likely requires not only 

coordination between the actions of central and peripheral estrogens, but also the activity of 

spatially and functionally segregated pools of aromatase and mERs in the CNS. Given this 

complexity and multidimensional nature of estrogenic signaling, it is not surprising that 

estrogens have been reported to be pronociceptive (Bradshaw, Miller, Ling, Malsnee, & 

Ruda, 2000; Ji, Murphy, & Traub, 2003; Ji, Tang, & Traub, 2011; Li et al., 2009; Lu, Chen, 

Wang, & Wu, 2009; Sanoja & Cervero, 2005), as well as antinociceptive (Aloisi et al., 2010; 

Cao, Ji, Tang, & Traub, 2012; Fischer et al., 2008; Giamberardino, Affaitati, Valente, Iezzi, 

& Vecchiet, 1997; Kramer & Bellinger, 2009; Lawson, Nag, Thompson, & Mokha, 2010; 

Mannino, South, Quinones-Jenab, & Inturrisi, 2007; Riley, Robinson, Wise, & Price, 1999; 

Sarajari & Oblinger, 2010).
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The existence of mERα/aromatase oligomerized and free populations holds out the promise 

that their various subpopulations can be independently targeted for medicinal purposes. The 

putative utility of doing so is underscored by our recent finding that although aromatase and 

mERα physically associate with each other in both spinal cord and hypothalamus, the 

distribution between mERα-associated and free is essentially opposite in these areas—in the 

spinal cord, essentially all of the aromatase is oligomerized with mERα, whereas in the 

hypothalamus, essentially the opposite pertains (Storman et al., 2018). Thus, a drug that is 

selective for the mERα/aromatase oligomer would likely affect estrogenic signaling in the 

spinal cord, but markedly less so in hypothalamus whereas targeting free mERα or 

aromatase would likely alter estrogenic signaling in hypothalamus but not spinal cord.

Perhaps the best example of the potency of sex steroids in influencing opioid analgesia is the 

increase in nociceptive thresholds that occurs during physiological gestation. During 

physiological pregnancy, there is a naturally occurring elevation of pain tolerance, peaking 

just prior to parturition (Gintzler, 1980). Systemic administration of the general opioid 

receptor blocker, naloxone, abolishes pregnancy-induced analgesia, indicating participation 

of the endogenous opioid system. Strikingly, the opioid antinociception associated with 

pregnancy is also seen when the pregnancy blood profile of estrogen and progesterone are 

simulated (in the absence of physiological pregnancy). Moreover, both the antinociception 

induced by pregnancy and its hormonal simulation are mediated not only by the same types 

of opioid receptor but also the same CNS compartment, spinal cord (Dawson-Basoa & 

Gintzler, 1993, 1996, 1997, 1998; Medina, Dawson-Basoa, & Gintzler, 1993). This 

underscores that the profile of change in activity of sex steroids is not only necessary, but 

also sufficient for pregnancy-induced analgesia to be manifest, highlighting the potential of 

estrogens, acting in combination with progesterone, to unlock the powerful ability of 

endogenous opioids to mitigate pain.

10. Conclusions

Estrogens impact multiple parameters of opioid functionality (see Scheme 1). Given the 

multi-faceted influence of estrogens on opioid systems, it is imperative to understand, and 

possibly intercede at, the points of intersection of estrogenic signaling and opioid 

functionality, particularly in the face of the current opioid epidemic. The propensity of 

aromatase to either to physically pair with or exist separately from mERα in combination 

with a synaptic relationship between aromatase and mERα, enables locally produced 

estrogens to act on multiple spatial levels, spanning the subcellular to synaptic, with a high 

degree of gradated regulation and plasticity. Factors that integrate estrogenic actions at 

subcellular, synaptic, and CNS regional levels are likely to be prime drug targets for novel 

pharmacotherapies designed to modulate CNS estrogen-dependent functionalities and 

possibly circumvent the current opioid epidemic.
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Scheme 1. 
CNS membrane estrogen receptors are activated by ovarian-produced and CNS-produced 

estrogens. Opioid parameters modulated by CNS estrogenic signaling include (1) membrane 

estrogen receptor alpha activation of spinal mGluR1 (to inhibit spinal EM2 analgesia during 

diestrus), (2) enhancement of the heterodimerization of spinal MOR and KOR (as occurs 

during proestrus), (3) graded inhibition of spinal release of EM2 (as occurs over the 

reproductive cycle) and dynorphin release (as occurs during diestrus). All impact exogenous 

as well as endogenous opioid antinociception.
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