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Abstract
Exosomes, 60–200‑nm extracellular vesicles secreted from cells, have been used as 
an active pharmaceutical ingredient or drug carrier in disease treatment. Human‑  and 
plant‑derived exosomes are registered in clinical trials, but more complete reports are 
available for human‑derived exosomes. Because exosomes act as vesicles and carry cell 
secreting components, they have been used as drug or peptide vehicles to treat diseases. 
The dendritic cells  (DCs) and mesenchymal stem cells  (MSCs) are two popular cell 
sources for exosome preparation. Exosomes from DCs can initiate inflammation in patients, 
particularly in patients with cancer, as they contain the tumor antigen to induce specific 
inflammation response. A  well‑established cell bank of MSCs is available, and these cells 
can be used as an alternative source for exosome preparation. The major application of 
MSC‑derived exosomes is in inflammation treatment. Exosomes in clinical trials need to 
comply with good manufacturing practice  (GMP). Three important issues are prevalent in 
GMP for exosomes, i.e., upstream of cell cultivation process, downstream of the purification 
process, and exosome quality control. This paper concisely reviews exosome development, 
including exosome generation and clinical trial application.
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and at least one negative protein marker. The importance of 
the ratio of proteins to particles has been mentioned in the 
MISEV2018. Apart from the definition from MISEV2018, the 
other term might be more appropriate as an extracellular parti-
cle [3]. Exosomes have been used as pathological markers [4], 
gene carrier, and drug carrier  [5]. The size of exosomes is 
60–200  nm and owing to its biocompatibility, exosomes have 
great potential for use as anti‑cancer drug vehicles. In order 
to ensure the biological activity of exosomes, a standardized 
manufacturing process, such as a process in compliance with 
good manufacturing practice (GMP), of exosomes is vital.

Because exosomes are secreted by cells, a production 
system could be established using a large‑scale cell cultivation 
system. The downstream purification system should prefer-
ably conform to the procedures of vaccine production because 
of the similarity in particle size and features of secretory 
vesicles of the host cells. The challenge in GMP of exo-
somes is quality control. Although markers of exosomes have 

Introduction

T he extracellular vesicles  (EVs) are secreted by cells 
and recycled in body fluids, which are collective term 

covering the name of exosomes, microvesicles  (MVs), mic-
roparticles, ectosomes, oncosomes, and apoptotic bodies. 
The difference of the above terms depends on the size. The 
oncosomes, ability to transfer oncogenic material, exhibit 
their atypical large size  (1–10  µm). MVs are ranged in size 
from 50 to 1000  nm in diameter. The exosomes are ranged 
from 60 to 200  nm  [1]. The isolations of apoptotic bodies or 
ectosomes are obtained by the procedures of  ~300–500  ×g 
(removing cells), followed by force at  ~1000  ×g to remove 
cellular debris, and finally followed by a longer centrifuga-
tion at higher g forces  (~10,000< × < ~16,000 ×g). The most 
commonly used method for isolating exosomes is ultracentri-
fugation (UC) at 100,000–120,000 ×g [2]. The components of 
EVs include lipids and proteins in addition to nucleic acids. 
Moreover, EVs feature the property of the cell sources. The 
minimal information for studies of EVs 2018  (MISEV2018) 
has claimed some criteria for EVs. The general characteriza-
tion of EVs according to MISEV2018 would contain at least 
three positive protein markers of EVs, including at least one 
transmembrane/lipid‑bound protein and cytosolic protein, 
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been defined by previous studies, the type of cells produc-
ing exosomes is diverse  [6,7]. Most reviews have focused 
on the generation and application of exosomes in preclinical 
or clinical trials  [5, 8-17]. Therefore, this article concisely 
reviews exosomes in clinical trials and their production 
in compliance with GMP. Three main criteria, including 
upstream of cell cultivation system, downstream of the purifi-
cation system, and quality control of exosomes, are discussed 
for GMP. Exosomes from human and plant sources involved 
in clinical trials are mentioned in the article [Figure 1].

Exosome production following good 
manufacturing practice

An exosome is a monolayer of small vesicles with a 
diameter of 60–200  nm formed by cytoplasmic membrane 
invagination. Exosomes are widely distributed in all tissues, 
intercellular spaces, and body fluids. Almost all cells secrete 
exosomes. Exosomes, similar to a postman, can be accurately 
transmitted to specific organ cells through cell surface recep-
tors for cell–cell transmission [7].

The methods for the production of GMP‑grade exosomes in 
recent years are shown in Table1. A  GMP‑grade exosome pro-
duction method includes the type of cells, culture environment, 
cultivation system, dissociation enzyme, and culture medium. 
Further purification is required after production, generally divided 
into three‑step process. The third issue in GMP of exosomes is 
the establishment of identification method, including physical 
structure and bioactivity function characteristics.

Upstream of cell culturing system for setting an 
exosome‑secreting environment

Five types of cells, including human cardiac progeni-
tor cells, bone marrow mesenchymal stem cells  (MSCs), 
adipose tissue‑derived stem cells, monocyte‑derived den-
dritic cells  (DCs), and HEK293  cells, have been applied in 
GMP for exosome production. Cell cultivation employs static 

systems, such as a flask, as well as dynamic systems, such 
as a bioreactor. Two types of static flask system used include 
stand tissue culture flask  [18,19] and CellBIND® surface. 
The CellBIND® surface is pretreated with oxygen‑containing 
functional group and has a net negative surface charge  [20]. 
Bioreactors are also used for large‑scale production because 
of the dynamic monitoring system, which is beneficial for 
the GMP process  [21,22]. Because the size of exosomes is 
around 60–200  nm, the hollow fiber bioreactor system with 
molecular weight cutoff membrane is employed for condition 
medium  (CM) harvest. The hollow fiber bioreactor system 
provides a dynamic environment for cell cultivation and a 
continuous medium collection system. The collection system 
provides the reduced volume of harvested CM that ben-
efits for downstream purification. Both animal‑free [20] and 
animal‑derived [23] dissociation enzymes are utilized in the 
process. The cultivation medium differs based on the source 
of the cells, but it can be classified into animal‑free  [18,20] 
or animal‑derived [21] components. The process of GMP for 
exosome can be improved in many aspects to obtain more and 
purer exosomes. For examples, using xeno‑free conditions to 
culture cells can reduce the doubling time and lead to high 
exosome yield and consistent removal of contaminating pro-
teins up to 97%  [20]. Furthermore, the 10% pooled human 
platelet lysate  (HPL)‑based EV‑depleted medium, which is 
suitable for the production of human MSC‑derived exosomes 
as it retains the characteristic surface marker expression, cell 
morphology, viability, and in vitro differentiation potential, can 
be used [19].

The advantage of static flask system is less skilled labor 
comparing to that of bioreactor. If the cultivation system 
requires specific parameters such as CO2, O2, pH to manip-
ulate, the bioreactor would be an attractive method. The 
most common cultivation reagent of dissociation enzymes 
or medium should be animal free for avoiding the patho-
genic source or ethical issue. In some studies have mentioned 

Figure  1: Summary of exosomes in clinical trials and flow chart for exosome production in compliance with good manufacturing practice. DC: Dendritic cells, 
MSC: Mesenchymal stem cell, LC‑MS: Liquid chromatography–mass spectrometry
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that the HPL showed the greater bioactivity than traditional 
medium. Therefore, the reagent choose would be considered 
in the further clinical application.

Downstream of purification system for exosomes
In general, there are three steps of purification, includ-

ing filtration for removing the cell debris, concentrating the 
CM, and exosome isolation from the concentrated CM. The 
differential centrifugation is the common strategy for the con-
centration of CM and exosome isolation from the concentrated 
CM. Although a less additive reagent is added during differ-
ential centrifugation comparing to that of sucrose gradient 
method, workforce, and labor are the disadvantages of the dif-
ferential centrifugation purification [24].

Tangential flow filtration (TFF) is an alternative method for 
the concentration of CM and purification of exosomes in recent 
years owing to the advantages of less time and workforce for 
large‑scale purification. In addition, the performance of TFF 
and UC has been compared. Exosomes obtained from TFF 
exhibit higher immunomodulatory potency than those from 
UC. Moreover, the immunomodulatory potency of exosomes 
from TFF is similar to that of the parental cells, confirming the 
rationality of replacing cells with their secreted exosome. The 
reports showed that more soluble factors, such as cytokines, 
DNA, RNA, proteins, or lipids, are contained in the exosomes 
obtained from TFF than in those from UC. EV aggregation 
or destruction is observed after harvesting exosomes by UC 
because elevated shear forces in UC may break down the exo-
somes and thus, the proteins released from exosomes  [23]. In 
addition, size‑exclusion chromatography  (SEC) is a method 
developed based on the size exclusion theory for exosome 
purification. Compared to exosomes from UC, a 100‑fold 
reduction in ferritin, a major protein complex contaminant, 
concentration is observed in SEC‑purified exosomes [22].

We specifically explored whether to use commercially 
available ExoQuick™ as a purification process, but none of 
the other GMP production processes discussed in this article 
were verified. According to our unpublished research results, 
the purification method using ExoQuick™ is fast and conve-
nient, but the purified sample still contains the contaminate 
proteins from culturing medium; therefore, it is only suitable 
for exosome preparation in the research stage.

The purification of exosomes involved the criteria of recov-
ery rate and specificity. In general, to achieve a higher recovery 
would decrease the specificity and vice versa. This is because 
higher specificity achievement should follow step‑by‑step 
purification procedure to remove un‑purity matters. The 
advantages of differential centrifugation are to obtain a high 
purity of exosomes; however, the recovery rate would be lost 
in each step of differential centrifugation and time‑consum-
ing of differential centrifugation is one of the disadvantages. 
Therefore, sucrose gradient centrifugation overcomes the time 
consuming and maintenance of purity of exosomes. The one 
disadvantage of sucrose gradient centrifugation is the resi-
dues of sucrose reagent. The system of ultrafiltration brings 
more attractive features in overcoming of time‑consuming, 
increased specificity, and recovery rate. However, the protein 
may suffer in‑stable in the ultrafiltration system because the 

CM is concentrated in the purification process and thus may 
cause a raised osmotic pressure.

Exosome characterization  –  Physicochemical and 
biological properties

The adsorption of protein and protein content in exo-
somes is determined by ELISA and sodium dodecyl 
sulfate  (SDS)‑polyacrylamide gel electrophoresis 
(PAGE) [18]. Another alternative method using a BCA‑protein 
assay kit has been developed for protein quantifica-
tion [20,21,23]. With the progress in technology, a microfluidic 
electrophoresis analyzer [19] and liquid chromatography–mass 
spectrometry [22] have been established for the analysis of 
exosome components. To quantify the cytosolic proteins from 
parent cells and exosome markers, such as CD9, CD63, and 
CD81, flow cytometry is used.

Recent literature has indicated that physicochemical proper-
ties of exosomes, such as particle size and concentration, can 
be determined using NanoSight instruments and transmission 
electron microscopy (TEM) to observe the structure and size of 
exosomes. In addition, studies have described methods such as 
phospholipid quantification, cytokine quantification, and immu-
nomodulatory properties for identifying exosomes [23].

Exosomes in clinical trials
Two categories of exosomes are applied in clinical trial, 

namely, exosomes derived from plants and human specimen 
[Figure 1]. Until now, completed results of clinical trials using 
exosomes from human specimens have been reported; by 
contrast, plant derived exosomes are in the beginning stage, 
patients were not yet recruited in clinical trials. Due to the 
vesicle structure of exosomes, using exosomes as a drug carrier 
has also been performed in clinical trials. Table  2 describes 
the exosome applied in clinical trials having complete clinical 
reports, and Table 3 summaries the development of exosomes 
in clinical trials in the recruiting‑status or not‑recruiting status.

Exosomes from human specimen
Three major sources, namely DCs, MSCs, and 

patient‑derived tumor cells, of obtaining exosomes, are sub-
jected to clinical trials. Exosomes are purified and processed 
to concentrated form by UF or differential centrifugation 
followed by UC with sucrose cushioning. Physical character-
ization is performed by electron microscopy or by detecting 
exosome markers, such as CD9, CD81, tetraspanins, heat 
shock 70  kDa protein 8  (HSC70), heat shock protein  (HSP) 
70, HSP90, CD80, intercellular adhesion molecule 1, CD71, 
lysosomal‑associated membrane protein 3, CD63, Alix, and 
tumor susceptibility gene 101 [Table 2]. Moreover, bioactivity 
is characterized by the exosome derived source or by methods 
such as determining the immunogenicity. The application of 
human‑derived exosome is major in cancer indication, and 
some in inflammatory or chronic disease. The exosomes 
could contain tumor antigen to induce anti‑tumor immunity 
in a patient or anticancer drug to cause cytotoxicity for the 
treatment of patients with cancer. Moreover, utilization MSC 
featuring inflammatory regulation is a strategy to treat inflam-
matory or chronic disease. The following sections describe 
the detail information of the application of exosomes.
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Cancer indication
Exosomes containing tumor antigen to induce antitumor 
immunity in a patient

Exosomes from DC could be either from immature or 
mature DCs activated by cytokines, such as recombinant 
interferon‑γ. The injection dose ranges from 8.5  ×  1011 to 
4.0  ×  1013 exosomes with MHC class  II molecules. To 
induce the immunity of a patient diagnosed with cancer, the 
DC‑derived exosome harbors tumor peptides to be injected 
subcutaneously. Trials employing immature DC‑derived exo-
somes have been applied for melanoma and non‑small cell 
lung cancer, for which the results of safety are similar, but 
in case of non‑small cell lung cancer, MAGE‑specific T‑cell 
responses have been observed  [25]. To advance T‑cell stim-
ulation, the strategy of DC maturation has been designed 
for patients with nonsmall cell lung cancer. However, one 
patient had Grade 3 hepatotoxicity, and only 32% of patients 
experienced stabilization for more than 4  months of progres-
sion‑free survival, which is less than their primary endpoint of 
50%  [26]. Because tumor antigens, such as carcinoembryonic 
antigen, can be directly derived from a patient with cancer, 
ascites‑derived exosomes from patients were harvested. Safety 
and well‑tolerance in phase I trial have been reported, and a 
tumor‑specific antitumor cytotoxic T lymphocyte response has 
been observed in the ascites‑derived exosomes plus granulo-
cyte‑macrophage colony‑stimulating factor group [27].

Exosomes containing anti‑cancer drug to cause cytotoxicity 
for the treatment of patients with cancer

In addition to carrying tumor antigen, exosomes contain-
ing chemo drug or siRNA have been used in the treatment 
of cancer. There are two clinical trials  (NCT01854866 and 
NCT02657460) using chemo drug to treat patients diagnosed 
with malignant pleural effusion. In the preclinical trial and 
trial of NCT01854866, they used methotrexate  (MTX) and 
cisplatin as the anticancer drugs, respectively. The survival 
ratio was higher when MTX was used as the anticancer drug 
in the preclinical trials  [28]. In the trail of NCT02657460, 
they used MTX as the encapsulating anticancer drug and cis-
platin as the comparator. KrasG12D siRNA has been promoted 
as another anticancer drug type for the treatment of patients 
with metastatic pancreas cancer, and the mesenchymal stromal 
cells‑derived exosomes have been proposed in the clinical trial 
number NCT03608631.

Other indications
There have been few clinical trials that employ DC‑derived 

exosomes after 2013 [Table 2]. The application of MSC‑derived 
exosomes in clinical trials began in 2014  [Table  2], and the 
complete report was available in 2016 [29]. Most clinical trials 
using MSC‑derived exosomes are applied for chronic diseases, 
immunity diseases, and acute ischemic stroke. Only one case 
of a clinical trial using MSC‑derived exosomes encapsulat-
ing KrasG12D siRNA has been reported. Two clinical trials 
have reported MSC‑derived EVs in treating chronic diseases, 
namely chronic kidney disease, and bronchopulmonary dys-
plasia. Due to the less degree of manipulation in exosomes, 
the characteristics of exosomes can be determined by exosome 
and MSC markers.
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Plant source
Three sources of plant namely grape  (NCT01668849) and 

ginger or aloe (NCT03493984), have been registered in clinical 
trial from the same sponsor, University of Louisville, but the 
status of clinical trials of plant‑derived exosomes is under the 
not recruiting phase [Table 3]. The application of grape‑derived 
exosomes is in treating diseases due to radiation‑  and chemo-
therapy‑induced oral mucositis. In a previous preclinical study, 
Songwen Ju  et al. demonstrated that grape‑derived exosomes 
could renew the processes of intestinal tissue and participate 
in the process of tissue remolding when the tissue suffers from 
pathological damage  [30]. Another study by Henry Bohler 
et  al. used ginger or aloe to produce exosomes for treating 
patients diagnosed with polycystic ovary syndrome, expecting 
it to mitigate insulin resistance and chronic inflammation (trial 
number NCT03493984). Moreover, Donald Miller et  al. used 
plant‑derived exosomes as a hydrophobic drug delivery carrier 
to encapsulate curcumin, owing to the hydrophobic charac-
ter of molecules, for treating intestinal diseases (trial number 
NCT01294072).

The exosomes from plant feature the advantages of ani-
mal‑free issue and Chinese herbal medicine theory to support 
the basic scenario, but the life cycle of the plant too long and 
less information to provide in the exosome production and 
characterization. The less doubling time of mammalian cells, 
around 24–48  h, attractive the development of clinical trials. 
There is less information on GMP production for plant‑derived 
exosome, but there are some preclinical studies investigated. 
The majority difference between animal and plant‑derived in 
the production process is the medium harvest. The exosome 
from the animal‑derived is to harvest the medium in the cul-
tivation process. In contrast, the plant‑derived exosomes are 
to extract the apoplastic vesicles, such as leaf, rice shoot, 
sunflower seed, and root, or the exosome‑like vesicles from 
fruit juices  [31‑33]. Unfortunately, the characterizations of 
plant‑derived exosome have less information, in particular of 
specific marker  [34]. However, the most common methods, 
such as TEM, nanoparticle tracking analysis, and SDS‑PAGE, 
for plant‑derived exosome characterizations are similar to that 
of animal‑derived exosome. Therefore, the development of 
GMP‑grade plant‑derived exosome, in particular of purifica-
tion and characterization, may refer to that of animal‑derived 
exosome.

Conclusion
Plant‑  and human tissue‑derived exosomes have been reg-

istered in clinical trials. Exosomes derived from human tissue 
are established with more complete reports and data than 
those of plant‑derived exosomes. Most studies describe human 
tissue‑derived exosomes, complying with GMP, to satisfy 
the application requirements of clinical trials. Exosomes 
production by cell culture has to be subjected to exosome 
purification and characterization. A  hollow fiber‑based bio-
reactor for cell culture is an attractive strategy for exosome 
production because of the advantage that decreased volume 
of CM can be harvest from the filtrated fiber. Moreover, exo-
somes purified by UF for avoiding bioactive protein release 
from vesicle of exosomes have higher benefit than those of 

UC. The determination of biofunctions, such as biomarker 
of exosomes and properties derived from parental cells, are 
the two major issues for characterization of exosomes before 
application in clinical trials. Overall, the development of exo-
somes may be an alternative candidate for treating diseases of 
unstratified fields, such as cancer, inflammation diseases, and 
chronic diseases.
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