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ABSTRACT

The visual impairment associated with inherited retinal degeneration and age-related
degeneration of photoreceptors is causing substantial challenges in finding effective
therapies. However, induced pluripotent stem cell (iPSC)-derived therapeutic cells such as
photoreceptor and retinal pigment epithelium (RPE) cells provide the ultimate options in
the rescue of lost photoreceptors to improve the visual function in end-stage degeneration.
Retinal cells derived from iPSC are therapeutic cells that could be promising in the field
of cell replacement therapy and regenerative medicine. This review presents an overview
of the photoreceptor degeneration, methods of iPSC generation, iPSC in retinal disease
modeling, summarizes the photoreceptor differentiation protocols, and challenges remained
with photoreceptor cell replacement for the treatment of retinal diseases. Thus, the burden
and increased incidence of visual impairment emphasizes the need of novel therapy, where
iPSC-derived photoreceptor and RPE cells proved to be promising for curing the retinal

dysfunction and act as renovation in approach to improve visual function.
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INTRODUCTION

he ontogenetic of retina presents a unique structure for

studying neurogenesis, cellular interactions, and gene
influences. The retinal cell fates are determined by the various
transcription factors and are generated from the pool of mul-
tipotent progenitor cells [1,2]. The retina is formed by the
proper organization of specific neurons such as photorecep-
tors (rod and cone), bipolar, amacrine, horizontal, ganglion
cells, and types of glial cell such as Miiller glia [3]. The func-
tional light-sensitive photoreceptor cells are responsible for the
visual senses of interaction with the environments. However,
vision impairment due to degeneration of photoreceptor is
affecting more than 43 million people globally with an expo-
nential increase in population with advanced age predominantly
over 50 years (WHO, 2016, Visual Impairment and Blindness).
The cause of visual impairment is due to the progressive loss
of photoreceptors related to genetically heterogeneous dis-
orders. The degeneration of photoreceptors associated with
genetic and environmental insults leads to blindness is linked
to high metabolic need in the renewal of photoreceptor outer
segment discs (OSD) [4]. The photoreceptor degeneration is
a complex trait altered due to a large number of variant genes,
related to environmental factors and predominantly monogenic
inheritance [5,6]. Numerous therapeutic strategies, such as neu-
roprotective agents, gene therapy, retinal prosthesis, and cell
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replacement therapy have been developed, and some of them
already entered the clinical trials. However, cell therapy is an
option for advanced retinal diseases, and challenges persist
due to the limited source of therapeutic cells, such as retinal
pigment epithelium (RPE) and photoreceptors as shown in
Figure 1. In this regard, induced pluripotent stem cells (iPSCs)
provide a unique in vitro model that allows the generation of
retinal progenitor cells for modeling of retinal degenerative dis-
cases. Retinal cell derivatives generated from iPSCs are useful
for drug screening for personalized medicine and effective
strategies for cellular therapy in both early and end-stage retinal
diseases. Furthermore, modeling of developmental disorders is
particularly amenable using iPSCs and their derivatives [7].

In this review, we specially focus and summarize recent
perspectives for directed differentiation of photoreceptor cells
from iPSC and iPSC-derived photoreceptor transplantation in
retinal disease modeling and possibilities for improving the
retinal functions. All the information was obtained from the
reliable literature sources.
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Figure 1: Illustration showing progressive photoreceptor degeneration and potential therapeutic approaches

PHOTORECEPTOR DEGENERATION

The photoreceptors are exceptionally vulnerable cells in
the retina, and progressive degeneration of these cells leads
to the irreversible loss of vision. Usually, light-sensing pho-
toreceptors (rods — dim and cones — bright) form the visual
transduction cascade to perform specialized visual functions.
These cells undergo complex phototransduction mechanism
that interlinked with the metabolism of retinoid; thus, high
metabolic rate is involved in the retinoid visual cycle at the
cellular level, molecular level, and electrophysiology of pho-
toreceptor function [8,9]. The metabolic alteration in retinoid
contributes to a high level of susceptibility to genetic defects
causing dysfunction or death of photoreceptors. Such anom-
alies lead to loss of inner retinal connection and alter the
neuronal networking cascade. Fortunately, the transplanted
photoreceptor precursors from the developing retina can con-
tribute to making single and short synaptic interplay to the
optical network for retinal modeling [10].

Several inherited retinal diseases are associated with
dysfunction and progressive loss of photoreceptors, such as ret-
initis pigmentosa [11], age-related macular degenerations [12],
and Leber’s congenital amaurosis (LCA) [13]. Among them,
retinitis pigmentosa is the leading cause of untreatable blind-
ness that is characterized by gradual constriction of visual
field. Moreover, the loss of photoreceptors in inherited retinal
diseases does not have genotype—phenotype correlation due
to extensive genetic heterogeneity. Inherited retinal diseases,
such as macular degeneration, retinitis pigmentosa, and Usher
syndrome constitute a genetically heterogeneous group with
almost 293 human genetic loci and more than 256 genes
identified so far (Retnet; https://sph.uth.edu/retnet/sym-dis.
htm) [14].
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PLURIPOTENT STEM CELLS AND CELLULAR
REPROGRAMMING

Pluripotent stem cells (PSCs), including embryonic stem
cells (ESCs) and iPSCs, provide a unique in vitro model for
generating the therapeutic cells, such as photoreceptor and
RPE for cell replacement therapy in retinal degenerative dis-
eases. Here, we specifically focus on iPSCs generated from
somatic cells by cellular reprogramming using defined tran-
scription factors.

Induced pluripotent stem cells

iPSC was an innovative discovery by Takahashi and
Yamanaka in 2006, where mouse embryonic/skin fibroblasts
and adult human fibroblasts were converted into PSCs by the
overexpression of defined transcription factors, such as Oct4,
Sox2, KIf4, and c-Myc using the retroviral system [15,16].
These cells were morphologically identical and showed similar
pluripotent gene expression like in ESCs system [15,16].
Furthermore, Yu et al. used other sets of defined factors, such
as Oct4, Sox2, Nanog, and LIN28 using lentivirus to generate
iPSCs from foreskin fibroblasts [17]. These iPSCs showed the
expression of pluripotency genes and potential to differentiate
into developmental germ layers (endoderm, mesoderm, and
ectoderm) investigated using standard in vivo teratoma assay
and alternative in vitro embryoid body formation [16]. iPSCs
have been generated from somatic cells of different mammals,
such as mice [18], human [16], monkeys [19], and pigs [20].
These iPSCs showed similar characteristic features of PSCs;
however, cell reprogramming efficiency differs among dif-
ferent cell origin, cell types, and no consensus on the most
consistent protocol for generating the reliable and safest
iPSCs [21]. Still, iPS technology has been revolutionizing the
stem cell research and therapy for regenerative medicine.
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Alternative methods for induced pluripotent stem cell
generation

Since the discovery of iPSC technology, reprogramming
protocol improvements are increasing to achieve efficient deri-
vation and to maintain the normal genomic integrity. Recently,
iPSC methods are available as commercial kit, but they do
require reliability with regard to efficiency and reproducibility
of reprogramming somatic cells into iPS for biomedical uses
in routine work [22]. Different methods for cellular reprogram-
ming are summarized and extensively reviewed [23] [Table 1].

Molecules for enhancing reprogramming efficiency

Generation of iPSCs is time-consuming, and the efficiency
varies with cell types and without consistent protocols. Thus,
for clinical application of iPSCs, it is necessary to overcome
the limitations of low efficiency. Numerous lists of small mol-
ecules, growth factors, microRNAs, and siRNAs have been
suggested to enhance the efficiency of cellular reprogramming
based on several well-known mechanisms [36,37]. Some of
the commonly used small molecules are listed in Table 2.

Molecular basis of genomic
pluripotent stem cell

Genomic instability acquired during forced reprogram-
ming, cultural adaptation, passage-induced mutation, and viral
integration has been reported [47,48]. The maintenance of
genomic stability is essential to produce distinct cell lineages
because differentiated cells inherit harmful effects such as
chromosomal aberrations, copy number variations (CNV), and
single-nucleotide variant [48]. Such effects remained signifi-
cant challenges to be addressed before used in clinics.

instability of induced

Chromosomal aberrations occurred due to selective
pressure either from parental inheritance or from forced
reprogramming as shown in Figure 2. A forced expression
of the proto-oncogene, such as c-Myc used in reprogram-
ming, is associated with inactivation of p53 causing genomic
aberrations in iPSCs [49]. Furthermore, the demand of high
metabolic rate associated with induction of oncogenic tran-
scription factors causes elevation of oxidative stress (ER),
which leads to genomic aberrations. Such aberrations can be
reduced by the use of antioxidant in growth media that signifi-
cantly lower the CNVs [50]. Likewise, parental cells harboring
protein-coding mutations that cause cancer, remain permanent
in the iPS cell line populations [51]. In addition, only 20% of
mutations are parental inheritance, while approximately 75%
of coding point mutations are associated with reprogramming
and persist during the subsequent passages [52].

In clinical applications, the genomic instability is of major
concern which may induce teratoma, but the key factors
that regulate genomic instability in iPSCs are unclear [47].
Furthermore, the level of genomic instability observed in
iPSCs is comparable with the signs perceived in cancer
cells [53]. Despite the instability concern, such transient
aberrations and negligible report on genomic aberrations
with malignant transformation will compromise the safety of
iPS-derived cell therapy in clinic. Thus, the appropriate tech-
nique should be applied to distinguish harmless aberrations
and those causing tumor formations. For such classification of
mutation pattern, high-resolution single-nucleotide polymor-
phism genotyping is recommended to monitor the acquired
mutations to minimize the effects on cell therapy [54].

Table 1: Methods and transcription factors for the generation of induced pluripotent stem cells

Methods Factors Reference
Single lentiviral vectors expressing “stem cell cassette” with Cre-Lox Oct4, K1f4, Sox2, cMyc [24]
transgene excision system

Cre-recombinase excisable DOX-inducible lentiviral vectors system Oct4, K14, Sox2, cMyc [25]
Repeated transfection of two expression plasmids without viral vectors system (cDNA of Oct3/4, Sox2, Klf4) and cDNA of cMyc [26]
Nonintegrating adenoviral vectors system Oct4, Sox2, KlIf4, cMyc [27]
Nonintegrating Sendai virus-based vector system Oct4, Sox2, K1f4, cMyc [28]
Recombinant reprogramming proteins system (fusion of poly-arginine protein Oct4, Sox2, KlIf4, cMyc [29]
transduction domain to the C terminus of transcription factors)

Human artificial chromosomes (HACs) vectors (iIHAC1 and iHAC2) system Oct4, Sox2, KlIf4, cMyc [30]
Synthetic modified mRNA transfection system Oct4, Sox2, KIf4, cMyc [31]
Direct transfection of mature double-strand microRNAs (miRNAs) system Combination of mir-200c, mir-302 s and mir-369 s [32]
Doxycycline-inducible factors delivered by “piggyback” transposition system Oct4, Sox2, KIf4, cMyc [33]
Nonviral minicircle DNA vectors system Oct4, Sox2, Nanog, Lin28 [34]
Nonintegrating episomal plasmid vectors system Oct4, Sox2, Nanog, Lin28, KIf4, cMyc [35]
Table 2: Small molecules and the mechanism that promotes reprogramming efficiency

Molecules Mechanism Reference
VPA or NaB Inhibition of HDAC [38,39]
BIX-01294 (BIX) Inhibition of G9a histone methyltransferase (G9a HMTase) [40]
SB431542 plus PD0325901 Inhibition of TGFp receptor and MEK signaling pathway [41]
SB431542 or ALKS (A-83-01) Inhibition of Type 1 TGFp receptor [42,43]
Vitamin C Alleviates cell senescence and promotes epigenetic modifications [44]
Y-27632 Inhibition of the ROCK pathway [45]
PS48 Activation of PDK1 [46]

VPA: Valproic acid, NaB: Sodium butyrate, HDAC: Histone deacetylase, Rho-associated Kinase, PDK1: 3’-phosphoinositide-dependent kinase-1,

MEK: MAPK/ERK Kinase
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Figure 2: Illustration showing the factors associated with genomic instability in iPS cells

APPLICATION OF INDUCED PLURIPOTENT STEM
CELL TECHNOLOGY

iPSC technology can be directly used for developmen-
tal biology, disease modeling, drug discovery and efficacy
testing, and cell transplantation. Various patient-specific iPSC
lines have been generated for modeling of retinal dystrophies,
such as retinitis pigmentosa, LCA, gyrate atrophy, Stargardt’s
macular dystrophy, bestrophinopathies, and choroideremia [55].
Furthermore, the previous study demonstrated that rod cells
derived from iPSC of retinitis pigmentosa patients showed dif-
ferential responsiveness to o-tocopherol (Vitamin E) [56]. The
study of human organogenesis is difficult due to inaccessibility
of organs which develops in early embryos. The tracking of early
eye development and organoidogenesis with fully developed
laminated and functional retinal structure was generated using
iPSC [57]. In addition, iPSC technology has opened new pos-
sibilities for generating continuous sources of therapeutic cells,
such as RPE, retinal ganglion cells, and photoreceptors. Recently,
several preclinical and clinical trials have demonstrated the safety,
survival, integration, and rescue effects of clinical-grade RPE cells
derived from patient-specific iPSC [58,59]. Therefore, iPSCs are
promising cell sources for autologous cell transplantation, which
minimizes the risks of immune rejection and the development
of self-organized three-dimensional tissues using iPSC open the
future possibilities for next-generation organ transplantation.

PATIENT-SPECIFIC INDUCED PLURIPOTENT STEM
CELL-BASED EYE DISEASE MODELING

Recent advances in in vitro iPSC model system are helpful
resources for generating enough cells to create distinctive
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platforms for disease modeling, drug screening, and cell-based
therapy [60]. Furthermore, human cellular models have
potential benefits that overcome the limitation of the animal
model, which cannot faithfully mimic human physiology. The
self-renewal properties of iPSCs are promising for modeling
various diseases, as other specialized primary cell lines stop
proliferation after few passages in laboratory culture. Several
studies used iPSCs for a wider variety of human diseases,
such as genetic disorders (Down’s syndrome), neurological
disorders (Parkinson’s disease), and inherited metabolic syn-
drome (juvenile diabetes) [60].

Usually, retinal biopsies are difficult to take or inacces-
sible to investigate the pathophysiology of inherited retinal
diseases. Such pathological investigation became possible
using patient-specific iPSCs to identify novel gene expres-
sion and silencing, drug screening and development, and cell
transplantation in advanced retinal degeneration. iPSCs were
used for exploring the structure of eye, such as limbal-like
epithelium and corneal epithelial cells [61,62], lens-spe-
cific differentiation [63], trabecular meshwork [64], optic
vesicle-like structures [65], retinal ganglion cells [66], pho-
toreceptor cells [7], and retinal pigment epithelial cells [67].
Besides, patient-specific iPSCs were used for several inherited
retinal diseases, such as age-related macular degeneration,
retinitis pigmentosa, and glaucoma [68-70]. Human iPSCs
were used to study early eye development and retinogenesis
that recapitulate the in vivo developmental timeline using
iPSC-derived retinal organoids. All retinal neurons were appro-
priately arranged in their proper layer, in which photoreceptors
achieved sensory cilia with prominent OSD that responded
the light [57]. Furthermore, RGCs were generated from iPSCs
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using fibroblasts from normal tension glaucoma patient carry-
ing a duplication of TBK1 gene [71] and multilayered optic
cups from keratinocyte-derived iPSCs of patients with retini-
tis pigmentosa [72]. The retina precursor cells from the optic
cup revealed their ability to integrate into developing mouse
retina [72]. Advanced retinal diseases with severe loss of pho-
toreceptor cells have no benefits with gene therapy, where cell
transplantation remains an ultimate strategy. Therefore, the
use of iPSCs-derived photoreceptors and RPE is under intense
investigation to restore visual network or to arrest the loss of
vision [67,72,73].

ESTABLISHMENT OF INDUCED PLURIPOTENT STEM
CELL-DERIVED PHOTORECEPTOR AS THERAPEUTIC
CELLS

In vitro development of light-sensitive functional photore-
ceptor cells is challenging, but essential therapeutic cells for
retinal degenerative diseases. In early age-related macular
degeneration that is associated with RPE dysfunction, trans-
plantation of RPE cells might be beneficial for the functional
recovery of native RPE; for diseases with end-stage degen-
eration with loss of photoreceptors, the ultimate option is
photoreceptor cell transplantation. Therefore, photoreceptors
derived from iPSCs using somatic cells either from patients or
from healthy donor could be effective strategies for cell-based
therapy. Patient-specific photoreceptor cells can also be used
to investigate the role of the mutant gene and drug screen-
ing for personalized medicine. Meanwhile, iPSC-derived
photoreceptor cells from a healthy donor could be promising
sources for allogeneic cell transplantation. Furthermore, the
sequential development of retinal neurons provides the benefit
to target disease progression at different stages in retinal
degeneration [74]. Numerous studies explored the potential
of photoreceptor cells generated from human iPSC as listed
in Table 3. iPSC-derived photoreceptor cells have been estab-
lished from various cell sources such as blood, fibroblast, and
keratinocytes [56,68,72,91]. However, there is no report of
iPSC-derived photoreceptor cell transplantation in human trail
for the vision correction due to difficulty in establishing the
robust, efficient, and stable methods for generation and purifi-
cation of photoreceptor cells.

Human iPSC-derived photoreceptor cells have been
generated from various diseases, such as retinitis pigmen-
tosa, enhanced S-cone sensitivity syndrome, and gyrate
atrophy as listed in Table 3. Derivative photoreceptor cells
revealed the characteristic expressions, such as cell lineage
markers (OTX2, CRX, RECOVERIN, RHO, B-OPSIN, and
R/G OPSIN) [7,56,72], expression of proteins (VGLUT1 and
SNAP-25) responsible for neurotransmitter release [65], the
presence of light-responsive sensory cilia in the outer segment
disc [72], and electrophysiology responses [56]. iPSC-derived
photoreceptor cells were generated using somatic cells of a
patient with retinitis pigmentosa harboring different muta-
tions (RP1, RP9, PRPH2, RHO, and USH2A). Such mutations
lead to degeneration of photoreceptor cells over time due to
ER-stress [56,72]. Interestingly, the different types of muta-
tion causing retinitis pigmentosa subsequently decreased in

iPSC-derived rod photoreceptor cells [56,68]. However, mutant
iPSC-derived rod cells undergo degeneration in in vitro culture
that expressed the oxidative and ER stress marker responsible
for the presence of disease phenotypes [56,68]. This evidence
further suggests that the loss of photoreceptors in retinitis
pigmentosa is postdevelopmental degeneration due to the ER
stress and the unfolded protein response [68]. Furthermore,
iPSC-derived retinal organoids carrying TRNT1 mutation
cause high-level expression of oxidative stress molecules and
abnormal accumulation of LC3-II, leading to defective autoph-
agy [92]. The high expression of ER stress and apoptotic
markers is associated with poor survival of photoreceptor cells
with the rhodopsin mutation (E181K). The use of rapamycin,
PP242, AICAR, NQDI-1, and salubrinal reduces the cellular
stress enhancing the better survival of iPSC-derived photore-
ceptor precursors [82]. The data provide a novel approach for
screening new drugs to attenuate degeneration in iPSC-derived
photoreceptor cells, but it is still elusive whether such drugs
could recover the light-responsive function of photoreceptor
cells.

The in vitro degeneration of retinal cells and ER stress dem-
onstrate its utility for disease modeling that recapitulates the
disease phenotypes. Derivative retinal cells can be corrected
for functional defect either using gene correction or pharma-
cological means. The previous study revealed the restoration
of ornithine-8-aminotransferase (OAT) activity in (A226V)
OAT iPSC-RPE by supplementation of 600 uM Vitamin B6
and gene-corrected hiPSC-RPE cells [81]. The patient-specific
iPSC carrying rhodopsin mutation (E181K) corrected using
adenoviral gene transfer, which showed the ability to differen-
tiate into rod photoreceptors [82]. Furthermore, patient-specific
photoreceptor precursor cells showed the ability to integrate
into the dystrophic mouse retina and develop into mature pho-
toreceptor cells [72]. Thus, the combination of iPSCs and gene
therapy approach could be used in treating various degenera-
tive diseases causing blindness.

INDUCED PLURIPOTENT STEM CELL-DERIVED
PHOTORECEPTOR CELL TRANSPLANTATION

Effective transplantation of derivative photoreceptor cells
should meet basic criteria for high-quality clinical-grade man-
ufacturing, safety, and efficacy. Worthwhile rapid, efficient,
and consistent differentiation protocol is necessary for replace-
ment therapy in visually challenged patients. The acquisition
of mature photoreceptors in iPSC-derived retinal organoids
and strategic approaches for retinal cell transplantation is
shown in Figure 3a-d. However, the use of animal-derived
growth factors, viral vectors during reprogramming, genomic
instability and prolonged time for differentiation limit their
clinical application. The use of small molecules to over-
come the cross-species antigenic contamination has been
suggested [77]. Furthermore, numerous studies revealed the
improved differentiation protocols using chemically defined
optimal culture condition for the development of retinal cell
lineages and photoreceptor precursors that showed sequen-
tial expression of retinal cell markers [68,78]. Although the
efficiency of differentiation was better, there was no consis-
tency in defined molecules for induction of photoreceptors
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Figure 3: Generation of induced pluripotent stem cell-derived retinal organoids with the acquisition of photoreceptor cells. (a) Induced pluripotent stem cell colony with
tightly packed cells with defined boundaries, (b) induced pluripotent stem cell-derived retinal organoids, (c) Retinal organoids with RHO-positive photoreceptor cells
at apical part and (d) representative illustration showing subretinal transplantation of induced pluripotent stem cell-derived RPE and photoreceptor cells. Scale bars:

150 um (c), 200 wm (a and b)

from iPSC. Thus, the optimization of minimal culture condi-
tions which endogenously upregulate the specific transcription
factors of retinal cells is necessary. The key factors such as
B27, N2, DKK1, and Noggin enhance the early stage differen-
tiation of iPSC into retinal and photoreceptor precursors [79].
However, with improvement in the methodology for iPSC
generation without viral vectors [Table 1], feeder-free culture
conditions and chemically defined directed differentiation
approaches for efficient generation of photoreceptor precursor
cells have offered the platform for modeling human diseases.

The transplantation of postnatal photoreceptor precur-
sors and PSC-derived photoreceptor precursors showed the
proof of its potential benefit for the restoration of visual func-
tions [7,93,94]. Transplantation of photoreceptor cells derived
from iPSC in rd/ mouse model of end-stage retinitis pigmen-
tosa revealed the robust cell survival, developed a mature
outer nuclear layer (ONL), and connected to interneurons
improving the visual function [74]. However, the functional
restoration after transplantation could be associated with
RNA and/or protein transfer between graft and host photore-
ceptors; instead of transplanted photoreceptors migrating and
integrating into the photoreceptor layer of recipients [95,96],
these observations raise the possibility of material transfer as
an alternative strategy for the treatment of retinal disorders.
Surprisingly, CD73+ photoreceptor precursors derived from
human iPSC transplanted into rat eyes revealed the capac-
ity to survive and mature in proximity to host inner retina
without significant functional improvement by electroretinog-
raphy [88]. They suggested that more suitable transplantation
strategies and closely related species (such as nonhuman

primates) may improve the functionality of CD73+ cells after
transplantation [88]. Further, the purification of transplantable
photoreceptors using fluorescence-activated cell sorting and
magnetic-activated cell sorting can be effective strategies for
obtaining approximately 90% of pure cells, avoiding the possi-
ble risk of teratoma formation [7,88]. In addition, PSC-derived
retinal organoids in three-dimensional culture systems offer
the accessibility to the human cells such as photoreceptors
and RPE for future clinical applications in degenerative dis-
eases [97,98]. Furthermore, transplantable photoreceptor cells
could be isolated from heterogeneous cells layered in the
retinal organoids using novel label-free sorting approaches
based on the inherent characteristics, such as mechanical and
morphorheological properties [97]. Moreover, transplantation
studies have revealed that photoreceptor precursors can dif-
ferentiate into mature photoreceptor cells, and migrate to host
ONL, in which donor cells acquire synaptogenic potential and
initiate retinal synaptic circuitry with naive photoreceptors
via cellular integration [97,98]. While sensory photoreceptor
cell transplantation has been the center of focus, it is essential
to include RPE cells for successful and sustainable recovery
of vision in certain diseases [99]. Thus, cotransplantation of
RPE and photoreceptors provides a favorable environment for
incorporation of donor cells as shown in Figure 3d.

CONCLUSIONS

iPSC-derived photoreceptor cells are promising and future
hope for effective cell-based therapy in end-stage retinal dis-
eases. However, based on numerous publications, the hype
has been created in the scientific community and to the public
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indicating the success of photoreceptor cell transplantation. Till
date, there is no evidence on human studies showing success-
ful and effective photoreceptor transplantation that reversed
the loss of vision. Furthermore, similar data on transplanta-
tion, such as cell survival, integration, and trophic support for
improving visual functions, were interpreted differently. More
preclinical studies are required to claim the science behind the
success of iPSC derivative transplantation.
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