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BACKGROUND: Current outcomes prediction tools are largely based on and limited
by regression methods. Utilization of machine learning (ML) methods that can handle
multiple diverse inputs could strengthen predictive abilities and improve patient
outcomes. Inpatient length of stay (LOS) is one such outcome that serves as a surrogate
for patient disease severity and resource utilization.
OBJECTIVE: To develop a novel method to systematically rank, select, and combine ML
algorithms to build a model that predicts LOS following craniotomy for brain tumor.
METHODS: A training dataset of 41 222 patients who underwent craniotomy for brain
tumor was created from the National Inpatient Sample. Twenty-nine ML algorithms were
trained on 26 preoperative variables to predict LOS. Trained algorithms were ranked by
calculating the rootmean square logarithmic error (RMSLE) and topperformingalgorithms
combined to form an ensemble. The ensemble was externally validated using a dataset
of 4592 patients from the National Surgical Quality Improvement Program. Additional
analyses identified variables thatmost strongly influence the ensemblemodel predictions.
RESULTS: Theensemblemodel predicted LOSwithRMSLEof .555 (95%confidence interval,
.553-.557) on internal validation and .631 on external validation. Nonelective surgery, preop-
erative pneumonia, sodium abnormality, or weight loss, and non-White race were the
strongest predictors of increased LOS.
CONCLUSION: An ML ensemble model predicts LOS with good performance on internal
and external validation, and yields clinical insights that may potentially improve patient
outcomes. This systematicMLmethod can be applied to a broad range of clinical problems
to improve patient care.
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M achine learning (ML) is a powerful
analytic tool that uses computer
algorithms to recognize patterns

in data that are not explicitly programmed.1
Historically, regression-based algorithms have
dominated predictive modeling in medicine.2
These algorithms assume certain relationships

ABBREVIATIONS: CI, confidence intervals; LOS,
length of stay; ML, machine learning; NIS, National
Inpatient Sample; NSQIP, National Surgical Quality
Improvement Program; RMSLE, root mean square
logarithmic error
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between variable coefficients and outcomes
and that variables function independently to
influence outcomes. Given the complexity of
human disease, these assumptions may not
hold. Increasing emphasis is being placed on
the potential of nonregression ML algorithms
to improve outcomes research.3-4 Many of
these algorithms can handle and combine vast
numbers of variables in complex and nonlinear
ways to generate sophisticated predictions.4
Predictive models based on these techniques
may therefore help providers identify clinically
significant risk in patients whose constellation
of risk factors may otherwise have been missed,
or identify novel and unexpected predictors of
risk.5-7 Although used extensively in medical
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USING MACHINE LEARNING TOMODEL LENGTH OF STAY

FIGURE 1. Methods overview. A, Description of algorithm training and validation (using RMSLE as validation metric), selection of the top three performing
algorithms (the three algorithms with validation RMSLE closest to 0), combination of these algorithms into a separate, ensemble model, and internal and holdout
validation. B, External validation of the ensemble model using an entirely separate database derived from the NSQIP. RMSLE, root mean square logarithmic
error; NIS, National Inpatient Sample; NSQIP, National Surgical Quality Improvement Project.

imaging and genomics, the use of nonregression ML algorithms
to model clinical outcomes is less well-established.8-12
Nonregression ML has been used in clinical medicine,

including predicting survival in glioma patients following
surgery using support vector machines13 and diagnosing diabetic
retinopathy from retinal fundus photographs using neural
networks.14 A variety of ML techniques have been described.
Often a particular ML algorithm is selected a priori and thus may
not necessarily arrive at the optimal solution. Although certain
ML algorithms have theoretical advantages over others, the only
way to know with certainty which algorithm will produce the
best predictions is by direct comparison of the predictive power
of different algorithms.
Here, we propose a unique technique for predicting patient

outcomes that leverages the power of many types of ML: to
guide algorithm selection, we evaluate and rank the predictive
abilities of a broad range of ML algorithms before combining the
best performers into an ensemble, allowing us to take advantage
of the complementary strengths of multiple algorithms.15 In
this proof-of-concept study, we build and internally validate
a guided ML ensemble to predict length of stay (LOS)in
hospital of patients following craniotomy for brain tumor
from preoperative patient variables recorded in the National
Inpatient Sample (NIS). We then externally validate the ensemble
using the American College of Surgeons National Surgical
Quality Improvement Program (NSQIP) database. Finally, we
use permutation importance analyses and partial dependence
plots to understand the independent impact of variables that
the ensemble deems important in order to glean clinical insights
(Figure 1).

We chose to model LOS in part because it has been
identified as a primary driver of increasing cost for craniotomy
for brain tumor.16 Accurate modeling of this outcome can
help providers identify risk factors for, and potentially cut
down on, unnecessary hospital days after craniotomy for brain
tumor, decreasing waste and potentially improving care for these
patients.

METHODS

Training Database
We used the NIS database from 2002 to 2011 to train and

internally validate the ensemble. The NIS is the largest publicly
available all-payer inpatient database in the United States, representing
roughly 8 million hospital stays from ∼1000 hospitals. The database
is built to approximate a 20% stratified sample of nonfederal US
hospitals (The Agency for Healthcare Research and Quality, Rockville,
Maryland).17

External Validation Database
For external validation, we used data from the NSQIP from 2012

to 2013. The NSQIP, which is administered by the American College
of Surgeons, is a multi-institutional program that prospectively collects
data on randomly selected surgical patients from over 400 academic and
private hospitals across the United States.18 We selected years outside of
the range included in the training database to ensure no overlap between
the training and validation databases.

Both the NIS and NSQIP are publicly available, deidentified
databases, and were considered exempt from Institutional Review Board
review.
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Patient Selection
We screened each of 79 742 743 admissions registered in the NIS

from 2002 to 2011 for inclusion in the training dataset, and each of
1195 375 admissions registered in the NSQIP between 2012 and 2013
for inclusion in the external validation dataset. Eligible admissions were
identified by International Classification of Diseases (ICD)9 diagnosis
codes for brain tumor (225.0-225.4, 225.8, 225.9, 199.1, and 191.0-
191.9) and ICD9 procedure codes matching craniotomy in the NIS
dataset (01.20-01.29, 01.31, 01.32, 01.39, and 01.59), or Current Proce-
dural Terminology (CPT) codes for craniotomy in the NSQIP dataset
(61 510, 61 512, 61 518-61 521, 61 526, and61 530). Only patients 18
yr or older were included. In total, 41 222 admissions met criteria for
inclusion in the training dataset, and 4592 admissions met criteria for
inclusion in the external validation dataset.

Variable Selection and Primary Outcomes
A variety of preoperative patient characteristics were collected that are

available in both the NIS training and the NSQIP validation datasets,
including age, race, sex, specific neurosurgical diagnosis, preoperative
comorbidities, admission quarter (within the year of hospitalization),
and emergent vs nonemergent surgery. In total, 26 different variables
were considered (see Table, Supplemental Digital Content 1 for listed
variables).

Data Preprocessing
Missing numerical data were imputed using the median value

for the given variable, and a new binary variable created to denote
the imputation.19,20 Some algorithms (decision tree-based models in
particular) are well suited to detect and leverage variable interactions in
ways that linear models are not, while at the same time being unable
to function (algorithmically) in the presence of missing data. Using
this approach to handling missing data allows the greatest number
of algorithms to train while still permitting those that can leverage
imputation to do so.

Each column of numeric data was standardized by subtracting
the mean value of the column and then dividing by its standard
deviation. For linear algorithms, one-hot encoding was used to transform
categorical data into multiple binary columns. Missing categorical values
were treated as their own category and got their own column. For tree-
based algorithms, categorical data was encoded using randomly assigned
integers.

Algorithm Selection and Ensemble Validation
Prior to training, 20% of the training dataset was randomly selected

as the holdout and excluded from training.19,20 The remaining data
was divided into 5 mutually exclusive folds, For each of 29 algorithms
training was performed 5 times, with each fold used once for validation
and the remaining 4 used together as training.21 In choosing a 5-fold
(as opposed to a higher fold) validation, we made a tradeoff between
algorithm training run time and additional estimates of ensemble gener-
alizability on cross-validation. To offset this tradeoff, we evaluated the
final model against an entirely separate database, the NSQIP, which is
the ultimate measure of the ensemble’s ability to generalize to new data.

Model hyperparameters were optimized within each fold by creating
an additional sub-fold training/validation split. Each combination of
hyperparameters was tested within this sub-fold training/validation setup
to determine optimal hyperparameters. The algorithmwas then retrained
using these hyperparameters.

We calculated cross-validation scores by taking the root mean square
logarithmic error (RMSLE) of the 5 possible validation folds (the closer
to 0 the RMSLE value, the more accurate the model, with a RMSLE= 0
denoting zero error). We chose RMSLE as our validation metric because
it penalizes large error less when both predicted and actual LOS are
very large than when predicted and actual LOS are small. RMSLE
can be interpreted as the standard deviation of the log of unexplained
variance (eg, error). A less-than-technical treatment would be: “the
model’s prediction is usually within e to the power of the calculated
RMSE times the true value.” The algorithms with the highest cross-
validation scores were identified and combined with an elastic net to form
an ensemble.

The ensemble model was trained and cross-validated in the same
manner as the individual algorithms. As additional internal validation,
the RMSLEwas calculated for predictionsmade on the never-before-seen
holdout dataset. Following internal validation, the ensemble was trained
on 100% of the NIS database. The fully trained model was then exter-
nally validated with the NSQIP database (Figure 1). The NIS holdout
and the NSQIP dataset were taken to be one sample of data with a
single RMSLE and so no confidence intervals (CI) were calculated. ML
software fromDataRobot, Inc was used for model training and validation
(DataRobot ver 3.0, Boston, Massachusetts).

We generated lift charts in order to visualize how accurately each
ensemble model predicts LOS. To generate these charts, we ranked
and divided the ensemble predictions into 10 “bins” and calculated the
average predicted LOS for each bin.We then calculated the average actual
LOS for each decile and plotted the average predicted values against the
average actual values.

Permutation Importance
We used permutation importance to compute the relative importance

of a variable to the final ensemble.19,20,22 The ensemble was retrained on
a version of the data in which all values for the variable in question are
randomly permuted, which removes any predictive value of the variable
while maintaining its distribution. We then compared the difference
in RMSLE between the original model and the model built with the
permuted variable. By calculating the change in model performance for
each permuted variable, we can rank the relative importance of each
variable to the model, with more important variables yielding greater
losses in model performance.

Partial Dependence
Partial dependence plots allow one to visualize how a model reacts

to changes in a single variable.19,20,23 To generate these plots, a random
subset of the training data is selected. For each variable, all the values for
the variable are replaced with one of many constant test values. Predic-
tions are made using the test values and the mean value of the predic-
tions calculated. The mean prediction is plotted over the test values to
generate a visual representation of the model’s response to changes in
the variable. For categorical variables, we tested each value seen in the
training data. For numerical values, we tested values over regularly spaced
intervals between the maximum and the minimum observed value.

Other Statistical Methods
Additional statistical analysis was performed to describe selected

patient and hospital characteristics. We compared continuous variables
using the Mann–WhitneyU test and categorical variables using Pearson’s
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χ 2 test. All analyses were performedwith open source tools available from
SciPy (SciPy ver 0.17, http://www.scipy.org/).

RESULTS

Patient Characteristics
A total of 41 222 admissions for craniotomy for brain tumor

were reviewed for analysis. Average LOS was 7.8 d (standard
deviation = 8.7 d). One admission was excluded from the study
because it had no recorded LOS. Patients who are male (P= .02),
non-White (P < .001), have nonelective surgery (P < .001), and
have comorbidities (P < .001) tend to have longer hospitaliza-
tions (Table 1). The NIS andNSQIP patient populations differed
significantly from each other in a variety of ways (Table, Supple-
mental Digital Content 2).

Algorithm Leaderboard
Twenty-nine ML algorithms, including tree-based models,

linear classifiers, support vector machines, RuleFit, neural
networks, and naïve Bayes classifiers, were trained to predict
the primary outcomes. The top performing algorithms were 2
gradient boosted trees and a Nystroem kernel support vector
machine. These were combined with an elastic net to create an
ensemble model.

RMSLE and Lift Chart for the Ensemble Model
The ensemble model had a RMSLE of .555 (95% CI, 0.553-

0.557) on internal validation, a RMSLE of 0.559 for the holdout,
and a RMSLE of 0.631 on external validation. Lift charts for both
the internal and external validation are shown below (Figure 2,
Table 2).

Permutation Importance and Partial Dependence
The variables that most strongly influence LOS are as follows:

nonelective craniotomy, preoperative pneumonia, preoperative
sodium abnormality, preoperative weight loss, and non-White
race (Figure 3). Nonelective surgery independently increased
predicted LOS from 6.3 to 9.7 d; pneumonia (defined as new
or recently diagnosed) independently increased predicted LOS
from 7.6 to 20.4 d; preoperative sodium abnormality indepen-
dently increased predicted LOS from 7.4 to 12.1 d; and preop-
erative weight loss (defined as > 10% decrease in body weight
in the 6 mo prior to surgery) independently increased predicted
LOS from 7.5 to 16.1 d. Identifying as African American
(9.6 d), Hispanic (9.1 d), Asian (8.8 d), American Indian or
Alaska Native (9.1 d) conferred a longer LOS than identification
as White (7.4 d; Figure 4). Patients with multiple risk factors had
higher predicted LOS, though risk was not necessarily additive;
for example, an African American patient with pneumonia and a
nonelective surgery was predicted to have a LOS of 24 d (actual
LOS = 30 d).

TABLE 1. Characteristics of Patients Used for Algorithm Training

Average
LOS (SD),

Variable Total d P valuea

Total admissions 41 221 –
Sex n, (%)
Female 19 604 (47.6) 7.7 (8.6) .02
Male 21 617 (52.4) 7.9 (8.9)

Age at surgery, mean (SD), y 54.4 (15.9) –
Race n, (%)
White 25 747 (62.5) 7.3 (7.9) <.001
Hispanic 2720 (6.6) 10.0 (11.6)
Black or African American 2186 (5.3) 10.8 (13.2)
Other/Not reported 988 (2.4) 9.7 (9.4)
Asian 763 (1.9) 9.7 (11.5)
American Indian/Alaska native 142 (0.3) 9.3 (11.7)
Missing 8675 (21.0) 7.4 (7.2)

Elective surgery, n (%)
Yes 23 544 (57.1) 5.7 (7.1) <.001
No 17 616 (42.7) 10.6 (9.8)
Missing 61 (0.2) 8.8 (6.4)

Admission quarter, n (%)
1 9531 (23.1) 7.7 (8.3) .28
2 9423 (22.9) 7.6 (8.4)
3 9546 (23.2) 7.7 (8.6)
4 9321 (22.6) 7.9 (9.0)
Missing 3400 (8.2)

Comorbidities
Diabetes, n (%)

Yes 5140 (12.5) 9.5 (10.0) <.001
No 35 663 (86.5) 7.5 (8.5)
Missing 418 (1.0) 7.9 (11.1)

Congestive heart failure, n (%)
Yes 731 (1.8) 12.8 (10.9) <.001
No 40 072 (97.2) 7.7 (8.6)
Missing 418 (1.0) 7.9 (11.1)

Hypertension, n (%)
Yes 16 213 (39.3) 8.4 (8.2) <.001
No 24 590 (59.7) 7.4 (9.0)
Missing 418 (1.0) 7.9 (11.1)

Metastatic cancer, n (%)
Yes 2070 (5.0) 8.5 (7.3) <.001
No 38 733 (94.0) 7.8 (8.8)
Missing 418 (1.0) 7.9 (11.1)

Weight loss, n (%)
Yes 735 (1.8) 20.8 (18.4) <.001
No 40 068 (97.2) 7.6 (8.2)
Missing 418 (1.0) 7.9 (11.1)

Sodium abnormality, n (%)
Yes 2852 (6.9) 14.8 (14.2) <.001
No 38 369 (93.1) 7.3 (7.9)
Missing 0 (0) –

Alcohol abuse, n (%)
Yes 615 (1.5) 10.7 (10.6) <.001
No 40 606 (98.5) 7.8 (8.7)
Missing 0 (0) –

Pneumonia, n (%)
Yes 696 (1.7) 23.7 (20.5) <.001
No 40 525 (98.3) 7.5 (8.1)
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TABLE 1. continued

Average
LOS (SD),

Variable Total d P valuea

Missing 0 (0) –
Esophageal varices, n (%)
Yes 5 (0.01) 9.4 (6.0) .19
No 41 216 (99.99) 7.8 (8.7)
Missing 0 (0) –

Previous PCI, n (%)
Yes 673 (1.6) 7.1 (5.8) .40
No 40 548 (98.4) 7.8 (8.8)
Missing 0 (0) –

Previous cardiac surgery, n (%)
Yes 736 (1.8) 7.76 (6.9) .001
No 40 485 (98.2) 7.80 (8.8)
Missing 0 (0.0) –

History of TIA or stroke n (%)
Yes 423 (1.0) 11.4 (11.5) <.001
No 40 798 (99.0) 7.8 (8.7)
Missing 0 (0) –

Pregnant at time of surgery, n (%)
Yes 0 (0) – –
No 41 221 (100) 7.8 (8.7)
Missing 0 (0) –

Smoker at time of surgery, n (%)
Yes 4727 (11.5) 6.8 (6.3) <.001
No 36 494 (88.5) 7.9 (9.0)
Missing 0 (0) –

History of COPD, n (%) <.001
Yes 2000 (4.9) 9.5 (9.4)
No 39 221 (95.1) 7.7 (8.7)
Missing 0 (0) –

History of ascites, n (%)
Yes 0 (0) – –
No 41 214 (99.98) 7.8 (8.7)
Missing 7 (.02) 15.3 (6.3)

Dialysis at time of surgery, n (%)
Yes 5 (0.01) 11.6 (8.6) .15
No 41 216 (99.99) 7.8 (8.7)
Missing 0 (0) –

History of bleeding disorders, n (%)
Yes 1470 (3.6) 12.1 (12.4) <.001
No 39 751 (96.4) 7.6 (8.5)
Missing 0 (0) –

Any comorbidities, n (%)
Yes 24 167 (58.6) 8.9 (9.6) <.001
No 17 054 (41.4) 6.3 (7.0)
Missing 0 (0) –

Comorbidity counts, n (%)
0 17 054 (41.4) 6.3 (7.0) <.001
1 13 301 (32.3) 7.7 (8.3)
2-4 10 225 (24.8) 10.3 (10.8)
5+ 641 (1.5) 9.4 (11.0)

aMann–WhitneyU test and 1-wayANOVA test for significantdifferencebetweengroups.
LOS, length of stay; SD, standard deviation; y, years; d, days; PCI, percutaneous coronary
intervention; TIA, transient ischemic attack; COPD, chronic obstructive pulmonary
disease.

DISCUSSION

Models that accurately predict postoperative outcomes can be
leveraged to improve patient care. Such models could be incor-
porated into and run in the background of clinical data systems
or EMRs to automatically return predicted outcomes in a point-
of-care setting. Ideally, our ensemble would be used to predict
LOS prior to admission to aid in decision-making, including
surgery scheduling. Importantly, potentially reversible predictors
of LOS, such as sodium abnormalities, could be addressed prior
to surgery. The ensemble also provides patients and families with
information to aid in planning for work absences or postdis-
charge care, while also better enabling them to provide informed
consent. Predictions could prove useful to nonclinicians, as well.
For instance, bed managers could ensure that adequate numbers
of beds are available in intensive care units for postoperative
patients. Ancillary services, such as case management or social
work, could also be mobilized at times that minimize delays in
discharge. Although we do not study the relative accuracy of the
model compared to clinician estimates of LOS, we imagine the
ensemble being used as a “check” of provider intuition.
The ensemble could also be used to guide quality improvement

initiatives. LOS indices, which compare expected to observed
LOS, have been proposed as markers of efficiency and hospital
performance. Using patient-specific predicted LOS to measure
expected LOSmay improve the accuracy of such indices, allowing
hospitals to generate more representative quality metrics and,
in reimbursement schemes that incentivize quality care, avoid
punishment for taking on higher risk patients.24

ImprovingModelingMethods
Our technique of algorithm selection and ensemble creation circum-

vents important limitations of traditional, regression-based modeling.
First, we overcome biases associated with algorithm selection through
direct comparison of a panel of ML algorithms, enabling empiric identi-
fication of the most predictive algorithms. A table describing some of the
most common ML algorithms is included below (Table 3). Second, we
take advantage of complementarity between classes of ML algorithms
by creating an ensemble model from the most predictive algorithms,
allowing us to generate the most accurate predictions for a given
dataset.

We demonstrated that this guided ML ensemble technique can be
used to predict LOS from preoperative patient characteristics with good
accuracy on internal (RMSLE = .555, 95% CI, .553-.557) and external
(RMSLE = .631) validation, demonstrating generalizability to never-
before-seen data. Although we chose to predict LOS, this technique is
broadly generalizable, and guided ML ensembles can be built to predict
any number of medical outcomes.

Clinical Insights fromMLModels
A common misconception of nonregression ML algorithms

is that their underlying mechanisms are difficult to understand,
making them less useful or easy to interpret than regression
models. In this study, however, we demonstrate well-established
ML techniques that provide comparable, if not more informative,

388 | VOLUME 85 | NUMBER 3 | SEPTEMBER 2019 www.neurosurgery-online.com



USING MACHINE LEARNING TOMODEL LENGTH OF STAY

FIGURE 2. Lift charts. Lift charts demonstrating graphically the accuracy of predicted LOS relative to actual LOS for the ensemble model on A, internal and
B, external validation. Predicted LOS is divided into 10 equal bins, or deciles. Mean predicted LOS and mean actual LOS are calculated and plotted for each
decile bin. Note that the lift charts reflect the fact that the average LOS in the NSQIP is shorter than the average LOS in the NIS. Solid line denotes actual LOS;
dashed line denotes predicted LOS. LOS, length of stay.

TABLE 2. Lift Chart Metrics

Internal validation (NIS)
Decile 1 2 3 4 5 6 7 8 9 10
Predicted mean LOS, d 4.1 4.5 4.8 5.5 6.7 7.8 8.3 9.3 10.9 16.2
Actual mean LOS, d 4.2 4.3 4.6 5.0 6.8 7.6 8.5 9.8 11.0 16.7
% difference −1.4 4.6 4.3 9.1 −1.9 2.2 −1.8 −4.8 −1.1 −3.2

External validation (NSQIP)
Decile 1 2 3 4 5 6 7 8 9 10
Predicted mean LOS, d 3.8 4.4 4.6 5.0 5.6 6.5 7.7 8.5 9.6 12.6
Actual mean LOS, d 4.0 3.9 4.2 5.1 5.4 6.0 6.9 8.8 9.6 11.5
% difference −5.3 10.7 11.0 −2.0 4.8 9.5 10.8 −2.8 −0.5 9.4

Description of lift chart metrics. The predicted length of stay for the internal and external validation are divided into deciles and themeans calculated. This is compared to themean
for actual length of stay. LOS, length of stay; d, days.

FIGURE 3. Permutation importance. Permutation importance analyses
demonstrating the relative importance of the five most influential variables
on the predictions of the ensemble. The most important variable is assigned
the value “1.0” and all other variables are assigned numerical values based
on their importance relative to the most important variable.

clinical insights. For example, we used permutation importance
analysis to identify which of the myriad risk factors identified
in univariate analysis is most important in determining extended
LOS.
Partial dependence plots graphically depict the independent

impact of a variable on model predictions. Plots are constructed
by graphing the partial dependence “coefficient” across the entire
range of values for a variable. As such, these analyses are more
dynamic than regression coefficients, which remain static across
the range.

Strengths and Limitations
ML techniques are often criticized for overfitting. A major

strength of our study lies in the techniques we use to ensure
that our ensemble predictions are not overly tailored to training
data. First, we internally validate our data using five nonover-
lapping cross-validation folds, generating 5 independent estimates
of the ability of the ensemble to generalize to unseen data. Second,
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FIGURE 4. Partial dependence plots. Partial dependence plots demonstrating the independent impact of A, elective
surgery,B, preoperative pneumonia,C, preoperative sodium abnormalities,D, preoperative weight loss, and E, patient
race on the ensemble model. Left Y-axis represents patient incidence for each patient group and corresponds to bars.
Right Y-axis represents predicted LOS and corresponds to round heads. LOS, length of stay.

we demonstrate generalizability to a holdout dataset never used
in algorithm training. Finally, we validate the ensemble on an
entirely separate database, the NSQIP.
Internal validation alone can yield overly optimistic results

as testing and validation data are often very similar.5 Demon-
stration of generalizability to an external dataset is therefore the
gold standard for model validation, though it is rarely reported
in outcomes literature.25-26 Importantly, the populations repre-
sented in our training (NIS) and validation (NSQIP) datasets
are significantly different in many respects, demonstrating that

the NSQIP dataset is truly external to the NIS dataset (Table,
Supplemental Digital Content 2). For example, average LOS
is significantly shorter in the NSQIP than the NIS (6.5 vs 7.8
d P < .001). It is thus particularly remarkable that the NIS-
trained ensemble can make accurate predictions from the NSQIP
database with only a modest loss in performance (RMSLE= .631
vs .555). Future directions for this work include validating the
ensemble on a larger external dataset, withmore years represented,
and validating the ensemble in a prospective fashion. It will also
be important to build and validate an ensemble built from a
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TABLE 3. CommonML Algorithms

Model Description Advantages Disadvantages

Support vector
machines

Inputsa are represented as vectors in higher
dimensional space, with each axis
corresponding to a different variable. The
algorithm then calculates a plane that
separates the inputs into 2 different classes.
New inputs are then assigned to a class based
on which side of the plane they fall on.

Can model complex, nonlinear
relationships between inputs and
outputs

Robust to noise

Fast to predict

Requires significant processing
power

Slow to train

Kernel selection requires expertise

Artificial neural
networks

Designed as a series of layers of artificial
neurons, with weights assigned to every
variable. Individual neurons will “fire”and
propogate the signal to later layers if the
weighted sum of its inputs (variables or
previous neurons in the network) passes a
threshold. Neural networks have been shown
to be able to recognize meaningful, complex
interactions in data as the number of layers
increases.

Can model complex, nonlinear
relationships between inputs and
outputs

Difficult to interpret the underlying
mechanisms driving predictions (a
black box)

Requires significant processing
power
Slow to train

K nearest
neighbors

Inputs are represented as vectors in
multidimensional space, with each axis
corresponding to a different variable.
Prediction outputs are based on the values of
the k nearest training examples according to a
specified distance metric.

Simple and easy to interpret

Can be used to discriminate
between many different classes, eg,
tagging text

No training is involved, so new
training examples can be easily
added. This makes the model
quickly adaptable new inputs.

Slow—can take a long time to
calculate nearest neighbors in large
datasets.

Need to know that the distance
function is clinically meaningful

Generalized
Additive models

Variables are fed into individual smooth
functions, summed, then transformed by some
(potentially nonlinear) link function into a final
output.

Can more accurately represent
outcomes that are not normally
distributed.

Requires expertise and care in
selecting appropriate link function.

Effective use requires some
foreknowledge of the training data.

Tree-based models
Decision tree Uses decision rules to classify data. Large trees

may have many decision rules. Every input will
be classified into 1 output value.

Easy to interpret Prone to overfitting.

Not built to maximize any objective
metric.

Random forest An ensemble of many decision trees, the
output of which is determined by the mean
prediction of the individual trees. The use of
many trees effectively combats overfitting.

Corrects for overfitting in decision
trees.

Observed to perform well in a wide
variety of contexts.

Optimum performance depends on
tuning several important
parameters.

Gradient
boosted Trees

An ensemble of weak decision trees built in a
stagewise manner. Subsequent trees are
added according their ability to improve the
model.

Observed to perform well in a wide
variety of contexts.

Optimum performance depends on
turning several important
parameters.

Linear models
Ordinary least
Squares
(logistic
and linear
regression)

The traditional regression technique. Finds the
coefficients of a linear model that minimize the
Mean Squared Error.

Easy to interpret

For classification, output can be
interpreted as a probability

Fast to train

Assumes independently acting
predictors that influence the
outcome in a linear fashion.
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TABLE 3 continued

Model Description Advantages Disadvantages

Regularized
linear and
regularized
logistic
regression

Regression that employ mechanisms to
minimize overfitting by shrinking or
eliminating large regression coefficients.
Examples include ridge regularization, lasso
regularization, and elastic net regularization
(which combines ridge and lasso
regularizations).

Robust to noise

Easy to interpret

For classification, output can be
interpreted as a probability

Fast to train

Assumes independently acting
predictors that influence the
outcome in a linear fashion.

Stochastic
gradient
descent

Linear model that initially assigns each variable
a random coefficient. The error function of the
model is then calculated, and coefficient
values updated in the direction that minimizes
the error function. This process continues in a
stepwise manner until minimization is
achieved.

Robust to noise

Can be used in online-learning
contexts

Susceptible to converge to
suboptimal local minima

Naïve bayes Given a training dataset, assigns probabilities
that the value of a given variable is associated
with the outcome of interest. Inputs are
classified based on the probabilities assigned
to the values of their individual variables.

Easy to understand Assumes independently acting
predictors

Susceptible to outsized effects for
infrequently observed data.

If the frequency of classes is
unbalanced in the training dataset,
can have classification skewed
toward the more common
outcome.

aInputs refers to individual patients, each of which is defined by the various variables attributable to that patient.

single institution’s data, allowing for tailoring of the ensemble
to the specific practice milieu of the neurosurgeon(s) using the
ensemble’s predictions.19

Although our study has many advantages, it also has important
limitations. First, because we trained our ensemble only using
variables present in both the NIS and NSQIP database, there is
the potential to miss important predictors that were present in
only 1 of the datasets. For example, no hospital characteristics are
captured in the NSQIP, a significant limitation given the impor-
tance of hospital geography as a predictor of LOS.20 Furthermore,
these datasets do not capture neurosurgery-specific variables, such
as tumor characteristics. Building large, neurosurgery-specific
databases will further enhance the utility of this technology in
the neurosurgical sphere. Finally, our ML strategy is novel and
will require further study and validation. We hope, however, that
this work will encourage researchers to utilize ML in predictive
modeling.

CONCLUSION

ML is a powerful, albeit underutilized, tool in clinical medicine
with direct relevance to neurosurgical outcomes research. In
this proof-of-concept study, we build an internally and exter-

nally validated ML ensemble model that predicts LOS following
craniotomy for brain tumor. We show that clinical insights can
be derived from these ML algorithms, including identification of
important risk factors for extended LOS. This technique can be
applied broadly to various outcomes, potentially translating into
improved care for patients.
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COMMENTS

I n the early 1990s, the gene for Huntington’s Disease was discovered,
and a highly accurate test for it was developed. More than 2 decades

later, most people will probably still decline to take the tests today. Why?
The answer, as we all know, is a common clinical dictum: Why test for
things that you cannot do something about?

One of the attractions of artificial intelligence is the ability to develop
highly accurate prediction models. However, this high accuracy may not
be as useful as computer scientists would make us think. They have a risk
of becoming the modern-day version of genetic testing.

To make sure these new tools are actually contributing to patient care,
AI projects need to incorporate concepts of modifiability in their search
for predictors. But computers don’t know what is modifiable and what
is not. The best way (and probably the only way) to do this is to engage
clinicians and health services researchers in the process. The expectation
that computers can completely automate the process is unrealistic, and
will likely lead to “interesting” results that may only be of interest to
computer scientists, but not for clinicians taking care of patients.

There is still no substitute (yet) for the human common sense.

David Chang
Boston, Massachusetts

T he authors have conducted a machine learning algorithm to help
predict length of stay (LOS) in patients undergoing brain tumor

surgery. Machine learning in predictive modelling is underutilized in
medicine. Using the National Inpatient Sample (NIS) to train a variety
of models and the National Surgical Quality Improvement Program
(NSQIP) database for validation, the authors attain good prediction and
identify several dichotomous risk factors increasing LOS, including non-
elective surgery, pneumonia, sodium abnormalities, weight loss, and non-
white race.

Strengths of this interesting study include the use of the NIS:
predictive models generalize best when trained on large, representative
datasets. External validation is the gold standard for reducing bias and
overfitting; nevertheless, the authors should perform a more extensive,
prospective validation going forward. While better LOS prognosticating
may result in efficiency gains for hospital systems, it is unclear how these
findings may be clinically meaningful.

Put to useful ends, machine learning algorithms progressively improve
performance on specific tasks using specific datasets; they are beholden
to the quality and generalizability of their data. Machine learning in
medicine will result in large efficiency gains in detecting empirical
relationships that can facilitate prediction of certain parameters.

There are many areas within neurosurgery that could benefit from
better predictive modelling: in addition to providing a more accurate
LOS prognosis as in this paper, machine learning algorithms could better
predict rare but devastating events which are poorly suited to traditional
statistical modelling - such as which aneurysms are bound to rupture; or
they could assist in surgical risk assessment, or complication avoidance.

Christopher Carr
Peter S. Amenta

Aaron S. Dumont
New Orleans, Louisiana
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