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Abstract

Background: Stark racial disparities in disease incidence among American women remain a 

persistent public health challenge. These disparities likely result from complex interactions 

between genetic, social, lifestyle, and environmental risk factors. The influence of environmental 

risk factors, such as chemical exposure, however, may be substantial and is poorly understood.

Objectives: We quantitatively evaluated chemical-exposure disparities by race/ethnicity, life 

stage, and time in United States (US) women (n=38,080) by using biomarker data for 143 

chemicals from the National Health and Nutrition Examination Survey (NHANES) 1999–2014.
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Methods: We applied a series of survey-weighted, generalized linear models using data from the 

entire NHANES women population along with cycle and age-group stratified subpopulations. The 

outcome was chemical biomarker concentration, and the main predictor was race/ethnicity with 

adjustment for age, socioeconomic status, smoking habits, and NHANES cycle.

Results: The highest disparities across non-Hispanic Black, Mexican American, Other Hispanic, 

and Other Race/Multi-Racial women were observed for pesticides and their metabolites, including 

2,5-dichlorophenol, o,p’-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol, along with 

personal care and consumer product compounds, including parabens and monoethyl phthalate, as 

well as several metals, such as mercury and arsenic. Moreover, for Mexican American, Other 

Hispanic, and non-Hispanic black women, there were several exposure disparities that persisted 

across age groups, such as higher 2,4- and 2,5-dichlorophenol concentrations. Exposure 

differences for methyl and propyl parabens, however, were the starkest between non-Hispanic 

black and non-Hispanic white children with average differences exceeding 4-fold. Exposure 

disparities for methyl and propyl parabens are increasing over time in Other Race/Multi-Racial 

women while fluctuating for non-Hispanic Black, Mexican American, and Other Hispanic. 

Differences in cotinine levels are among the highest in Non-Hispanic White women compared to 

Mexican American and Other Hispanic women with disparities plateauing and increasing, 

respectively.

Discussion: We systematically evaluated differences in chemical exposures across women of 

various race/ethnic groups and across age groups and time. Our findings could help inform 

chemical prioritization in designing epidemiological and toxicological studies. In addition, they 

could help guide public health interventions to reduce environmental and health disparities across 

populations.
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1. Introduction

The stark racial disparities in disease incidence and health outcomes among American 

women remain a persistent public health challenge. For example, preterm birth incidence is 

approximately 60% higher in non-Hispanic Black women relative to non-Hispanic White 

women (Culhane and Goldenberg 2011). Non-Hispanic Black and Hispanic women are at 

increased risk of being diagnosed with developing dysglycemia (Marcinkevage et al. 2013) 

and diabetes (Cowie et al. 2009), relative to non-Hispanic White women. Non-Hispanic 

Black women are also 2–3 times more likely to develop the most aggressive subtype of 

breast cancer, triple negative, compared to non-Hispanic White women (Carey et al. 2006; 

Stark et al. 2010). Furthermore, relative to non-Hispanic White women, non-Hispanic Black 

women are also 2.4 times more likely to die of breast cancer after being diagnosed with the 

pre-invasive lesion, ductal carcinoma in situ (Narod et al. 2015). Recent statistics from the 

American Cancer Society also show variation in trends in breast cancer incidence rates by 

race/ethnicity in US women from 2005–2014. Specifically, breast cancer incidence rates are 

increasing in Asian (1.7% per year), non-Hispanic Black (0.4% per year), and Hispanic 
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(0.3% per year) women, while rates remain stable in non-Hispanic White and American 

Indian/Alaska Native women (DeSantis et al. 2017). Dementia rates also vary by race/

ethnicity, with rates highest in non-Hispanic black women, followed by American Indian/

Alaskan native, Latina, Pacific Islander, non-Hispanic White, and lowest in Asian American 

women (Mayeda et al. 2016). These rates vary 60% between African American and Asian 

American women. Reproductive outcomes are also significantly different by race/ethnicity, 

with studies reporting increased incidence of gestational diabetes in South and Central Asian 

American women (Thorpe et al. 2005) and Black and Hispanic women (Tanaka et al. 2007). 

Collectively, these findings suggest profound racial disparities in disease outcomes that 

manifest throughout the life course. Understanding the etiological factors driving these 

health disparities is essential for informing public health interventions seeking to promote 

health equity.

While health disparities are likely due to complex interactions between genetic, social, and 

lifestyle factors, the impact of genetic variation on disease disparities appears to be minor 

(Braun 2007; Cooper et al. 2003; Diez Roux 2012). For example, a meta-analysis of genetic 

factors underlying racial disparities in cardiovascular disease failed to identify heterogeneity 

of genetic risk factors by race/ethnicity (Kaufman et al. 2015). These findings of a modest 

genetic impact on differential cardiovascular disease risk by race/ethnicity are consistent 

with genome-wide association studies. A study found that variants with the strongest 

association with blood pressure explain, in aggregate, less than 5% of the phenotypic 

variance (Ehret et al. 2011). Moreover, a meta-analysis of genetic risk factors and cancer 

disparities reported similar findings, with almost no heterogeneity in cancer risk alleles by 

race/ethnicity (Jing et al. 2014).

The limited impact of genetic risk factors in explaining health disparities points towards 

environmental risk factors as major determinants. Indeed, estimates of environmental factors 

on chronic disease suggest than 70–90% of risk is due to environmental exposures (Lim et 

al. 2012; Rappaport and Smith 2010). A mechanistic understanding of racial disparities in 

disease therefore requires a characterization of differences in environmental risk factors. In 

particular, differences in chemical exposures have been hypothesized to be important 

etiologic factors in racial disparities in disease rates (Hoover et al. 2012; Juarez and 

Matthews-Juarez 2018; Ruiz et al. 2018; Wang et al. 2016; Zota and Shamasunder 2017).

To investigate the influence of environmental risk factors on health disparities, the goal of 

this study was to conduct a comprehensive analysis of racial disparities in chemical 

biomarker concentrations among US women. To accomplish this, we leveraged data from 

the National Health and Nutrition Examination Survey (NHANES), an ongoing population-

based health study conducted by the US Centers for Disease Control and Prevention (CDC). 

Additionally, we developed visuals to highlight differences in biomarker concentrations 

across races, age groups, and time, by defining the relative magnitude of exposure disparities 

for individual chemicals and chemical families.
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2. Methods

2.1 Study Population

NHANES is a cross-sectional study designed for collecting data on demographic, 

socioeconomic, dietary, and health-related characteristics in the non-institutionalized, 

civilian US population. For this analysis, we used the continuous NHANES data on 

chemical biomarkers and demographics, which were collected from 1999–2014 with 82,091 

participants initially. We excluded participants for not having any data on chemical 

biomarkers (N = 7,001), resulting in a sample size of 75,090 study participants. Since this 

analysis is focused on measuring chemical disparities in US women, we excluded male 

participants (N = 37,010), leading to a final sample size of 38,080 female participants. For a 

given chemical, we also excluded participants with missing data on any of the following 

covariates: race/ethnicity, age, NHANES cycles, poverty income ratio, cotinine levels, and 

urinary creatinine. Numbers of participants with complete data for a given chemical are 

tabulated in Excel Table S1. These exclusion and inclusion criteria are delineated in Figure 

1.

2.2 Chemical Biomarker Measurements

This section along with Figure 1 delineates the curation process for selecting chemical 

biomarkers to include for analysis. First, we excluded biomarkers that are not indicative of 

chemical exposures (n = 99). Next, we corrected for differences in chemical codenames by 

using a unique codename for each biomarker (n = 36). We gave preference to lipid-adjusted 

data and therefore excluded non-lipid adjusted chemical biomarkers (n = 79) when both 

types of data were provided for a given chemical. We replaced all measurements below the 

limit of detection (LOD) with LOD/ 2 as recommended by the CDC (CDC 2009). This 

approximates a lognormal distribution, so that reasonably unbiased means and standard 

deviations are produced (Hornung and Reed 1990). There were also instances in which 

urinary cadmium concentrations were recorded as 0 ng/mL due to interference with 

molybdenum oxide (NCHS, 2005a, NCHS, 2005b). We replaced such values with LOD/ 2
if the participant’s urinary cadmium level was under the LOD or otherwise excluded. We 

calculated detection frequencies for each chemical biomarker (Excel Table S2) and excluded 

biomarkers with detection frequencies of 50% or less (n = 182) across all study participants. 

As we have reported previously, across the NHANES cycles, improvements in laboratory 

technology can change the LOD and thus lead to differences in detection frequencies by 

NHANES cycle (Nguyen et al. 2019). To limit bias from these changing LODs over time, 

we calculated detection frequencies by NHANES cycle (Excel Table S2) for each chemical 

biomarker and excluded measurements where the LOD changed by over an order of 

magnitude (Excel Table S3) and detection frequencies over time (Nguyen et al. 2019). For 

instance, percentages of participants with PCB 199 measurements above LODs for Cycle 2 

and Cycle 3 are 36.2% and 84.9%, respectively, and the LOD for Cycle 2 and Cycle 3 were 

10.50 ng/g and 0.40 ng/g, respectively. As such, measurements from Cycle 2 for PCB 199 

were excluded. Measurements from given cycles for several PCBs, Dioxins, Furans, 

Phytoestrogens, and VOCs along with Paranitrophenol, 2-napthol, 1-pyrene and 9-pyrene 

(m = 449,396 total data points) were therefore also excluded based on these criteria (Excel 

Table S4). The final dataset for analysis consisted of 143 chemical biomarkers from 16 
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different chemical classes (Excel Table S5). These chemical classes were: Acrylamide, 

Brominated Flame Retardants (BFR), Phosphate Flame Retardants (PFR), Dioxins, Furans, 

Metals, Other, Personal Care & Consumer Product Compounds, Pesticides, Phthalates & 

Plasticizers, Phytoestrogens, Polyaromatic Hydrocarbons (PAH), Polychlorinated Biphenyls 

(PCB), Per- and Polyfluoroalkyl Substances (PFAS), Smoking Related Compounds, and 

Volatile Organic Compounds (VOC).

2.3 Statistical Analysis

We performed all analyses using R version 3.6.0. Given the NHANES complex sampling 

design, we applied appropriate survey weights in our statistical models to produce estimates 

representative of the non-institutionalized, civilian US population. Applying the appropriate 

survey weights involved selecting the weights of the smallest analysis subpopulation (NCHS 

2018). For example, there are two types of survey weights that can be used for a conducting 

an analysis with total arsenic: WTSA2YR or WTMEC2YR. WTMEC2YR is the NHANES 

codename for survey weights for all participants whose measurements were taken in a 

Mobile Exam Center (MEC). WTSA2YR is similar to WTMEC2YR with the exception that 

the survey weights are only for participants who belong to subsample A, which is a smaller 

subpopulation with measurements for total arsenic. Since WTSA2YR pertains to the smaller 

analysis subpopulation, WTSA2YR is the appropriate survey weight to apply for an analysis 

on total arsenic. The appropriate survey weights are listed in the original NHANES files 

containing the measurements for the chemical biomarker. If the survey weights are not listed 

for a given chemical, then we use WTMEC2YR as the default. Conducting an analysis 

across several NHANES cycles may require the use of different survey weights (NCHS 

2018). For instance, a statistical model for total arsenic requires using only one type of 

survey weights (WTSA2YR). But a statistical model for triclosan requires three different 

types of survey weights (WTSA2YR, WTSB2YR, WTSC2YR), since in each NHANES 

cycle, a different subpopulation of NHANES is measured for triclosan. To account for 

NHANES sampling design and use the appropriate survey weights, we developed two 

databases. The first was a database of codenames indicating the appropriate survey weights 

for each chemical biomarker and NHANES cycle (Excel Table S6). For several of the Per- 

and Polyfluoroalkyl Substance (PFAS), there were two different type of survey weights 

available within the same cycle (one for children aged 3–11 and the other for participants 

aged 12 and older). Therefore, we developed another database of codenames indicating 

which additional survey weights to use when generalizing these results for PFASs (Excel 

Table S7).

Using multivariate regression models, we evaluated differences in biomarker concentrations 

in blood and urine by race after log-transforming the data. We included log-transformed 

levels of cotinine as a covariate to represent smoking (Benowitz, 1999), and creatinine levels 

to adjust for urine dilution and flow differences (Barr et al., 2005). We modeled poverty 

income ratio (PIR) as a surrogate variable for socioeconomic status. PIR is the ratio of 

household income and poverty threshold adjusted for family size and inflation. First, we 

examined the racial differences in chemical biomarker levels by performing a series of 

chemical-specific regression models with the main predictor being race/ethnicity 
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(categorical), adjusting for age (continuous), NHANES cycle (continuous), PIR 

(continuous), and cotinine (continuous) as described in Eq. (1):

Log10 XCℎemical Concentration = βrace/etℎnicity, j Xrace/etℎnicity, j +
βage Xage +
βcycle Xcycle +
βPIR XPIR +
βcotinine Xcotinine +
βcreatinine Xcreatinine +
α

[1]

Here, XChemical Concentration is the log-transformed, unadjusted chemical biomarker 

concentration for all participants, Xi, where 

i ∈ race/etℎnicity, j, age, sex, cycle, PIR, cotinine, creatinine , is the i covariate for all 

participants, βi is the linear regression coefficient for the i covariate, and α is the intercept. 

Xrace/etℎnicity, j, where 

j ∈ Mexican Americans, Otℎer Hispanics, Non − Hispanic Black, Otℎer Race/Multiracial
for 1999–2014, is the race covariate for comparing the jth race to the reference group of 

Non-Hispanic Whites. For chemical biomarkers which were measured in urine, we further 

corrected the regression models by adjusting for urinary creatinine levels (continuous). For 

the analyses where cotinine concentration was the outcome, the regression models were not 

further corrected for smoking. Prior to 2011, Asian Americans were categorized in Other 

Race/Multi-Racial category. Accordingly, to evaluate chemical exposure disparities in Asian 

American women, we also applied Eq. 1 to the 2011–2014 data. Then to determine whether 

racial disparities are driven by differences in socioeconomic status, we conducted a 

sensitivity analysis to observe how the race coefficients change with and without adjustment 

for PIR in the regression models. The coefficient for jth race represents the difference in log-

transformed chemical biomarker concentration between the jth race and the reference group 

of Non-Hispanic Whites. As we are making multiple comparisons across chemical 

biomarkers and races, we have an increased probability of detecting false positives, i.e. a 

high false positive rate. To identify significant comparisons while maintaining a lower false 

positive rate, we used the False Detection Rate (FDR) method on the p-values of the linear 

regression race-coefficients (Benjamini and Hochberg 1995).

We are interested in understanding how the racial disparities are influenced by reproductive 

and nutritional factors such as parity, breastfeeding, menopause/hysterectomy status, and 

iron deficiency, which may impact toxicant absorption and excretion. We used the 

reproductive health questionnaire on reasons for having period irregularities and another 

questionnaire on having regular periods in past 12 months to classify participants as having 

menopause/hysterectomy, otherwise with irregular periods, or otherwise with regular periods 

(reference). Parity (continuous) is defined from the questionnaire on the number of 

pregnancies resulting in live births. We used parity and a questionnaire asking whether the 

mother breastfed her children for at least a month to categorize participants into three 

categories: breastfed, did not breastfeed her children, and did not breastfeed as she does not 

have children (reference). We used sex-specific thresholds for hemoglobin levels 

(hemoglobin <13.5 g/dL for men and <12 g/dL for women) (Mayo Clinic 2019) to classify 
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participants as iron deficient or not (reference). To determine whether the frequency 

distribution of these variables differ by race, we conducted a Chi-Square test on the 

categorical variables and a one-way ANOVA test on parity. To characterize how the 

estimates of racial disparities change when a given reproductive or nutritional factor is 

included in the regression model, we conducted a series of regression models with the 

outcome variable as chemical concentrations and the main predictor as race/ethnicity 

(categorical) while adjusting for age (continuous), NHANES cycle (continuous), PIR 

(continuous), cotinine (continuous), creatinine (continuous), and an fth reproductive or 

nutritional factor from the set of {parity (continuous), breastfeeding (categorical), 

menopause/hysterectomy (categorical), iron deficiency (categorical)} as described in Eq. (2).

Log10 XCℎemical Concentration = βrace/etℎnicity, j Xrace/etℎnicity, j +
βage Xage +
βcycle Xcycle +
βPIR XPIR +
βcotinine Xcotinine +
βcreatinine Xcreatinine +
βfactor, f Xfactor, f +
α

[2]

For example, if f = parity, the Xfactor,f refers the number of pregnancies resulting in live birth 

for all participants. βfactor,f = parity is interpreted as the change in log-transformed chemical 

biomarker concentration for every successful pregnancy. Now, if f = iron deficiency, then 

Xfactor,f indicates whether a participant is iron deficient or not for all participants. 

βfactor,f = iron deficiency is interpreted as the difference in log-transformed chemical biomarker 

concentration between iron deficient participants and the reference group of participants 

who are not. The interpretations for menopause/hysterectomy status and breastfeeding status 

are similar to that of iron deficiency.

To evaluate how these racial differences in chemical exposures differ by age group, we 

conducted stratified analyses by age groups in the 1999–2014 data. We defined 4 age 

groups: 0–11, 12–19, 20–50, and 51–85. For each age group with chemical biomarker 

measurements, we performed a chemical specific linear regression with the main predictor 

as race/ethnicity (categorical) and adjusted for age (continuous), NHANES cycle 

(continuous), PIR (continuous), cotinine (continuous), and creatinine (continuous), stratified 

by age group described in Eq. (3).

Log10 XCℎemical Concentration age group = k
= βrace/etℎnicity, j Xrace/etℎnicity, j age group = k +

βage, k Xage age group = k +
βcycle, k Xcycle age group = k +
βPIR, k XPIR age group = k +
βcotinine, k Xcotinine age group = k +
βcreatinine, k Xcreatinine age group = k

+
α

[3]
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Here, k is an available age group from the set of {0 – 11, 12 – 19, 20 – 50, 51 – 85}, 

XChemical Concentration[age group = k] is the log-transformed, unadjusted chemical biomarker 

concentration for all participants with ages in the kth age groups, Xi,k[age group = k], where 

i ∈ race/etℎnicity, j, age, sex, cycle, PIR, cotinine, creatinine , is the i covariate for all 

participants with ages with the kth age group, βi,k is the linear regression coefficient for the i 
covariate and kth age group, and α is the intercept. Xrace/etℎnicity, j, k, where 

j ∈ Mexican Americans, Otℎer Hispanics, Non − Hispanic Black, Otℎer Race/Multiracial , 

is the race covariate for comparing the jth race to the reference group of Non-Hispanic 

Whites in the kth age group. To account for multiple comparisons, we used an FDR method 

on the p-values of the linear regression race-coefficients across all age groups (Benjamini 

and Hochberg, 1995).

To evaluate how racial disparities in chemical exposures changes over time, we conducted 

stratified analyses by NHANES cycles. We denote a cth cycle as from a study period from 

the set of {1 (1999 – 2000), 2 (2001 – 2002), 3 (2003 – 2004), 4 (2005 – 2006), 5 (2007 – 

2008), 6 (2009 – 2010), 7 (2011 – 2012), 8 (2013 – 2014)}. We excluded measurements 

from Cycle 2 for Blood Bromodichloromethane, Cycle 2 for Blood Chloroform, and Cycle 6 

for Blood Toluene due to having an error in the statistical program R when accounting for 

the sampling design. We excluded measurements from Cycle 2 for 3-fluoranthene as there is 

only one person with measurements for this chemical in Cycle 2. For each NHANES cycle 

with chemical biomarker measurements, we performed a chemical specific linear regression 

with the main predictor as race/ethnicity (categorical) and adjusted for age (continuous), PIR 

(continuous), cotinine (continuous), and creatinine (continuous) as described in Eq. (4). 

[cycle = c] denotes the inclusion of participants who have chemical biomarker 

measurements in the cth cycle. We used an FDR method on the p-values of the coefficients 

to account for multiple comparisons across all races and

NHANES cycles.

Log10 XCℎemical Concentration cycle = c
= βrace/etℎnicity, j, c Xrace/etℎnicity, j cycle = c +

βage, c Xage cycle = c +
βPIR, c XPIR cycle = c +
βcotinine, c Xcotinine cycle = c +
βcreatinine, c Xcreatinine cycle = c +
α

[4]

3. Results

Table 1 displays demographic characteristics of the study population. The study population 

includes 38,080 female study participants of ages 1–85 years, with a median age of 26. 

Using a series of covariate adjusted regression models, we first calculated the fold-difference 

in chemical biomarker concentrations by race across the entire study population. These 

regression results are presented in graphical format in Figure 2, where the letters in the plot 

reflect the fold-difference in chemical biomarkers for each race/ethnicity, relative to non-

Hispanic White women, who made up the largest portion of the study population. Full 
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regression results for all covariates in the regression models for each covariate are presented 

in Excel Table S8. Pesticides and pesticide metabolites, including 2,5-dichlorophenol, o,p’-

DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol had amongst the highest average 

fold difference across non-Hispanic Black, Mexican American, Other Hispanic, and other 

race/multiracial women. On average, large differences by race are also apparent for personal 

care and consumer product compounds including methyl paraben, propyl paraben, 

monoethyl phthalate and metals, such as mercury and arsenic. Conversely, cotinine, 

PBDE-153, PBB-153, Equol, DEET, and bisphenol F were among the chemicals of which 

non-Hispanic White women had the highest levels.

In order to more clearly visualize the differences in chemical biomarkers by race/ethnicity, 

we generated volcano plots, which are displayed in Figure 3. The x-axis of these plots 

depicts the fold difference in average chemical biomarker concentration between each race/

ethnicity and non-Hispanic White women. The y-axis depicts statistical significance, as 

reflected in the negative log10 transformation of the FDR-adjusted p-value from the 

regression analysis for that chemical biomarker, where chemicals with larger values on the 

y-axis are more statistically significant. As shown in Figure 3A, non-Hispanic black women 

have biomarker concentrations that are more than twice those of non-Hispanic White women 

for multiple chemicals, including 2,5-dichlorophenol, 1,4-dichlorobenzene, methyl paraben, 

monoethyl phthalate, 2,4-dichlorophenol, and propyl paraben. The heavy metals, mercury 

and lead, are also significantly higher in non-Hispanic Black women. Conversely, levels of 

benzophenone-3, a UV blocker used in sunscreen, are significantly higher in non-Hispanic 

White women. In general, concentrations of PCBs tend to be modestly elevated in non-

Hispanic Black women, while volatile organic compounds (VOCs) and phytoestrogen 

concentrations are higher in non-Hispanic White women. Figure 3B shows relative 

differences in chemical biomarker concentrations between Mexican American and non-

Hispanic White women. Pesticides, including 2,5-dichlorophenol, beta-

hexachlorocyclohexane, and 2,4-dichlorophenol, along with the polycyclic aromatic 

hydrocarbon 2-napthol were on average higher in Mexican American women. Conversely, 

the smoking biomarker, cotinine is significantly lower in Mexican American women. 

Exposure patterns comparing Other Hispanic and non-Hispanic White women, displayed in 

Figure 3C, showed some similarities, with pesticides 2,5-dichlorophenol and p,p’-DDE 

elevated in Other Hispanic women. Multiple PFASs, including PFOS, PFHxS, and 2-(N-

methyl-PFOSA) acetate, as well as cotinine, are significantly lower in Other Hispanic 

women. Figure 3D shows a distinct exposure pattern in women of other race/ethnicity or 

multiracial women. Here, levels of heavy metals, including cadmium, mercury, and multiple 

arsenic biomarkers, are significantly elevated relative to non-Hispanic White women. 

Conversely, the smoking biomarkers, NNAL and cotinine, are significantly lower.

To understand whether socioeconomic status is a driver of racial disparities in chemical 

exposures, we generated a series of correlation plots, comparing how the differences in 

chemical biomarker concentrations by race/ethnicity change with the inclusion and 

exclusion of PIR in the regression models (Figure S1 and Excel Table S9). For many of the 

chemicals, the fold differences for comparing chemical biomarker levels by race did not 

change drastically when including PIR as a covariate in the regression models, implying that 

socioeconomic status is not the primary driver in explaining differences in chemical 
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exposures. However, for cotinine, PCB 194, and several chemicals used in personal care 

products, the relative differences changed by greater than 25% when PIR was included as a 

covariate in the regression models. This suggests that either exposure differences between 

races for these chemicals are mediated by PIR, and/or exposure differences are explained by 

interactions between race and socioeconomic status. To visualize differences in chemical 

biomarker concentrations by race across a gradient of income for a few selected biomarkers, 

we generated violin plots of the chemical biomarker distribution stratified by categories of 

PIR for each race/ethnicity (Figure S2). For benzophenone-3 and cotinine (Figure S2A and 

S2B), the trends of biomarker concentrations across the PIR categories and the average 

concentrations within the same PIR categories differ by race. This is similar for ethyl 

paraben (Figure S2C), but differences are not as drastic. On the other hand, mercury (Figure 

S2D) along with other remaining chemicals demonstrated a very different pattern from those 

of the previously mentioned substances. Across all races, the trends across PIR categories 

are similar for mercury, but within the same PIR category, there are differences in biomarker 

concentrations by race, suggesting that many chemical exposures disparities by race are 

independent of PIR.

We also characterized how reproductive and nutritional factors such as parity, breastfeeding, 

menopause/hysterectomy status, and iron deficiency may influence racial disparities in 

chemical exposures, as well as to account for racial variations in these factors in our models 

(Aliyu et al. 2005; Henderson et al. 2008; Zakai et al. 2008). There are significant 

differences by race in all studied reproductive and nutritional factors with the p-values listed 

as the following: parity (p-value = 6.59e-95), breastfeeding (p-value = 4.71e-121), 

menopause/hysterectomy status (p-value = 6.14e-148), and iron deficiency (p-value = 

9.24e-322). Contingency tables are provided to show the frequency distribution of these 

variables by race in Excel Tables S10–13. In addition, we compared how differences in 

chemical biomarker concentrations by race/ethnicity change with and without accounting for 

these factors by generating a series of correlation plots comparing regression coefficients 

from models that include or exclude these factors (Figure S3–S6 and Excel Tables S14–

S17). Full regression results are tabulated in Excel Tables S18–S21 for all regression models 

that adjusted for these factors. Adjusting for either iron deficiency or menopause/

hysterectomy status resulted in four chemicals that have the relative differences changed by 

greater than 25%, implying that neither iron deficiency nor menopause are primary driver in 

explaining racial differences in exposure. On the other hand, adjusting for breastfeeding and 

parity showed 25 and 16 chemicals, respectively, with changes greater than 25%, which 

implies that racial disparities in chemical exposure are better explained by these factors. For 

cotinine, the changes in relative differences by race was among the highest at approximately 

two-fold different when either menopause or breastfeeding was considered in the regression 

models.

Starting in 2011, more detailed information on NHANES study participant race/ethnicity 

were collected, including specifically identifying individuals who report Asian ethnicity. To 

understand whether the results presented in Figure 3D predominantly reflect results in Asian 

women, who prior to 2011 were categorized in other race/multi-racial category, we assessed 

exposure disparities specifically in the Asian population. These results, presented in Figure 

4A, show that, on average, multiple heavy metal biomarkers are more than 2-fold higher 
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relative to non-Hispanic White women, including cadmium, mercury, lead, and arsenics. 

Additionally, the PFAS compound PFDA is significantly higher in Asian women, while 

cotinine and biomarkers of phosphate flame retardants (Bis(1,3-dichloro-2-propyl) 

phosphate, Dibutyl phosphate, Diphenyl phosphate) are significantly lower. We also 

calculated whether there were significant disparities in chemical biomarker concentrations in 

women of other or multi-race after excluding Asian women. Figure 4B suggests relatively 

few differences in this regard, confirming that the other race effect in Figure 3D is indeed 

associated with Asian women. Full regression results across all covariates for the 2011–2014 

data are presented in Excel Table S22.

We have previously shown dramatic differences in the chemical “exposome” by age in 

NHANES study participants, not stratified by gender or race (Nguyen et al. 2019). Here, we 

tested for differences in chemical biomarkers by race, after stratifying by age group. Figure 

5 displays these results across the entire study population from 1999–2014. Excel Tables 

S23–S26 include the results for all regression analyses stratified across each of the four age 

groups. Blue colors reflect chemicals where levels are higher in non-Hispanic White women, 

while red colors reflect chemicals that are of higher concentration in women of the labeled 

race/ethnicity. Here, there appear to be exposure disparity patterns that persist across age 

groups – such as higher 2,4- and 2,5-dichlorophenol concentrations in Mexican American, 

Other Hispanic, and non-Hispanic black women. Differences in 1,4-dichlorobenzene 

concentrations are consistent across age groups, although this biomarker was not measured 

in the youngest individuals. Heavy metal concentrations are elevated in women of other race 

across age groups. Some exposure patterns differ by age, however. For example, differences 

in methyl and propyl paraben are most apparent between young non-Hispanic black and 

non-Hispanic White women less than 12 years old. Increased levels of phosphate flame 

retardants and the insect repellent DEET in non-Hispanic White women are the most evident 

in women less than 12 years of age. Reduced levels of brominated flame retardants 

(PBDE’s) in levels in non-Hispanic White women are emphasized for adolescents, age 12–

19 (all other races are higher, in red). Similarly, higher relative concentrations of 

benzophenone-3, bisphenol A, and bisphenol F occur in non-Hispanic White women less 

than 12. Elevated PCB levels in non-Hispanic black women shown in Figure 3A are most 

evident in women greater than 51 years of age. Overall, these results highlight racial 

exposure disparities that are either stable or that vary across age groups.

To characterize how racial disparities in chemical exposures changes over time, we 

conducted analyses stratified by NHANES cycles. These results are display in Figure 6 and 

tabulated in Excel Table S27. There are exposure disparities patterns that persist across time 

for arsenics and its metabolites, chemicals used in personal care products, cotinine, 

2,5−dichlorophenol, 2,4−dichlorophenol, and 1,4−dichlorobenzene. Differences in 

2,5−dichlorophenol concentrations are consistent higher in Non-Hispanic Black women over 

time, while differences peaked at the turn of the century and towards the end of 2000s, 

respectively, for Mexican American and Other Hispanic women. Arsenic and its metabolite 

arsenobetaine show the highest disparities in Other Race/Multi-Racial women with the 

disparities peaking in 2007–2010. Disparities patterns for methyl and propyl parabens 

fluctuate over time in Mexican American, Other Hispanic, and Non-Hispanic Black women, 

while differences for these substances are slightly increasing in Other Race/Multi-Racial 
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women. For mono-ethyl phthalate, a metabolite of DEP used in personal care products, 

differences over time are consistent in Mexican Americans, fluctuating in Other Hispanics, 

and increasing in non-Hispanic Black women. Differences in cotinine levels are among the 

highest in Non-Hispanic White women compared to Mexican American and Other Hispanic 

women with disparities plateauing and increasing, respectively

4. Discussion

Based on population based chemical biomonitoring generated as part of the 1999–2014 

NHANES, we performed a comprehensive analysis of racial disparities in biomarker 

concentrations of 143 chemicals in 38,080 participants. Specifically, we quantified the 

relative magnitude of racial disparities for individual chemicals and chemical families while 

utilizing appropriate regression weightings. This helped ensure that the results were as 

generalizable to the entire US population. These results highlighted striking differences in 

chemical biomarker exposure patterns by race/ethnicity, independent of other demographic 

factors such as socioeconomic status and independent factors such as menopause/

hysterectomy status, parity, breastfeeding, and iron deficiency. In particular, exposure 

patterns of pesticides, heavy metals, tobacco smoke associated compounds, and chemicals 

found in personal care products are found to be most disparate across race/ethnic groups. 

Stratified analyses revealed exposure patterns that persisted across age groups. For example, 

this was apparent in heavy metals exposure for women who identify as other race or 

multiracial, as well as in age-specific exposure patterns, such as elevated PCB, dioxin, and 

dibenzofuran exposure in older non-Hispanic black women. In some cases, average 

differences in chemical biomarker concentrations between race/ethnic groups exceeded 

400%, such as for urinary propyl or methylparaben concentrations between the youngest 

non-Hispanic Black and non-Hispanic White women. Racial disparities were attenuated or 

emphasized after adjusting for reproductive and nutritional factors. For example, when 

adjusting for breastfeeding, the average differences in cotinine biomarker levels were 

attenuated two-fold between Hispanic and non-Hispanic White women, whereas accounting 

for variation in iron deficiency resulted in average differences in cotinine levels increasing 

by two-fold when comparing between non-Hispanic Whites and non-Hispanic Black 

women. Since parity, breastfeeding, menopause, and iron deficiency may influence the 

absorption or elimination of chemicals, and the rates of these potential confounders differ by 

race, these factors may lead to further attenuation or amplification of racial disparities in 

chemical biomarker concentrations. These findings contextualize racial disparities in 

chemical exposures across US women and highlight the vast differences in chemical 

exposomes between demographic groups with well characterized disparities in health 

outcomes.

Environmental injustice is the disproportionate exposure of individuals of color, lower 

socioeconomic status, or other politically disadvantaged groups to toxic chemicals in food, 

air, consumer products, at the workplace, or in their communities (Brulle and Pellow 2005). 

Disproportionate chemical exposures have been hypothesized to be important drivers of 

health disparities, including obesity and neurodevelopmental outcomes (Landrigan et al. 

2010). While the primary goal of this study was to quantify and compare chemical exposure 

disparities across racial/ethnic groups, independent of income, others have evaluated 
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combined income and race related disparities in exposure. For instance, one analysis 

compared geometric mean concentrations of 228 chemical biomarkers between six groups 

stratified by income and race in NHANES and identified 37 chemicals as likely contributing 

to environmental justice (Belova et al. 2013). Some of these chemicals, including cotinine, 

lead, 2,4- and 2,5-dichlorophenol, methyl paraben, and propyl paraben, were associated with 

the highest disparities across race/ethnic group in the present study. We also compared 

chemical exposures disparities across racial/ethnic groups with and without adjustment for 

income and found that cotinine, PCB 194, methyl mercury, and chemicals used in personal 

care products such as benzophenone-3, the parabens, and triclosan show disparities across 

both race and socioeconomic status. However, for most of the studied chemicals, differences 

in chemical exposures were not driven by socioeconomic status but were instead primarily 

associated with race/ethnicity. Furthermore, a study of racial and social disparities in 

exposure to BPA and PFAS examined differences in biomarker concentrations in NHANES 

study participants (Nelson et al. 2012). The concentrations of the four PFAS chemicals 

examined, PFOA, PFOS, PFNA, and PFHxS, were inversely associated with household 

income, while BPA concentrations were higher in individuals who reported low food 

security (Nelson et al. 2012). Here, we identified that, independent of socioeconomic status, 

as assessed by poverty-income ratio, non-Hispanic White women had the highest 

concentrations of PFOA, while non-Hispanic Black and other race/multiracial women had 

the highest concentrations of PFDA. Major routes of exposure to PFAS compounds include 

contaminated drinking water (Hu et al. 2016), diet (Schecter et al. 2010), and occupational 

routes (Laitinen et al. 2014). BPA concentrations were not strikingly different by race in our 

study, but non-Hispanic Black women had, on average, 93% higher BPS concentrations than 

non-Hispanic White women. Common routes of exposure to BPA and other bisphenol 

analogues are diet, thermal paper, and personal care products (Chen et al. 2016). Further 

research is necessary to identify the major routes of exposure which are driving racial 

disparities in PFAS and bisphenol chemicals biomarker concentrations.

The findings of highly elevated monoethyl phthalate and methyl and propyl paraben 

concentrations in the non-Hispanic Black women are consistent with a personal care product 

route of exposure. A study assessing the chemical composition of hair products used by 

Black women consistently identified high levels of cyclosiloxanes, parabens, and the 

fragrance carrier diethyl phthalate (Helm et al. 2018). In our study, the concentrations of the 

diethyl phthalate metabolite monoethyl phthalate were approximately 78% higher on 

average in non-Hispanic black women of all ages relative to non-Hispanic White women, 

and 122% higher in non-Hispanic black women less than 12 years of age. This is 

concerning, since urinary concentrations of monoethyl phthalate have been positively 

associated with odds of developing breast cancer in a case-control study of women from 

Northern Mexico (López-Carrillo et al. 2010). Differences in concentrations of methyl and 

propyl paraben biomarkers were among the highest observed in this study, particularly for 

the youngest non-Hispanic Black women. These differences were observed to remain 

consistently higher across the NHANES cycles in Mexican Americans, Other Hispanics, and 

non-Hispanic Blacks. These chemicals have been used as preservatives in personal care 

products, pharmaceuticals, and food additives, and have been found to promote cell growth 

through multiple mechanisms, including estrogenicity (Gonzalez et al. 2018, 2019; Okubo et 
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al. 2001) and epidermal growth factor receptor signaling (Pan et al. 2016). Particularly 

relevant to our findings of the greatest methyl and ethyl paraben disparities in the youngest 

non-Hispanic Black women was the finding that early life paraben exposures can alter 

developing mammary gland morphology and induce gene expression that resembles an early 

cancer-like state (Gopalakrishnan et al. 2017). Use of hair products has been identified as a 

potential risk factor for breast cancer in non-Hispanic Black women (Stiel et al. 2016). 

When we adjusted for breastfeeding in the regression models, parabens levels are higher in 

Non-Hispanic White women compared to Mexican American, Other Hispanics, and Other 

Race/Multi-Racial women. This implies that women of other races are breastfeeding more 

often (Singh et al. 2007), and/or they are eliminating parabens from their body but exposing 

their infants via breast milk (Hines et al. 2015). Further research is needed to determine 

whether early-life exposure to potentially estrogenic compounds, like parabens, can induce 

biological alterations that increase risk of estrogen receptor negative breast cancers.

One of the most apparent disparities in chemical biomarker concentrations by race was with 

the compounds 2,4-dichlorophenol, 2,5-dichlorophenol, and 1,4-dichlorobenzene. 1,4-

dichlorobenzene is used as a disinfectant, pesticide, and deodorant. 2,5-dichlorophenol is a 

metabolite of 1,4-dichlorobenzene, while 2,4-dichlorophenol is a metabolite of the 

antimicrobial triclosan or other pesticides. Elevated concentrations of these chemicals in 

non-Hispanic Black individuals has been noted previously (Belova et al. 2013; Ye et al. 

2014) The concentrations of these three chemicals were up to 350% higher on average in 

non-Hispanic Black women, relative to non-Hispanic White women, and also elevated in 

Mexican American and Other Hispanic women. Importantly, these exposure disparities were 

consistent across all age groups. While 2,4-dicholorophenol concentrations were 

significantly elevated in non-Hispanic Black and Hispanic women, urinary triclosan levels 

were not significantly different by race/ethnicity. This suggests that either triclosan is not the 

main chemical exposure that explains the differences in concentrations of 2,4-

dichlorophenol or that there are differences in metabolism and excretion rates by race, which 

is less likely. 2,5-dichlorophenol is of particular interest, since after adjusting for 

breastfeeding, the exposure disparity between Mexican American and non-Hispanic White 

women was further emphasized. In a study measuring environmental phenols in milk of 

lactating North Carolina women, 2,5-dichlorophenol was undetectable in all milk samples 

(Hines et al. 2015). This suggests that either 2,5-dichlorophenol is not absorbed into breast 

milk or it is hindering lactation, and therefore excretion through this pathway. 1,4-

dichlorobenzene exposure has been associated with altered thyroid biomarkers in NHANES 

(Wei and Zhu 2016), altered immunologic and liver function parameters in occupationally 

exposed workers (Hsiao et al. 2009), and altered sperm production and increased prostate 

weight in exposed rats (Takahashi et al. 2011). Understanding and mitigating exposure to 

these chemicals is therefore of importance to reduce disparate risk of these health outcomes.

Heavy metals were among the chemicals most consistently different across racial/ethnic 

groups. In particular, women who identified as other race or multiracial had the highest 

concentrations of multiple metals, including cadmium, mercury, arsenics, lead, and 

manganese. Focusing on data from NHANES 2011–14, we identified that these elevated 

metals concentrations were restricted to women who identified as Asian. This is consistent 

with a previous finding of increased concentrations of a subset of these metals in Asian 
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NHANES participants (Awata et al. 2017). Furthermore, elevated levels of mercury, lead, 

and arsenics were also identified in non-Hispanic Black women, relative to non-Hispanic 

White women. Mexican American women had elevated levels of uranium, lead, mercury, 

arsenics, and cadmium, while Other Hispanic women had higher concentrations of mercury, 

arsenics, and cadmium than non-Hispanic White women. Non-Hispanic White women, 

however, had higher concentrations of urinary barium. In our temporal analysis, differences 

in biomarker levels between Other Race/Multi-Racial and Non-Hispanic White women are 

increasing for cadmium, mercury, and dimethylarsonic acid. While studies have identified 

the interaction between iron deficiency and biomarker levels of heavy metals (Hegazy et al. 

2010; Kwong et al. 2004), we observed in our study that accounting for iron deficiency in 

the regression models did not influence the racial disparities for heavy metals. Previous 

research has linked diet, occupation, education level, and smoking status to elevated metals 

exposure (Awata et al. 2017), in addition to housing (Jacobs et al. 2013), air pollution 

(Suvarapu and Baek 2016), and contaminated water (Pieper et al. 2017). The well 

characterized toxicity of heavy metals exposure, even at low doses, makes identifying and 

ameliorating heavy metal exposures a top priority for addressing environmental health 

disparities.

The oldest non-Hispanic Black women in our study had consistently higher concentrations 

of persistent organic pollutants, including dioxins, dibenzofurans, PCBs, and DDT 

metabolites. In addition, these stark disparities for the persistent organic pollutants were 

plateauing or increasing over time in non-Hispanic Black women when these chemicals 

were last measured in NHANES. This is consistent with a previous report of non-Hispanic 

Black individuals having an increased risk of having multiple persistent organic pollutants 

detectable their blood (Pumarega et al. 2016) or higher average levels of PCBs (Xue et al. 

2014). In our study, biomarker levels of most PCBs were higher in women who were iron 

deficient. The less persistent PCBs were also of lower concentrations in women who 

breastfed or have higher parity, suggesting that the depuration of PCBs occurs through these 

excretion mechanisms (Alcala and Phillips 2017). However, biomarker levels were shown to 

be higher for the more persistent PCBs. Biomarkers of persistent organic pollutants were 

quantified on an individual (non-pooled) basis in the 1999–2004 NHANES cycles. Elevated 

concentrations of these pollutants, such as the DDT metabolite, DDE, have been associated 

with an increased risk of breast cancer (Wolff et al. 1993). Interestingly, racial differences in 

DDE further increased when either parity or breastfeeding was accounted in the regression 

models, suggesting that environmental insult from this substance may perturb pathways 

associated with the reproductive system. A lack of disparities, and decreasing concentrations 

of these chemicals in younger individuals over time, generally reflect a public health success 

in decreasing population exposures to these toxic compounds (Nguyen et al. 2019). The long 

half-life of these chemicals suggests that the detected biomarkers predominantly reflect 

historical exposures. This could, however, be of substantial importance for children of non-

Hispanic Black women, who could have been exposed to disproportionately high levels of 

these chemicals in the womb or early in childhood. For example, in utero exposure to the 

pesticide, DDT, has been associated with an increased risk of breast cancer in adulthood. 

Specifically, women in the highest quartile of in utero DDT exposure were found to have a 

3.7-fold increased risk of developing breast cancer relative to women in the lowest quartile 
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of exposure (Cohn et al. 2015). Prenatal exposure to organochlorine compounds has also 

been associated with decreased lung function later in life (Hansen et al. 2016), risk of 

infection in childhood (Dewailly et al. 2000), attention deficit hyperactivity disorder (Sagiv 

et al. 2010), and obesity (Mendez et al. 2011). If these effects of elevated early life persistent 

organic pollutant exposure last throughout the life course, there could be continued adverse 

health consequences that manifest in those exposed for the foreseeable future.

Our study has important limitations. First, the cross-sectional nature of NHANES only 

allows biomarker measurement at one time point per individual. In addition, there are no 

available data on season, but should such data become available, then it would be interesting 

to study chemical exposure trends across the seasons. Moreover, since the half-lives of the 

biomarkers assessed in this study are highly variable (Nguyen et al. 2019), the precision of 

estimates of long-term exposure largely varies across chemical family. Additionally, this 

study was not able to assess geographic variation in exposure. Others have identified that 

persistent organic pollutant exposures in the NHANES cohort varies geographically, with 

higher DDT metabolite concentrations in individuals residing in the West, and elevated PCB 

concentrations in individuals residing in the Northeast (Wattigney et al. 2015). Future work 

is needed to precisely characterize exposure “hot spots,” in order to design intervention 

studies to reduce exposure disparities. Our study also focused on identifying average 

differences in biomarker concentrations. By ignoring the extremes of these distributions, we 

have likely not considered individuals at greatest risk of developing adverse health 

outcomes. Similarly, our analyses were limited by low detection rates, with 182 chemicals 

not meeting our inclusion threshold of at least 50% detection in the study population. A 

more in-depth analysis of differences in detection frequency by race/ethnicity could identify 

additional chemicals with significant racial disparities. For chemical biomarkers measured in 

urine, variations in the concentration of urinary creatinine, used as a correction factor for 

urine dilution, potentially confounds our comparison of exposures between individuals of 

different races. This is because increased average concentrations of urinary creatinine have 

been identified for non-Hispanic Black individuals, relative to Mexican American and non-

Hispanic White individuals (Barr et al. 2005). While we adjusted for urinary creatinine as a 

covariate in our regression models, the still may be residual confounding. The large number 

of chemicals assessed also precluded an in-depth characterization of the various routes of 

exposure of individual chemicals – this is undoubtedly an essential future direction of 

research to develop strategies to eliminate exposure disparities. Finally, while we performed 

analyzed all chemical biomarkers available from NHANES 1999–2014, these chemicals 

only represent a small proportion of the over 80,000 chemicals estimated to be used in 

commerce in the United States. Future studies could benefit from an unbiased metabolomics 

approach to identity disparities in chemical exposures which are not captured in NHANES.

The persistent health disparities between women of different races/ethnicities make 

understanding the etiological drivers of these disparities a pressing public health issue. A 

recent commentary highlighted a lack of knowledge regarding the molecular underpinnings 

of health disparities. It described how the vast majority of genome sequencing data had been 

generated in populations of European ancestry (Sirugo et al. 2019). Environmental 

exposures, however, are hypothesized to be the major driving risk factors for a vast suite of 

complex diseases (Rappaport and Smith 2010). Even when genetic data has been generated 
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in an equitable fashion, understanding gene-environment interactions and complex disease 

phenotypes will still require in-depth quantification of environmental exposures. In this 

study, we have comprehensively identified differences in biomarker of chemical exposure 

across women of various race/ethnic groups and across age groups. These findings can guide 

future efforts to understand chemical impacts on health disparities by helping to prioritize 

chemicals for assessment in epidemiological studies. Additionally, chemicals as identified as 

highly disparate here can be further prioritized for toxicological assessment relevant to 

disease outcomes of interest. Finally, these findings can inform public health interventions 

designed to reduce chemical disparities and promote health equity across the population.
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Highlights

• Characterized racial disparities for 143 chemical biomarkers across 38,080 

US women

• Metals, pesticides, and chemicals in consumer products show the highest 

disparities

• Some disparities, like 2,4- and 2,5-dichlorophenol, persist across age groups

• Methyl and propyl paraben disparities are greatest in children

• Disparities for arsenics, parabens, phenols, and cotinine persist over time
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Figure 1. 
Dataset compilation and cleaning workflow.
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Figure 2. 
Alphabet soup plot displaying the covariate adjusted fold differences in chemical biomarker 

concentration by race, ranked by the average difference with non-Hispanic White 

individuals. Colors represent the chemical families. Shapes represent the comparison 

between a given race and non-Hispanic White individuals.
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Figure 3. 
Volcano plots representing the significance of the covariate-adjusted differences in chemical 

biomarker concentrations between non-Hispanic White women and (A) non-Hispanic Black 

women, (B) Mexican American women, (C) Other Hispanic women, and (D) Other race/

multiracial women. Color and shapes represent the chemical families.
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Figure 4. 
Volcano plots representing the significance of the covariate-adjusted differences in chemical 

biomarker concentrations between non-Hispanic White women and (A) Asian women, and 

(B) Other Race /Multi-Racial women in NHANES 2011–2014. Colors and shapes represent 

the chemical families.
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Figure 5. 
Heatmap displaying covariate adjusted fold differences in chemical biomarker 

concentrations by race, relative to non-Hispanic White women, stratified by age group and 

chemical family. Color reflects the log2 fold difference in chemical biomarker concentration. 

Biomarkers in grey color were not measured in that age group.
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Figure 6. 
Heatmap displaying covariate adjusted fold differences in chemical biomarker 

concentrations by race, relative to non-Hispanic White women, stratified by study period 

and chemical family. Color reflects the log2 fold difference in chemical biomarker 

concentration. Biomarkers in grey color were not measured in that study period.
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Table 1.

Demographic characteristics of the study population.

CATEGORICAL

Age N (%) Cycle N (%) Race/Ethnicity (%) N (%)

 0–11 9392 (24.66)  1999–2000 (Cycle 1) 4535 (11.91)  Mexican American 8760 (23.00)

 12–25 9555 (25.09)  2001–2002 (Cycle 2) 5127 (13.46)  Other Hispanic 2949 (7.74)

 26–50 9330 (24.50)  2003–2004 (Cycle 3) 4732 (12.43)  Non-Hispanic White 14384 (37.77)

 51–85 9803 (25.74)  2005–2006 (Cycle 4) 4834 (12.69)  Non-Hispanic Black 9116 (23.94)

 2007–2008 (Cycle 5) 4628 (12.15)  Other Race 2871 (7.54)

 2009–2010 (Cycle 6) 4946 (12.99)

 2011–2012 (Cycle 7) 4493 (11.80)

 2013–2014 (Cycle 8) 4785 (12.57)

CONTINUOUS

N measured (% of population) 5th %tile Median Mean (SD) 95th%tile

Age (years) 38080 (100) 2 26 32.1 (24.2) 77

PIR (−) 34968 (91.83) 0.29 1.73 2.2 (1.6) 5.00

Cotinine (ng/mL) 31699 (83.24) 0.011 0.045 29.9 (91.4) 245.00

Creatinine (mg/dL) 32314 (84.86) 22.00 102.00 115.9 (76.6) 263.00
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