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ABSTRACT

Bacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within 
a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic 
pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular 
nanoreactors for the improved production of renewable chemicals. A key challenge in this area is engineering protein shells 
that allow the entry of desired substrates. In this study, we used site-directed mutagenesis of the PduT shell protein to remove 
its central iron–sulfur cluster and create openings (pores) in the shell of the Pdu MCP that have varied chemical properties. 
Subsequently, in vivo and in vitro studies were used to show that PduT-C38S and PduT-C38A variants increased the diffu-
sion of 1,2-propanediol, propionaldehyde, NAD+ and NADH across the shell of the MCP. In contrast, PduT-C38I and PduT-C38W 
eliminated the iron–sulfur cluster without altering the permeability of the Pdu MCP, suggesting that the side-chains of C38I 
and C38W occluded the opening formed by removal of the iron–sulfur cluster. Thus, genetic modification offers an approach to 
engineering the movement of larger molecules (such as NAD/H) across MCP shells, as well as a method for blocking transport 
through trimeric bacterial microcompartment (BMC) domain shell proteins.

Introduction
A great deal of effort is being focused on engineering synthetic 
metabolic pathways for the rapid high-yield production of 
diverse chemicals and pharmaceuticals. However, efficient 
product formation will be difficult when pathways have slow 
reaction rates, volatile or toxic intermediates and/or unfa-
vourable interactions with the cellular milieu [1–4]. In nature, 
cells mitigate these problems by co-localizing metabolic path-
ways in multi-protein complexes or by confining them within 
compartments [4–8]. Hence, there is considerable interest in 
engineering spatially organized enzyme complexes to improve 
the efficiency and economy of renewable chemicals produc-
tion. Within this field, a promising line of research aims 
to repurpose protein-based organelles known as bacterial 
microcompartments (MCPs) for the improved production 
of renewable chemicals by pathway compartmentalization 
[5, 8–10].

Bacterial MCPs are widespread protein-based organelles 
whose natural function is to optimize metabolic pathways 
by compartmentalization [11–14]. MCPs consist of meta-
bolic enzymes encapsulated within a protein shell. They 
are typically 100–150 nm in diameter and are built from 
thousands of protein subunits of 10–20 different types 
[11–13, 15]. MCPs increase reactions rates by creating high 
local concentrations of enzymes and substrates, confine 
pathway intermediates that are toxic or rapidly excreted 
from the cell, and enable the use of private cofactor pools 
[11–13, 15, 16]. MCPs also have substantial diversity. Based 
on bioinformatics analyses, MCPs are produced by about 
20 % of bacteria distributed across 23 phyla [12–14, 17–21] 
and are involved in 10 or more metabolic processes, 
ranging from carbon dioxide fixation to the catabolism of 
1,2-propanediol (1,2-PD), ethanolamine, choline, glycerol, 
rhamnose, fucose and fucoidan [22–32]. Furthermore, 
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because MCPs are made completely of protein subunits, 
they are amenable to genetic modification [5, 8–10].

Considerable progress has been made in engineering MCPs 
to contain a desired protein cargo. Empty MCP shells have 
been produced in Escherichia coli, Corynebacterium and 
Bacillus [21, 33–36]. Heterologous proteins have been 
encapsulated within MCP shells using short targeting 
peptides fused to their N-termini [35–41]. A number of 
MCP targeting sequences have been identified that may 
facilitate the encapsulation of multiple enzymes at desired 
stoichiometries [40, 42]. Targeting systems have also been 
designed de novo [43–46], and in a few cases the interac-
tions between targeting sequences and shell proteins that 
are thought to mediate enzyme encapsulation have been 
investigated [39, 40, 47]. In addition, encapsulation of 
heterologous proteins within MCPs has been monitored in 
vivo by protease protection using C-terminal SsrA prote-
olysis tags [48], and several proof-of-concept synthetic 
nanobioreactors have been engineered using MCP tech-
nology [39, 40, 49].

An important area where more work is needed on MCP-
based nanoreactors is the development of methods to 
control the permeability properties of the MCP shells. The 
ability of MCPs to enhance reaction rates and sequester 
problematic metabolites depends on a selectively permeable 
protein shell that allows the entry of substrates into the 
MCP while restricting the outward diffusion of pathway 
intermediates [50–52]. Hence, engineering optimal 
synthetic MCP-based nanoreactors will likely require the 
development of methods to control the permeability prop-
erties of MCP shells.

The shells of MCPs are built primarily from a family of 
small proteins known as bacterial microcompartment 
(BMC) domain proteins, most of which are hexamers or 
pseudohexameric trimers (Fig. 1) [53–55]. The hexameric 
BMC domain proteins have small central pores that are 
thought to act as conduits for MCP substrates and perhaps 
also MCP products [51–53, 56, 57]. For example, the central 
pore of the PduA shell protein allows the selective uptake of 
substrate (1,2-PD) into the Pdu MCP [51, 52]. A widespread 
type of trimeric BMC domain protein is thought to have a 
centrally located allosteric gate that opens to form a larger 
pore that allows the entry of enzymatic cofactors while 
maintaining the confinement of smaller pathway interme-
diates [58–61]. MCP shells also typically contain several 
divergent types of BMC domain proteins presumed to have 
specialized functions, but their specific roles are currently 
unknown [19, 20, 54, 62].

Although some of the basic principles of molecular 
transport across MCP shells have been determined 
[20, 51, 53, 57, 63, 64], only a few studies have engineered 
new properties into MCP shells. Prior work has shown that 
chimeric shells can be built by using BMC domain hexamers 
originating from different MCPs [65, 66]. This suggests 
that the permeability properties of MCPs can be modified 
by taking advantage of the natural variation in MCP shell 

proteins that evolved to transport varied substrates. Other 
studies have used site-directed mutagenesis of the pore 
region of the PduA hexamer to alter the permeability of 
the Pdu MCP to 1,2-PD and propionaldehyde [51, 66]. In 
more recent work, a [4Fe–4S] cluster was engineered into 
a BMC domain protein that might have application to elec-
tron transfer across the MCP shells [67]. However, further 
work is needed to enable the construction of synthetic MCP 
shells with desired properties.

In this report, we explore the possibility of engineering 
the PduT shell protein to modify the permeability proper-
ties of the Pdu MCP (Fig. 1). The Pdu MCP is the most 
advanced MCP system with regard to engineering pathway 
compartmentalization [8, 10]. The natural function of 
the Pdu MCP is to enhance the catabolism of 1,2-PD by 
Salmonella (and other bacteria) while sequestering a toxic 
metabolic intermediate (propionaldehyde) [23, 68, 69]. 
PduT is a specialized trimeric BMC domain shell protein 
that contains a central Fe–S cluster of unknown function 
[57, 70, 71]. PduT is a minor component of the shell of the 
Pdu MCP (estimated at 3.2% of the total shell protein), and 
it is not required for MCP function under standard labora-
tory conditions [72]. Guided by structural modelling, site-
directed mutagenesis was used to remove the central Fe–S 
cluster of PduT and create pores with different sizes and 
chemical properties. This approach allowed us to construct 
pores that were substantially larger (area: ~46 Å2) than those 
of previously engineered MCP shell proteins such as PduA 
(area~24 Å2) [51, 73]. We then used in vivo and in vitro 

Fig. 1. Model for the 1,2-propanediol utilization microcompartment 
(MCP). The Pdu MCP consists of a protein shell composed of a 
few thousand proteins that encapsulate a series of enzymes for 
metabolizing 1,2-propanediol (1,2-PD). A primary function of the Pdu 
MCP is to sequester the toxic pathway intermediate propionaldehyde. It 
is also thought to increase reaction rates by concentrating substrates 
together with enzymes. The function of the Pdu MCP depends on a 
selectively permeable protein shell that allows the entry of substrates 
into the MCP while restricting the outward diffusion of pathway 
intermediates. The central pores of the BMC domain proteins (the major 
components of the shell) are thought to control shell permeability.
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studies to evaluate the effects of these larger engineered 
pores on the permeability of the Pdu MCP.

Methods
Chemicals and reagents
Antibiotics, vitamin B12 (CN-B12), NAD+, NADH and alcohol 
dehydrogenase (from Saccharomyces cerevisiae) were from 
Sigma-Aldrich (St Louis, MO, USA). Coenzyme A and dithi-
othreitol (DTT) were from MP Biomedicals (Santa Ana, CA, 
USA). KOD DNA polymerase, restriction enzymes and T4 
ligase were from Novagen (Cambridge, MA, USA) and New 
England Biolabs (Beverly, MA, USA), respectively. Isopropyl-
β-D-1-thiogalactopyranoside (IPTG) was from Diagnostic 
Chemicals Ltd (Charlotteville, PEI, Canada). Choice Taq Blue 
Mastermix was from Denville Scientific (South Plainfield, 
NJ, USA). The other chemicals were from Fisher Scientific 
(Pittsburgh, PA, USA).

Bacterial strains, media and growth conditions
The bacterial strains used in this study are listed in Table S1 
(available in the online version of this article). All strains 
are derivatives of Salmonella enterica serovar Typhimurium 
strain LT2. The rich medium used was lysogeny broth (LB) 
(Luria–Bertani/Lennox, Difco, Detroit, MI, USA) [74]. Tryp-
tone yeast extract (TYE) medium was used for the selection of 
transformants. The minimal medium used was no carbon-E 
(NCE) medium supplemented with 1 mM MgSO4, 0.3 mM 
each of valine, isoleucine, leucine and threonine, and 50 µM 
ferric citrate [72, 75]. Growth studies were performed at either 
limiting (25 nM) or saturating (100 nM) CN-B12 concentra-
tions, as previously described using a Synergy HT Microplate 
reader (BioTek, Winooski, VT) [72, 76].

Three-dimensional model building and 
visualization
The three-dimensional structures of PduT mutants were 
modelled using the Swiss Model server [77] with PDBID 
3N79 as a template and all the visualization and graphical 
presentations were carried out in Pymol [78].

Construction of chromosomal mutations
Chromosomal deletions of pduA, pduT and pduQ had been 
constructed previously by linear recombination of PCR prod-
ucts [79]. Chromosmal point mutants were constructed by 
sac-cat recombineering as described elsewhere [51, 79, 80]. 
All of the mutations were confirmed by DNA sequencing.

P22 transduction
In order to make the required double mutants either a 
ΔpduT::kanR marker or a sacB-cat cassette (from the PduT 
pore region) was moved to a pduA-S40L mutant by trans-
duction with phage P22 HT105/1 int-210 [81]. Transduct-
ants were tested for phage contamination and sensitivity 
by streaking on green plates against P22 H5 (81). The kan 
cassette was removed by expressing flp recombinase from 

pCP20 [79], whereas the sacB-cat cassette was eliminated by 
recombination with single-stranded oligonucleotides with the 
desired mutations at the PduT pore [79, 82]. All mutations 
were confirmed by PCR followed by DNA sequencing.

MCP purification, Western blotting and diol 
dehydratase (DDH) assays
Pdu MCPs were purified according to a published protocol 
[51, 83]. Their protein content was examined by SDS PAGE 
(4–12 % NuPAGE Bis-Tris gels) (Invitrogen, Carlsbad, CA, 
USA). For Western blotting, proteins were transferred to 
nitrocellulose membranes and probed with commercially 
prepared primary rabbit antisera (GenScript, Piscataway, 
NJ, USA) against a PduT peptide epitope (CPRPHEAM-
WRQMVEG) that had been diluted 1 : 1000 in TBST buffer 
(50 mM Tris-HCl, 150 mM NaCl, 0.05 % Tween 20, pH 
7.4). The secondary antibody used was goat anti-rabbit IgG 
conjugated with horseradish peroxidase at 1 : 3000 dilution 
in the same buffer (Biorad, Hercules, CA, USA). Colour 
development was carried out using the Opti-4CN substrate 
kit (Biorad, Hercules, CA, USA) according to the manu-
facturer’s instructions. DDH activity was measured using a 
coupled NADH-dependent alcohol dehydrogenase assay as 
described elsewhere [51, 84]. For some studies, purified MCPs 
were broken by overnight dialysis against a buffer containing 
50 mM Tris (pH 8.0), 50 mM KCl and 5 mM MgCl2, followed 
by sonication as described elsewhere [41].

Electron microscopy
Purified MCPs were negatively stained with uranyl acetate (2 
%) and visualized using a transmission electron microscope 
(JEOL 2100, Peabody, MA, USA) as described earlier [51, 83].

Determination of propionaldehyde in culture media
An overnight LB culture was harvested by centrifugation and 
resuspended in NCE minimal medium. The resuspended 
cells were used to inoculate 50 ml of NCE minimal medium 
supplemented with 0.4 % 1,2-PD and 150 nM CN-B12 to a 
final optical density of 0.1 at 600 nm. Cultures were grown in 
250 ml Erlenmeyer flasks at 37 °C with continuous shaking 
at 275 r.p.m. [72]. Samples were taken at timed intervals. 
Cells were removed by centrifugation followed by filtra-
tion using 0.22 µm Millex-GV syringe filters (Millipore, 
Darmstadt, Germany). Propionaldehyde was determined by 
high-performance liquid chromatography (HPLC) using a 
Bio-Rad Aminex HPX-87H (300 by 7.8 mm) column eluted 
isocratically with 5 mM H2SO4 as described elsewhere [69].

Determination of cofactor transport
A kanR marker was introduced at the pduQ locus of each of 
the PduT pore mutants and ΔpduT::frt mutant individually 
by linear transformation of PCR products as described else-
where [79]. The kan marker was removed by expressing the 
flp recombinase from pCP20 plasmid [79]. However, the kan 
cassette was kept intact in a ΔpduT::frt / ΔpduQ::kan mutant 
in order to avoid possible deletion of intermediate gene(s) 
by flippase activity. Growth studies were performed using a 
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Synergy HT Microplate reader (BioTek, Winooski, VT, USA) 
as described elsewhere [85].

Results
Modelling the PduT pore
The main goal of this study was to determine whether a 
trimeric BMC domain protein (the PduT shell protein) 
could be engineered to alter the permeability properties of 
the Pdu MCP. The rationale for using a trimeric BMC domain 
protein was that it allowed us to engineer substantially larger 
pores (~46 Å2) compared to those examined in earlier studies 
with hexameric shell proteins (pore diameter and area of 
hexameric PduA: ~5.6 Å and ~24 Å2, respectively) [51, 73]. 
Prior crystallographic studies showed that a PduT-C38S 
mutation eliminated the central Fe–S cluster of PduT and 
created a relatively large pore with an area of ~45.9 Å2 [57]. 
Structural modelling conducted for this study indicated that 
various substitutions of residue 38 of PduT could be used to 
create pores with varied sizes and chemical properties (and 
remove the Fe–S cluster). Various PduT residue 38 changes 
were threaded onto the crystal structure of PduT-C38S (PDB 
3N79) using the Swiss Model Server [77]. The modelled 
structures showed that PduT-C38I had the smallest pore 
area (~3.4 Å2), PduT-C38W had an intermediate pore area 
(~17.4 Å2) and PduT-C38A had a similar pore area (~45.1 Å2) 
to that of PduT-C38S (Fig. 2). Additionally, the polarity of the 
pore region varied with the side-chain of residue 38, since 
this residue forms the constriction point of the pore. C38S 
increased the polarity at the pore surface, whereas C38I and 
C38W had pores with decreased polarity (Fig. S1). This is of 
interest because prior studies indicated that the electrostatic 
properties of the smaller pores in hexameric shell proteins 
influence molecular transport across the MCP shell [51, 52]. 

Thus, modelling suggested that site-directed mutagenesis 
could be used to engineer PduT proteins with pores of various 
sizes and chemical properties.

Construction and evaluation of pduT mutants
Given the modelling studies described above, site-directed 
mutagenesis of the Salmonella chromosome was used to 
construct strains that produce PduT-C38S, -C38A, -C38I and 
-C38W mutants. To test whether these PduT variants had 
any effects on MCP assembly, MCPs were purified from each 
variant and analysed. SDS-PAGE indicated that the MCPs 
purified from each mutant had a similar protein composition 
to the wild-type (Fig. S2a). Western blots indicated that each 
PduT variant was normally incorporated into the Pdu MCP 
(Fig. S2b), which indicated normal expression and folding. 
A ΔpduT mutant established that the antibody used was 
specific for the PduT protein (Fig S2a). Electron microscopy 
showed that each pduT mutant formed MCPs with a similar 
size and shape to the wild-type (Fig. S3). We also found that 
the % yield of purified MCPs from each mutant was similar 
to that of the wild-type (~97 % compared to wild-type for 
PduT-C38S, -C38A and -C38I and ~94 % for PduT-C38W). 
This indicated that the pduT mutants formed MCPs with 
similar stability to the wild-type during purification [15]. 
Thus, overall, the results suggested that PduT variants -C38S, 
-C38A, -C38I and -C38W were efficiently incorporated into 
the Pdu MCP and did not adversely affect MCP assembly, 
stability or composition.

Effects of engineered PduT proteins on the 
diffusion of 1,2-PD across the shell of the Pdu MCP
In Salmonella, the enzymes used for 1,2-PD degradation are 
encapsulated within the protein shell of the Pdu MCP (Fig. 1). 
Prior studies indicated that growth of Salmonella on 1,2-PD 
minimal medium is limited by the diffusion of 1,2-PD across 
the shell of the Pdu MCP, and that mutations that increase the 
permeability of the shell to 1,2-PD increase the growth rate 
[51, 72]. Therefore, growth tests were used to assess the effects 
of PduT-C38S, -C38A, -C38I and -C38W on the permeability 
of the Pdu MCP to 1,2-PD. All PduT residue 38 mutants and 
a pduT deletion grew similarly to the wild-type on 1,2-PD 
minimal medium (Fig. S4, Table S2). This indicated that a 
pduT deletion and the pduT variants with engineered pores 
did not significantly affect the diffusion of 1,2-PD into the Pdu 
MCP in an otherwise wild-type background.

As a second test of whether the engineered PduT pores altered 
the diffusion of 1,2-PD across the shell of the Pdu MCP, we 
measured the coenzyme B12-dependent DDH activity in puri-
fied MCPs [51]. DDH is an MCP lumen enzyme that catalyzes 
the first step of 1,2-PD degradation (the conversion of 1,2-PD 
to propionaldehyde) and its enzymatic activity is limited by 
the diffusion of 1,2-PD across the MCP shell [51]. The DDH 
activities of MCPs purified from of all pduT mutants were 
similar to those of the wild-type within experimental error 
(Table S3). Similar results were obtained for a pduT deletion 
mutant. These results were consistent with the growth studies 
described above and supported the interpretation that a pduT 

Fig. 2. Model structures of PduT pore mutants. For each mutant, the 
pore diameter is given in Å and the pore area is given in Å2.
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deletion mutant and the PduT variants tested (-C38S, -C38A, 
-C38I and -C38W) did not substantially increase the diffu-
sion of 1,2-PD across the shell of the Pdu MCP under the 
conditions used.

PduT-C38S and PduT-C38A increase the rate of 1,2-
PD diffusion in PduA-S40L Mutant
Next, we tested the effects of the PduT variants in a genetic 
background that included PduA-S40L. Prior studies showed 
that PduA-S40L impedes 1,2-PD diffusion across the shell of 
the Pdu MCP by obstructing the central pore of the PduA 
protein [51]; hence, we reasoned that the effects of the PduT 
variants on 1,2-PD transport might be more readily observed 
in a PduA-S40L background.

In contrast to a PduA-S40L strain, which grows slowly on 
1,2-PD minimal medium due to restricted 1,2-PD transport, 
a PduA-S40L/PduT-C38S double mutant grew similarly to 
the wild-type (Fig. 3, Table 1). Likewise, PduT-C38A also 
corrected the growth defect of the PduA-S40L mutant (Fig. 3, 
Table 1). These results indicated that PduT-C38S and PduT-
C38A increased the movement of 1,2-PD across the MCP 
shell when the diffusion of 1,2-PD through the central pore of 
PduA is restricted by the introduction of S40L. These findings 
are consistent with the modelling studies that indicated PduT-
C38S and -C38A would have relatively large central pores. 
In contrast, the PduA-S40L/PduT-C38I and PduA-S40L/

PduT-C38W double mutants grew similarly to the PduA-S40L 
mutant (Fig. 3, Table 1). These results suggest that PduT-C38I 
and -C38W (which were predicted by modelling to form small 
hydrophobic pores) do not mediate the transport of 1,2-PD to 
an extent measurable with the growth tests used here.

To further examine the effects of PduT variants on 1,2-PD 
transport in a PduA-S40L background, we measured the 
DDH activity of purified MCPs. Previous studies showed that 
MCPs purified from a PduA-S40L mutant exhibited lower 
DDH activity than the wild-type due to impaired diffusion 
of 1,2-PD across the MCP shell [51]. Therefore, mutations 
that increase the permeability of the Pdu MCP to 1,2-PD 
should increase the DDH activity of MCPs purified from the 
PduA-S40L mutant. Enzyme assays showed that MCPs puri-
fied from the PduA-S40L/PduT-C38S and the PduA-S40L/
PduT-C38A double mutants had DDH activities that were 
similar to those of the wild-type and almost twofold higher 
than those of the PduA-S40L mutant (Table 2). This indicated 
that the PduT-C38S and -C38A mutants increased the diffu-
sion of 1,2-PD across the shell of the Pdu MCP to an extent 
that allowed restoration of wild-type levels of DDH activity 
in the PduA-S40L background. We note that the PduT-C38S 
and -C38A corrected the PduA S40L phenotype, even though 
PduT is a minor shell protein (~3.2 % of the total shell protein) 
and PduA is a major shell protein (~15 % of the total shell 
protein). This suggests that the larger pore size of these PduT 
variants has substantial effects on 1,2-PD diffusion across 
the MCP shell. On the other hand, MCPs purified from the 
double mutants PduA-S40L/PduT-C38I, PduA-S40L/PduT-
C38W and PduA-S40L/ΔpduT had similar DDH activities 
to the MCPs from the PduA-S40L mutant, indicating that 
these PduT variants did not increase 1,2-PD diffusion across 
the MCP shell in a PduA-S40L genetic background (Table 2).

Fig. 3. Effects of pduT mutations on the growth of a Salmonella PduA-
S40L mutant on 1,2-propanediol minimal medium. All strains were 
grown on 1,2-PD minimal medium supplemented with limiting B

12
 

(25 nM) as described in the Methods section. Growth assays were 
performed three or more times with similar results in a microplate 
reader. The error bars represent one standard deviation and are based 
on three biological replicates.

Table 1. Growth of Salmonella PduT variants on 1,2-PD minimal medium

Strains Doubling time 
(h)

WT 16.4±1.1*

PduA-S40L 23.3±1.2†

PduA-S40L/PduT-C38S 17.1±0.4

PduA-S40L/PduT-C38A 18.5±0.7

PduA-S40L/PduT-C38I 22.9±0.8†

PduA-S40L/PduT-C38W 22.7±0.8†

PduA-S40L/ΔpduT::frt 20.4±0.8†

*Growth assays were performed on 1,2-PD minimal medium 
with limiting B

12
 (25 nM). Doubling times were calculated from at 

least three biological replicates measured in triplicate. The error 
estimate shown is ±one standard deviation.
†P-value<0.01 compared to wild-type (WT) as determined by two-
tailed Student’s t-test. The growth rates of PduA-S40L/PduT-C38S 
and PduA-S40L/PduT-C38A are not significantly different from 
those of the WT.
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As a control, to test for normal recruitment of DDH to the 
MCP, the purified MCPs were disrupted by dialysis and 
sonication and reassayed for DDH activity. The broken MCPs 
from all mutants had similar DDH activities to broken MCPs 
from the wild-type (Table 2). This indicated normal DDH 
recruitment to Pdu MCP in the mutants tested. In all cases, 
the DDH activities were higher in broken MCPs due to 
increased access of DDH to its substrate (1,2-PD), as shown 
previously [51, 73].

MCPs with engineered PduT pores still confine toxic 
propionaldehyde
Next, we tested the effects of PduT pore variants on the efflux 
of propionaldehyde from the Pdu MCP. HPLC was used to 
measure the amount of propionaldehyde that diffused out 
of the MCP, through the bacterial cell membrane, and into 
the culture medium during the growth of Salmonella on 
1,2-PD, as described elsewhere [51, 69, 72]. In this test, the 
PduT-C38A and PduT-C38S variants excreted slightly more 
propionaldehyde into the culture medium (about 2.5 mM) 
than the wild-type (about 2 mM) (Fig. 4). The PduT-C38I 
excreted similar amounts of propionaldehyde to the wild-
type (Fig. 4). None of the mutants liberated propionaldehyde 
at toxic levels (5–20 mM), as was seen earlier in the case of 
ΔpduA and ΔpduBB′ mutants [72].

PduT-C38S and PduT-C38A increase NAD/H 
diffusion across the shell of the Pdu MCP
The role of the PduQ enzyme in 1,2-PD degradation is to 
recycle NADH (produced by the PduP enzyme) back to 
NAD+ internally within the Pdu MCP (Fig. 1). Prior studies 
showed that Salmonella pduQ mutants grow slowly on 1,2-PD 
because (in the absence of internal NAD/H recycling) their 
growth is limited by the diffusion of NAD/H across the shell 
of the Pdu MCP [85]. Previous work also showed that the 
slow growth phenotype of pduQ mutants is corrected if the 
shell of the Pdu MCP is broken genetically, since this allows 
the MCP lumen enzymes ready access to cytoplasmic NAD/H 
[85]. Importantly, correction of the slow growth phenotype 
of a pduQ mutant provides a facile in vivo test for increased 
permeability of the Pdu MCP to NAD/H [85]. Therefore, 
to test the effects of PduT-C38S, -C38A, -C38I, -C38W and 
ΔpduT on NAD/H permeability, we individually combined 
these variants with a ΔpduQ mutation and measured growth 
on 1,2-PD minimal medium as described elsewhere [85]. 
PduT-C38S and PduT-C38A each increased the growth rate of 
a ΔpduQ mutant on 1,2-PD, but PduT-C38I, and -C38W had 
no significant effect (Fig. 5, Table 3). This indicated that the 
PduT-C38S and -C38A variants increased the permeability 
of the shell of the Pdu MCP to NAD/H. These results are 
consistent with modelling studies that predicted PduT-C38S 
and -C38A would result in the formation of pores of sufficient 
size to allow NAD/H to cross the MCP shell, while the PduT-
C38I would not. The results also showed that a pduT deletion 

Table 2. Diol dehydratase activities of MCPs purified from pduT mutants

MCPs from Pdu mutants Specific activity
(μmol/min/mg)

WT 27.8±1.2*

PduA-S40L 14.4±0.8†

PduA-S40L/PduT-C38S 27.4±0.8

PduA-S40L/PduT-C38A 25.5±0.7

PduA-S40L/PduT-C38I 13.05±0.5†

PduA-S40L/PduT-C38W 16.9±0.8†

PduA-S40L/ΔpduT::frt 16.1±0.4†

WT (broken)‡ 35.1±0.8†

PduA-S40L (broken) 33.8±1.1†

ΔpduT::frt (broken) 34.1±0.8†

PduT-C38I (broken) 34.6±0.6†

PduA-S40L/PduT-C38I (broken) 36.1±1.2†

PduT-C38W (broken) 34.3±0.7†

PduA-S40L/PduT-C38W (broken) 33.5±1.1†

*Enzyme activities are based on at least three independent 
replicates. The error estimate shown is ±one standard deviation.
†P-value<0.001 compared to wild-type (WT) as determined by two-
tailed Student’s t-test. Diol dehydratase (DDH) activities of PduA-
S40L/PduT-C38S and PduA-S40L/PduT-C38A are not significantly 
different from the WT.
‡MCPs were broken by dialysis and sonication.

Fig. 4. Propionaldehyde release by selected PduT pore mutants. 
Growth and propionaldehyde production by wild-type (WT) Salmonella 
and various PduT pore mutants during growth on 1,2-PD minimal 
medium at a saturating B

12
 concentration (150 nM). Propionaldehyde 

released into the growth medium was measured by HPLC. Prior studies 
indicated that a high level of B

12
 assists with greater production of 

propionaldehyde, which can readily be measured by HPLC [51, 69, 72]. 
The error bars represent one standard deviation and are based on 
three biological replicates.
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mutant did not have a substantial effect on the permeability 
of the MCP shell to NAD/H (Fig. S6, Table 3).

As a control, we measured growth of PduT-C38S, -C38A, 
-C38I, -C38W and ΔpduT mutants on 1,2-PD minimal 
medium (Fig. S5, Table 3). None had a significant effect on 
the growth rate of Salmonella on 1,2-PD under the same 
conditions as those used to examine the double mutants. 
Thus, the PduT-C38S and -C38A mutants described above 
only increased the growth rate of Salmonella on 1,2-PD 
minimal medium in the ΔpduQ genetic background, which 
(in conjunction with prior studies) supports the interpreta-
tion that these mutants increase the permeability of the Pdu 
MCP to NAD/H.

Lastly, as a further control, we purified MCPs from the 
ΔpduQ/PduT C38S, ΔpduQ/PduT-C38A and ΔpduQ/PduT-
C38I double mutants and showed that MCPs were normally 
formed by these mutants (Fig S7).

Discussion
Bacterial MCPs are a promising basis for engineering 
compartmentalized pathways to improve the efficiency of 
renewable chemicals production. MCPs consist of enzymes 
encapsulated within a protein shell and their native func-
tion is to optimize metabolic pathways [11–14, 18, 19, 86]. 
A challenge moving forward is to engineer MCP shells with 
the desired permeability properties, since optimal MCP func-
tion requires the diffusion of pathway substrates, products 
and enzymatic cofactors across the shell at the same time 
pathway intermediates are sequestered within [50–52]. Thus 
far, two strategies have been used to investigate/modify the 
permeability properties of bacterial MCPs. Studies of PduA, 
which is a major shell protein of the Pdu MCP, have used site-
directed mutagenesis to change the amino acid that forms the 
narrowest point of its central pore (residue S40) [51]. These 
changes altered the permeability of the Pdu MCP to small 
molecules such as 1,2-PD (the substrate), propionaldehyde (a 
toxic intermediate) and glycerol (a substrate analogue) [51]. 
Structural and biophysical analyses of these mutants indicated 
that the main factors affecting diffusion through the pore of 
PduA (and presumably other BMC domain hexamers) are its 
size and electrostatic properties [51]. A second approach to 
modifying the permeability properties of MCPs was to engi-
neer chimeric shells built from BMC domain hexamers native 
to two different MCPs [65, 66]. The feasibility of this approach 
is based on a conserved mechanism of shell assembly among 
divergent MCP shell proteins [53, 57, 62, 80, 80, 87].

In this report, we modified the permeability of the Pdu MCP 
by engineering the PduT shell protein. PduT is a pseudohexa-
meric trimer with a central Fe–S cluster and is estimated to 
comprise about 3.2 % of the total MCP shell protein [57, 70]. 
Prior crystallography, as well as the modelling studies reported 
here, indicated that site-directed mutagenesis of PduT-C38 
would create pores with varied chemical properties and sizes, 
including substantially larger pores (up to ~46 Å2) than had 
been examined previously (up to ~24 Å2). Therefore, we tested 

Fig. 5. Effects of pduT mutations on the growth of a Salmonella pduQ 
mutant on 1,2-propanediol minimal medium. Salmonella strains were 
grown on 1,2-PD minimal medium supplemented with 100 nM B

12
 

in a microplate reader. A prior study indicated that the sensitivity of 
the phenotype was better at a saturating B

12
 concentration [85]. The 

error bars represent one standard deviation and are based on three 
biological replicates.

Table 3. Effects of pduT mutations on the growth of a Salmonella pduQ 
mutant

Pdu mutants Doubling time (h)

WT 5.4±0.9*

ΔpduQ::frt 11.2±0.8†

ΔpduQ::kan 10.7±0.8†

ΔpduQ::frt /PduT-C38S 7.4±0.7†

ΔpduQ::frt /PduT-C38A 7.9±0.7†

ΔpduQ::frt /PduT-C38I 11.5±0.8†

ΔpduQ::frt /PduT-C38W 10.1±0.4†

ΔpduQ::kan /ΔpduT::frt 9.6±0.6†

PduT-C38S 5.6±0.5

PduT-C38A 5.2±0.8

PduT-C38I 5.4±0.6

PduT-C38W 5.9±0.9

ΔpduT::frt 6.2±0.8

*Growth assays were performed on 1,2-PD minimal medium 
containing saturating levels of B

12
 (100 nM). Doubling times were 

calculated from at least three biological replicates measured in 
triplicate. The error estimate shown is one standard deviation.
†P-value <0.01 compared to wild-type (WT) as determined by two-
tailed Student’s t-test. PduT-C38S, PduT-C38A, PduT-C38I, PduT-
C38W and ΔpduT::frt are not significantly different from the WT.
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the effects of selected C38 mutations on MCP permeability. 
Studies of the PduT-C38I and -C38W mutants both in vivo 
(Table 1, Figs 3–5) and in vitro (Table 2) suggested that these 
variants (which are predicted to have small hydrophobic 
pores) did not alter the permeability of the Pdu MCP to 
1,2-PD (the substrate), propionaldehyde (toxic interme-
diate) or NAD/H, which are required cofactors for two MCP 
lumen enzymes. Thus, these mutations suggest an approach 
to blocking diffusion through certain trimeric BMC domain 
proteins as well as a means for removing the Fe–S clusters 
without substantially altering shell permeability. In contrast, 
the results indicated that the PduT-C38S and PduT-C38A 
variants were more permeable to 1,2-PD, propionaldehyde 
and NAD/H. The PduT-C38S and -C38A mutations increased 
the diffusion of 1,2-PD across the MCP shell in a genetic 
background where 1,2-PD diffusion was restricted by a PduA-
S40L mutation (Fig. 3, Table 1). This suggests that altering 
the pores of more than one shell protein might be a useful 
approach for controlling MCP permeability. We also found 
that the PduT-C38S and -C38A variants were somewhat more 
permeable to the metabolic intermediate propionaldehyde. 
Both variants excreted about 25 % more propionaldehyde 
into the culture medium during growth on 1,2-PD; however, 
the amount of propionaldehyde did not reach toxic levels, as 
seen earlier (Fig. 4) [69]. Similarly, the results indicated that 
the PduT-C38S and -C38A mutants were more permeable to 
NAD/H. In a genetic background where growth on 1,2-PD 
is limited by diffusion of NAD/H across the MCP shell, both 
the PduT-C38S and -C38A mutants increased growth rates 
by ~40 %, indicating increased NAD/H diffusion across the 
MCP shell (Fig. 5). This suggests that in at least some cases 
pore size can be engineered to allow the diffusion of larger 
molecules across MCP shells.

Lastly, we found that a pduT deletion had relatively little effect 
on the permeability of the Pdu MCP. If the deletion of PduT 
left a hole in the shell where PduT would normally be located, 
the permeability of the MCP should have been altered (PduT 
is about 72 Å across at its widest point). We speculate that 
PduT was replaced by another BMC domain protein, such as 
PduA or PduB, and that this was possible due to the conserved 
edge-to-edge interactions that mediate the assembly of BMC 
domain proteins into MCP shells [57, 80, 88].
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