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Previous research has shown that musical beat perception is a
surprisingly complex phenomenon involving widespread neural
coordination across higher-order sensory, motor and cognitive
areas. However, the question of how low-level auditory
processing must necessarily shape these dynamics, and therefore
perception, is not well understood. Here, we present evidence
that the auditory cortical representation of music, even in the
absence of motor or top-down activations, already favours the
beat that will be perceived. Extracellular firing rates in the rat
auditory cortex were recorded in response to 20 musical
excerpts diverse in tempo and genre, for which musical beat
perception had been characterized by the tapping behaviour of
40 human listeners. We found that firing rates in the rat auditory
cortex were on average higher on the beat than off the beat. This
‘neural emphasis’ distinguished the beat that was perceived
from other possible interpretations of the beat, was predictive of
the degree of tapping consensus across human listeners, and
was accounted for by a spectrotemporal receptive field model.
These findings strongly suggest that the ‘bottom-up’ processing
of music performed by the auditory system predisposes the
timing and clarity of the perceived musical beat.
1. Introduction
The perception of a steady pulse or beat in music arises from the
interaction between rhythmic sounds and the way our brains
process them. Two things make musical beat perception
particularly intriguing. Firstly, no primate species apart from
humans consistently shows spontaneous motor entrainment to
the beat in music (e.g. tapping a foot, nodding the head) [1–4].
Secondly, despite musical beats being a subjective percept rather
than an acoustic feature of music [5], individual listeners tend to
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overwhelmingly agree on when beats occur. Some of this consistency might be due to certain ‘top-down’

constraints such as cultural and cognitive priors [6–8]. However, little is known about the contribution of
‘bottom-up’ auditory processing to the emergence of musical beat.

Recent cross-species work, which takes advantage of the fact that the auditory system is highly
conserved across mammalian species [9–12], has shown that the beat that human listeners tap while
listening to non-isochronous rhythms is accompanied by higher firing rates in the auditory midbrain
on the beat than off the beat [13]. Importantly, this effect was entirely explained by neuronal
adaptation, which differentially encodes otherwise identical sounds that differ only in temporal
context. If points of relative neural ‘emphasis’ in the ascending auditory representation of rhythms
predispose the induction of musical beat, then this could help explain why people largely agree on
when beats occur. A key assumption here is that localized, transient increases in firing rates of
auditory neurons would lead to points of perceptual emphasis, and that the temporal structure of
these points in turn shapes the perception of a periodic beat. The idea that perceptual emphasis and
beat perception are likely to be intimately linked is not new. Pioneering work by Paul Fraisse
explored how differences in a sound feature (e.g. intensity, pitch) in a series of isochronous sounds
immediately evoke the perception of rhythmic groupings (see e.g. [14] for a review), and Povel &
Essens’ [15] empirical model of beat perception suggests that the beat aligns itself maximally to
‘perceptual accents’ resulting from changes in a sound feature or temporal context. Nowadays, the
cortical activity evoked by music in the human brain is thought to arise from interactions between
relatively low-level evoked responses in the incoming sensory stream and ‘higher-level’ or feedback
mechanisms that may include the entrainment of cortical oscillations [16]. Thus, a clearer
understanding of the bottom-up neural signals evoked by music could shed light on how oscillatory
dynamics in the brain entrain to auditory rhythms [17–22], as well as on the role played by the motor
system in finding and maintaining a regular pulse [23–33]. By tracing the neural representation of
rhythmic sounds through the nervous system and identifying points of divergence between humans
and animal models, we may also begin to understand the origins and species-specificity of beat
perception and synchronization [34].

However, the hypothesis that auditory processing creates points of neural emphasis that shape the
perception of musical beat must first pass a crucial test; it must hold true not just for simple
‘laboratory’ rhythms, but also for real music. The aim of this study was to critically test whether
transient increases in firing rate (neural ‘accents’) due to bottom-up auditory processing could explain
when beats are felt in real recordings of music. Here, we show in the context of real music that firing
rates are on average higher on the beat than off the beat. Furthermore, the extent of the asymmetry
between on-beat and off-beat firing rates (termed ‘beat contrast’) predicts not only when the beat is
likely to be perceived, but also how closely listeners agree with each other on when beats occur. To
assess whether these effects are due to central auditory processing, we also computed responses of an
auditory nerve model to the same musical excerpts, and found that the neural contrasts between on-
beat and off-beat responses are less pronounced and less selective for the perceived musical beat
structures compared to auditory cortical responses. Finally, we demonstrate that the beat-related
signals expressed in cortical responses can be explained by the neurons’ spectrotemporal receptive
fields. These findings add to growing evidence that musical beat perception may be highly
constrained by the low-level temporal and spectrotemporal contrast sensitivity of neurons in the
ascending auditory pathway.
2. Methods
All stimuli, data and code for this study are available from the Dryad Digital Repository [35].
2.1. Stimuli
Twenty musical excerpts [5], which were diverse in tempo and musical genre (see electronic
supplementary material, table S1), were played to three anaesthetized rats while recording
extracellularly from auditory cortex. Recorded firing rates were then compared to tapping data
collected from 40 human participants listening to the same musical excerpts. The 20 musical excerpts
tested comprised the training dataset for the MIREX 2006 beat tracking algorithm competition [36].
Included in this published dataset were beat annotations collected from 40 human listeners tapping to



1

–1
3.0 3.5 4.0 4.5 5.0 5.5

3.0 3.5 4.0 4.5 5.0 5.5

3.0

ITIs:

on-beat

40

0

20

off-beat

consensus

beat

0.33 s 0.33 s 0.34 s 0.33 s 0.34 s 0.33 s 0.32 s 0.34 s

3.5 4.0 4.5 5.0 5.5

3.0 3.5 4.0
time (s)

4.5 5.0 5.5

40

0

0.5

0

20

0
so

un
d 

am
p.

su
bj

ec
t

ta
p 

de
ns

ity
sp

ik
es

 s
–1

(a)

(b)

(c)

(d)

(e)

Figure 1. Finding the consensus beat. (a) Short excerpt from an example song. (b) Raster plot of corresponding human tap times.
Rows are subjects, each dot represents a tap. (c) Smoothed pooled tap histogram, dots mark peaks found by peak-finder. (d ) Inter-
tap intervals (ITIs) between neighbouring peaks are not perfectly identical. The median of these values was taken as a song’s
consensus ITI. Aligning a grid with consensus ITI spacing (second line) to minimize the error between itself and the peaks in
panel c results in consensus beat times (red dots), which have a constant beat period and phase. On-beat was defined as the
100 ms following consensus beats (red), and off-beat is all time excluding these windows (grey). (e) Population firing rate in
the rat auditory cortex during the illustrated excerpt. Consensus beat times (red lines), on-beat windows (red shading) and off-
beat windows (grey) are overlaid.
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these musical excerpts [5]. Only the first 10 s of musical excerpts and beat annotations were used in this
study, and all listeners began tapping a steady beat well within this time.
2.2. Tapping analysis

2.2.1. Consensus beat

Tap annotations from the 40 human subjects were combined to determine a single ‘consensus’ beat
interpretation for each song. Figure 1 illustrates this procedure. To calculate consensus tap locations,
tap times across the 40 subjects were pooled, binned into 2 ms bins and then smoothed using a
Gaussian kernel with a width (standard deviation) of 40 ms (figure 1c). The precise width of the
smoothing kernel was not critical to the results as long as it roughly matched the spread in the data.
A peak-finder (Matlab function findpeaks.m) was then used to identify peaks that were larger than 40%
of the maximum value in the smoothed histogram. The consensus tempo for each song was taken to



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191194
4
be the median interval between successive peaks. The consensus phase was determined by finding the

offset that minimized the error between a temporal grid with consensus tempo spacing and the peaks
found by the peak-finder (figure 1d ). Consensus tap times for each song thus had a constant inter-tap
interval (ITI; beat period) and offset (beat phase). Consensus beat rates ranged from 0.7 to 3.7 Hz, or
42 to 222 beats per minute, corresponding to beat periods of 1.42 down to 0.27 s for the 20 musical
excerpts (see electronic supplementary material, table S1).

2.2.2. Strength of tapping consensus

The strength of the tapping consensus for each song was computed as the correlation between the
observed tap distribution histogram (pooled across all listeners) and the ‘ideal’ tap histogram that
would have resulted if all 40 listeners had interpreted the beat identically. The ideal case therefore
assumes that all listeners tap precisely at each consensus beat time, and that any variation in tap
times would only reflect motor error. An idealized tap histogram was constructed for each song by
convolving consensus tap times with a Gaussian kernel whose width was 5% of the consensus beat
period to add motor error that is consistent with the magnitude of errors reported in studies of
human sensorimotor synchronization [37–39]. Other kernel widths close to 5% also produced
consistent results. Next, both the pooled histogram of observed taps and the idealized tap histogram
with added motor error were convolved with a 5% Gaussian kernel to perform kernel density
estimation, which estimates the probability density function of tapping over time. The correlation
coefficient between observed and idealized tap probability density functions was taken as a measure
of the strength of the tapping consensus for each musical excerpt, where a large value would indicate
close agreement between real tapping behaviour and ‘ideal’ behaviour that is free of perceptual
uncertainty. We chose this particular correlation measure (instead of e.g. simply quantifying the
variance of observed tap times around consensus beats) in order to avoid excessively penalizing
minority but metre-related beat interpretations that are reported with high precision, but at a multiple
of the speed of the majority of listeners (see electronic supplementary material, figure S5, excerpt 10,
for example).

2.3. Surgical protocol
All procedures were approved and licensed by the UK home office in accordance with governing
legislation (ASPA 1986). Three female Lister hooded rats weighing approximately 250 g were
anaesthetized with 0.05 ml domitor and 0.1 ml ketamine i.p. To maintain anaesthesia, a saline solution
containing 16 µg kg−1 h−1 domitor, 4 mg kg−1 h−1 ketamine and 0.5 mg kg−1 h−1 torbugesic was
infused continuously during recording at a rate of 1 ml h−1. A craniotomy was performed centred at
4.7 mm caudal to bregma and 3.5 mm lateral to the midline on the right-hand side.

Recordings were made using a 64 channel silicon probe (Neuronexus Technologies, Ann Arbor, MI,
USA) with 175 µm2 recording sites arranged in a square grid pattern at 0.2 mm intervals along eight
shanks with eight channels per shank. The probe was first positioned over the auditory cortex based
on anatomical coordinates and then inserted into the brain in a medio-lateral orientation if possible
until all channels were inside the brain. After a few minutes, a search stimulus consisting of
broadband noise bursts was played to check that recording sites were driven by sound.
Next, frequency response areas (FRAs) were measured to check that channels were frequency
tuned, and then the music stimuli were presented. Stimuli were presented binaurally through
headphones at roughly 80 dB SPL at a sampling rate of 48828.125 Hz, and data were acquired
at 24414.0625 Hz using a TDT system 3 recording set-up (Tucker Davis Technologies). The 20
musical excerpts were played in randomized order for a total of 12 repeats, with 3 s of silence
separating songs.

2.4. Electrophysiology analysis

2.4.1. Data preprocessing

Offline spike sorting was performed using the expectation–maximization algorithm ‘Klustakwik’ [40]
with manual post-processing using ‘Klustaviewa’ (Cortical Processing Lab, University College
London). Each resulting cluster of spikes, which putatively originates from a small population of
neurons near a recording site, is termed a multiunit. Firing rates over time for multiunits were
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calculated by binning spike times into 5 ms bins, which resulted in peri-stimulus time histograms

(PSTHs) at an effective sampling rate of 200 Hz.
Only multiunits that were reliably stimulus-driven were included in further analysis. To quantify

the reliability of firing, we used a noise power to signal power metric developed by Sahani &
Linden [41], which examines how repeatable neural response patterns are for repeat presentations
of the same stimulus. Neural responses to the first 1 s of all 20 excerpts were concatenated
together for this analysis. In line with established practice [42], multiunits that failed to show a noise
power to signal power ratio less than 40 based on the 12 repeats were excluded from further analysis,
leaving a total of 77 multiunits. All subsequent analyses were performed using custom-written
Matlab code.

2.4.2. On-beat, off-beat and beat contrast

On-beat neural activity was defined as the average population firing rate in the 100 ms following consensus
tap times, and off-beat neural activity was the average population firing rate during all time excluding on-
beat windows (figure 1e). The justification for this definition is that (i) the true perceived beat location is
probably just after a listener taps given that listeners tend to tap several tens of milliseconds earlier than
the beat (negative mean asynchrony) [43], (ii) defining off-beat activity as all neural activity that is not
on the beat is consistent with previous work [13], and (iii) a window of 100 ms is less than half a beat
cycle for the fastest beat period in these data of 273 ms. The precise choice of time window is not
critical, and this was confirmed by running all analyses using on-beat windows that ranged between 80
and 120 ms in 10 ms increments. The results were consistent with those presented here for a time
window of 100 ms, and if anything, slightly stronger for shorter time windows.

To quantify the asymmetry between on-beat and off-beat responses, we adapted the Michelson
contrast measure commonly used in vision research [44], and defined ‘beat contrast’ (BC) for a set of
neural responses as:

BC ¼ fon � foff
fon þ foff

,

where fon and foff are mean on-beat and mean off-beat firing rates, respectively. Beat contrast would thus
be 1 if fon≫ foff, −1 if foff≫ fon and 0 if fon = foff.

2.4.3. Fitting the linear–nonlinear model

The relevant scripts for fitting spectrotemporal receptive field (STRF) and linear–nonlinear (LN) models
are available on Github [45]. First, music stimuli were transformed into a simple approximation of the
activity pattern received by the auditory pathway by calculating the log-scaled spectrogram
(‘cochleagram’) [46,47]. For each sound, the power spectrogram was taken using 10 ms Hanning
windows, overlapping by 5 ms. The power across neighbouring Fourier frequency components was
then aggregated using overlapping triangular windows comprising 30 frequency channels with centre
frequencies ranging from 150 to 22 833 Hz (1/4 octave spacing). Next, the log was taken of the power
in each time-frequency bin, and finally any values below a low threshold were set to that threshold.
These calculations were performed using code adapted from melbank.m (http://www.ee.ic.ac.uk/hp/
staff/dmb/voicebox/voicebox.html).

The LN-STRF model was trained to predict the firing rate at time t from a snippet of the cochleagram
extending 100 ms (20 time bins) back in time from time t, using methods described in detail in Willmore
et al. [46]. Briefly, the linear weights describing the firing rate of each neuron were estimated by
regressing, with elastic net regularization, each neuron’s firing rate at each time point against the
100 ms cochleagram snippet directly preceding it. A sigmoidal nonlinearity [42] was then fitted to
constrain the range of firing rates and map from the linear activation to the predicted PSTH such that
it minimized the error between the predicted PSTH and the observed PSTH. Each multiunit’s best
frequency (BF) was determined by finding the frequency band in the linear kernel with the largest
positive weight. LN model predictions of a multiunit’s PSTH to a test song were made by first
convolving the cochleagram of the test song with the linear STRF and then applying the nonlinearity.
Each multiunit’s LN model was calculated 20 times, each time setting aside a different song as the
test set, and PSTH predictions for each excerpt were made using the LN model that was not trained
on that excerpt. Linear STRFs for all multiunits are shown in electronic supplementary material,
figure S7, averaged across the 20 model runs.

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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Figure 2. Neural activity is stronger on the beat than off the beat. (a) Mean on-beat versus off-beat population firing rate in
auditory cortical neurons, dots are musical excerpts. On-beat firing rates are significantly higher than off-beat firing rates.
(b) Grand average population firing rate in the auditory cortex in a 200 ms window around all consensus beats in all 20
excerpts, ± standard deviation. (c) Histogram of beat contrast (BC) values for each recorded multiunit (N= 77). (d–f ) Same as
panels a–c, but for population activity based on AN model responses (N= 26 model AN fibres). AN model firing rates are also
higher on the beat than off the beat, but its corresponding BCs are much smaller.
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2.4.4. Comparison to auditory nerve model responses

We also wanted to examine whether any observed beat contrast (BC) in the neural responses might be the
result of peripheral, cochlear, rather than central auditory mechanisms. To this end, we used the well-
established model of the auditory periphery by Zilany et al. [48] to model the responses of a set of
auditory nerve (AN) fibres to each of the 20 musical excerpts. We then computed BC values for the
simulated AN responses in a manner entirely analogous to that used for the cortical data. In order to
make the comparison as valid as possible, we modelled a set of low spontaneous rate AN fibres, as
saturation of responses in high spontaneous rate fibres might reduce BC. Additionally, we matched
the range of model AN fibre characteristic frequencies (CFs) to that observed in our cortical multiunit
best frequencies determined by STRF analysis, resulting in 26 model AN fibres with CFs between 300
and 22 833 Hz in quarter octave steps.
3. Results
3.1. Auditory cortical firing rates are higher on the beat than off the beat
Figure 2a shows the average on-beat population firing rate, averaged across all recordings from all rats,
plotted against the off-beat population firing rate for each of the 20 tested musical excerpts. Firing rates
on the beat were significantly larger than firing rates off the beat ( p<10−4, Wilcoxon paired signed-rank
test, N=20 songs), an observation that is consistent with previous work examining auditory midbrain
responses to simple rhythmic patterns [13]. The average population firing rate in the 200 ms window
around consensus beats (averaged across all beats in all excerpts) provides a more detailed picture of
population neural activity around the beat (figure 2b). The distribution of beat contrast (BC) values
for each recorded multiunit (N=77) is shown in figure 2c. A BC> 0 indicates that firing rates were
higher on the beat than off the beat. Most multiunits show a BC> 1, and the bimodal distribution is
suggestive of distinct subpopulations in the recorded data, one with BCs around 0 and the other with
BCs around 0.25.

For comparison, an auditory nerve (AN) model [48] was used to estimate firing rates at the auditory
nerve for 26 frequency channels covering the same range of BFs observed in our sample of cortical
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multiunits (figure 2d–f ). Interestingly, the AN model would also predict higher average population firing
rates on the beat than off the beat (figure 2d: p<0.001, Wilcoxon paired signed-rank test, N=20 songs).
However, BCs based on the AN model, though larger than zero, are significantly smaller than cortical
BCs ( p< 10−4, Wilcoxon paired signed-rank test, N=20 songs).

3.2. A large beat contrast is a distinguishing feature of the consensus beat
While cortical firing rates in response to music are significantly stronger on the beat than off the beat, this
alone does not imply that large BCs are necessarily relevant to beat perception. From a signal processing
perspective, a musical excerpt could theoretically have any combination of beat period (tempo) and beat
phase. If most of these possible ‘musical beat interpretations’ were associated with more or less equally
large BCs, then a large BC would be of little value as a physiological marker for musical beat. Therefore,
if a large BC is indeed relevant for the induction of musical beat, it should be selectively large at the
consensus beat reported by listeners.

To test this hypothesis, BCs were computed on the population neural response (averaged across all
multiunits) for the full range of possible beat period and phase combinations. For each song, possible
beat periods (representing the different rates at which a listener might tap) were allowed to range
from 0.2 to 2 s sampled in 20 ms steps, and phase offset was allowed to range from 0 up to the full
beat period sampled in 20 ms steps. The BC was then computed for each beat interval and offset
combination, resulting in 5096 total possible BC values per excerpt.

The pool of possible BCs based on the population cortical firing rate is shown in figure 3a for an
example musical excerpt (see electronic supplementary material, figure S1 for all excerpts), and the
distribution of these values is shown in figure 3b. Figure 3c compares the median BC across all beat
interpretations for each musical excerpt with that excerpt’s BC at the consensus beat perceived by
listeners. Cortical BCs at the consensus beat were significantly larger than the median of the pool of
possible BCs ( p<10−4, Wilcoxon paired sign rank test, N= 20 songs). Figure 3d–f shows BCs based on
the AN model (see electronic supplementary material, figure S2 for all excerpts). AN model BCs at the
perceived beat were also significantly larger than the median of all possible BCs (figure 3f; p<0.001,
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Wilcoxon paired sign rank test, N=20 songs). However, there are some notable differences between
cortical and AN model BCs. Cortical responses resulted in a wider range of BC values, as evidenced
by the higher interquartile range of the cortical BC distributions compared to AN model BC
distributions ( p<10−4, Wilcoxon paired signed-rank test, N=20 songs). Furthermore, cortical BCs at
the consensus beat were above the 95th percentile of all possible BCs for 14 of the 20 musical excerpts
(electronic supplementary material, figure S3), but for only 10 out of 20 excerpts for AN model
responses (electronic supplementary material, figure S4). Together, these results suggest that a large
BC is a feature that distinguishes the consensus beat from most other possible beat interpretations,
and that two important consequences of auditory processing may be an amplification of small BCs
already present at the auditory periphery, and a further restriction of the candidate beat
interpretations that would result in large BCs.
3.3. Cortical beat contrasts are predictive of beat ambiguity
The results so far have been based on a single consensus beat interpretation for each musical excerpt.
However, it is not uncommon for listeners to interpret the beat differently for a given song, or for
there to be uncertainty about when the beat occurs if the beat is not very salient (see electronic
supplementary material, figures S5 and S6). We have demonstrated that cortical BCs are a
distinguishing feature of the consensus beat, but could they also capture how closely listeners agree
on a consensus beat?

The strength of the tapping consensus was quantified for each song by calculating the correlation
coefficient between the smoothed histogram of observed tap times and the ‘ideal’ histogram in which
all 40 listeners would have tapped the consensus interpretation of beat (see Methods). A correlation
coefficient close to 1 would therefore indicate a strong consensus across listeners. If a large BC
predisposes listeners to perceive a particular interpretation of beat, then we hypothesized that songs
with a larger BC at the consensus beat should show a stronger tapping consensus across listeners.
Figure 4a confirms that, indeed, BCs in the auditory cortex correlate significantly with the strength of
the tapping consensus across listeners (figure 4a; p<0.001, Pearson correlation, N= 20 songs).
Importantly, neither BC ( p=0.49) nor consensus strength ( p= 0.44) correlated with the consensus
tempo of musical excerpts (Pearson correlation, N= 20 songs). Figure 4b,c shows how BC and
consensus strength develop over time. Tapping consensus strength, which is low initially, quickly
reaches ceiling, indicating that listeners only needed a few seconds to find the beat. BCs on the other
hand do not change systematically over time, suggesting that the correspondences described in this
study between neural activity and behaviour are unlikely to be due to cortical entrainment or build-
up in neural responses that are typically reported in human studies of musical beat perception [32,49–52].
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3.4. Spectrotemporal tuning can explain cortical beat contrast
While the physiological signals described so far exhibit many intriguing correspondences to perceived
musical beat, it is nevertheless likely that the mechanisms shaping these signals reflect relatively
simple temporal processing by auditory neurons rather than beat-specific processes. Indeed, we found
that standard linear–nonlinear (LN) spectrotemporal receptive field (STRF) models fitted to our neural
data largely reproduced the observed BCs. Each multiunit’s STRF and its static sigmoid output
nonlinearity were fitted using standard methodology (see Methods). Firing rates were then predicted
using each multiunit’s LN model, then averaged across multiunits to arrive at the predicted
population firing rate, and from this, predicted BC values were computed for each musical excerpt.

An STRF from an example multiunit is shown in figure 5a (see electronic supplementary material,
figure S7 for STRFs of all multiunits and their corresponding beat contrasts). This multiunit shows a
preference for frequencies at and above 4 kHz, and is excited if sounds in that frequency range were
heard 25 ms ago but inhibited if they occurred 40 ms ago. A multiunit’s best frequency did not
significantly correlate with its median beat contrast (r=−0.21, p=0.07, Pearson correlation; see
electronic supplementary material, figure S8). Predicted and observed population firing rates are in
very good agreement, as shown by the example excerpt in figure 5b. Figure 5c plots observed (x-axis)
against predicted (y-axis) cortical BC values for each musical excerpt. The LN model tends to
underestimate BCs ( p< 0.001, Wilcoxon paired signed-rank test, N= 20 songs), suggesting that there is
some nonlinear process that slightly increases BC beyond processes captured by a standard LN
model. However, despite this minor difference, the LN model successfully accounts for 88% of the
variance in BC values for the tested musical excerpts (p<10−6, Pearson correlation, N=20 songs),
again suggesting that cortical beat contrast can be explained by spectrotemporal tuning and does not
require the ‘top-down’ processes currently thought to drive the perception of musical beat.
4. Discussion
The aim of this study was to explore possible contributions of firing rate fluctuations in the auditory
cortex to beat perception in real music. Our results revealed strong correspondences between the
neural responses to music in the auditory cortex and the perceived location and clarity of the beat.
Crucially, these effects were explained by the spectrotemporal tuning properties of recorded
multiunits, indicating that they are attributable to ‘bottom-up’ sensory processing.

A potential weakness of this study is that comparisons were made across species. However, as the
objective of this study was to explore the extent to which beat perception could be constrained by basic
mechanisms of bottom-up auditory processing, this approach allowed us to test low-level contributions
in a controlled situation where little to no motor or top-down activations are expected. It is therefore
particularly worth noting the strong correspondences observed here between auditory cortical firing
rates and tapping behaviour, and how well these correspondences could be captured by a standard LN
model. Our findings suggest that fundamental, low-level mechanisms such as adaptation [13],
amplitude modulation tuning [53] and temporal contrasts in STRFs play a formative role in musical
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beat perception. This is consistent with the idea that the induction of beat is the result of an interaction

between ‘bottom-up’ sensory processes and ‘top-down’ cognitive ones [54], perhaps through the
application of learned and implicit rhythmic priors [6,7] onto an ascending sensory representation
[13,53]. Our data suggest that beat perception may begin weakly at the ear, with neural activity showing
stronger correspondences to behaviour as information ascends through the brainstem and primary
cortical structures of the ascending auditory pathway [55,56]. Since these parts of the ascending
auditory system are highly conserved across mammalian species [9–12], cross-species investigations may
be a promising approach for investigating the neural signals and dynamics that underlie beat induction.

The correspondences we observe between neural responses and beat perception are probably due to
the combined effect of temporal structure in the stimulus and neuronal sensitivity to long timescales. As
mentioned in the introduction, Paul Fraisse already explored in the 1980s how setting accents in a series
of isochronous sounds by introducing occasional differences in a sound feature (e.g. intensity, pitch)
immediately evokes the perception of rhythmic groupings (see e.g. [14] for a review), and Povel &
Essens [15] put forward an empirical model of beat perception that assumes that the perceived beat
aligns itself maximally to such ‘perceptual accents’. Our work suggests that transient increases in
firing rate might be a physiological correlate of perceptual accents, since adaptation would predict
larger neural responses for stimulus features that have not been experienced in the recent past. We
think it is likely that the combination of excitatory and inhibitory receptive field elements in close
succession, which is frequently observed in cortical neurons and well captured by LN models,
heightens the sensitivity of cortical neurons to temporal contrast. Thus, our data support the notions
that auditory processing gives rise to perceptual accents, for example through the detection of high
temporal contrast events, and that musical beat perception arises from an interaction between
perceptual accents and the temporal structure of music, which may by design be a reflection of the
temporal processing capabilities of the human brain [57].

It is important to emphasize that the large responses we observed in the auditory cortex occur at
points of high spectrotemporal contrast in the sound and do not selectively occur on musical beats
(see figure 1e for examples of large responses that do and do not coincide with musical beats). These
large fluctuations in firing rate therefore represent a preprocessing step that, we believe, constrains
periodic activity at subsequent stages of processing where a single periodic interpretation of beat is
selected. These subsequent stages almost certainly require feedback or recurrent connections.
Computational models based on nonlinear dynamical systems, typically involving coupled oscillators,
have been successful at predicting many behavioural and physiological attributes of beat perception
and synchronization [25], though the biological neuronal networks that might implement these
dynamics are not yet known. The cortico-basal ganglia-thalamo-cortical loop [58] may be a promising
candidate since projections from auditory cortical fields to the basal ganglia have been well
characterized [59], and the basal ganglia in humans have been repeatedly implicated in beat
perception [24,60–62] as well as other auditory cognitive abilities [63]. We speculate that large firing
rate transients in the auditory cortex in response to music could provide the rhythmic excitation
required to set into motion the dynamics of this loop, and to enable entrainment of neural oscillations
to the beat [32,49–52]. Caution is required, however, as there is currently some debate around what
constitutes neural entrainment to auditory rhythms [64–67], and whether frequency-domain
representations of rhythms and brain signals necessarily reflect beat perception [68–71].

By revealing the extent to which beat perception is shaped by bottom-up auditory processing, this
study raises several questions for future investigation. One is the balance between ‘bottom-up’ and
‘top-down’ processes in beat perception. For example, some excerpts in our dataset evoked a cortical
BC that was not substantially higher than the distribution of all possible BCs (e.g. excerpts 12, 13, 15;
see electronic supplementary material, figure S3), and yet this consensus beat was still felt by a
majority of listeners (electronic supplementary material, figure S5). This suggests that in some cases,
‘top-down’ processes may be more important for finding the beat, although it is worth noting that a
low cortical BC typically also meant a weaker tapping consensus across listeners (figure 4a). Another
aspect of musical beat perception that our cortical data do not explain is the build-up in the
perception of beat, which is not accompanied by an increase in beat contrast at the sensory
representation level (compare figure 4b and c). Future work could explore neural correlates for the
build-up in musical beat perception, and explore which features in the sensory representation might
determine the time course for this build-up. Furthermore, the perceived beat and its neural signatures
can also be modulated at will by top-down attention or mental imagery of beat structure [20,50,60,72].
Further work is required to test the limits of top-down and bottom-up processes in beat perception,
and to understand whether their respective influences are modulated by ambiguity in the stimulus.
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Another question, given the beat-relevant precursors observed in the rodent auditory cortex, is

whether rodents too might be capable of perceiving a musical beat. Growing evidence suggests that
rats can be trained to discriminate isochronous from non-isochronous rhythms [73,74]. Additionally,
mice are capable of licking in a way that lags an isochronous sound stimulus but continues at the
correct interval even after the stimulus has stopped; in that study, primary auditory cortex was
implicated as being necessary for the generation of anticipatory motor actions [75]. These studies at
minimum suggest that rodents can perceive temporal structure and execute motor actions timed to an
external isochronous rhythm. Future work is required to explore the limits of sensorimotor
synchronization in rodents, to understand whether it extends to musical beat, and to relate these
findings to behavioural and physiological data from other species. For example, it has been recently
shown that non-human primates [76,77] can predictively synchronize to metronomes. Additionally,
some songbird [78] and pinniped [79] species can also find and synchronize to the beat in music.

Finally, if musical beat perception is a rare and unusual ability that only humans and a few select
species may possess, then it invites the question of where, functionally and anatomically, humans
diverged from other species to be able to perceive musical beat. Some clues might be found in
parallels that beat perception has with other abilities, particularly with the capacity for vocal learning
and language [80–83]. A sensitivity to temporal regularities in the beat range may also be beneficial
for detecting patterns [84,85] and segmenting auditory scenes [86,87], which relies on lower-level
circuits and mechanisms such as those involved in time perception [88] and the prediction of future
sensory input [89]. Cross-species investigations may be particularly suited to pinning down the key
mechanisms that make beat perception, to the extent of our present understanding, characteristically
human.
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