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Abstract

The SAMPL Challenges aim to focus the biomolecular and physical modeling community on 

issues that limit the accuracy of predictive modeling of protein-ligand binding for rational drug 

design. In the SAMPL5 log D Challenge, designed to benchmark the accuracy of methods for 

predicting drug-like small molecule transfer free energies from aqueous to nonpolar phases, 

participants found it difficult to make accurate predictions due to the complexity of protonation 
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state issues. In the SAMPL6 log P Challenge, we asked participants to make blind predictions of 

the octanol-water partition coefficients of neutral species of 11 compounds and assessed how well 

these methods performed absent the complication of protonation state effects. This challenge 

builds on the SAMPL6 pKa Challenge, which asked participants to predict pKa values of a 

superset of the compounds considered in this log P challenge. Blind prediction sets of 91 

prediction methods were collected from 27 research groups, spanning a variety of quantum 

mechanics (QM) or molecular mechanics (MM)-based physical methods, knowledge-based 

empirical methods, and mixed approaches. There was a 50% increase in the number of 

participating groups and a 20% increase in the number of submissions compared to the SAMPL5 

log D Challenge. Overall, the accuracy of octanol-water log P predictions in SAMPL6 Challenge 

was higher than cyclohexane-water log D predictions in SAMPL5, likely because modeling only 

the neutral species was necessary for log P and several categories of method benefited from the 

vast amounts of experimental octanol-water log P data. There were many highly accurate methods: 

10 diverse methods achieved RMSE less than 0.5 log P units. These included QM-based methods, 

empirical methods, and mixed methods with physical modeling supported with empirical 

corrections. A comparison of physical modeling methods showed that QM-based methods 

outperformed MM-based methods. The average RMSE of the most accurate five MM-based, QM-

based, empirical, and mixed approach methods based on RMSE were 0.92±0.13, 0.48±0.06, 

0.47±0.05, and 0.50±0.06, respectively.

Keywords

octanol-water partition coefficient; log P; blind prediction challenge; SAMPL; free energy 
calculations; solvation modeling

1 Introduction

The development of computational biomolecular modeling methodolgoies is motivated by 

the goal of enabling quantitative molecular design, prediction of properties and biomolecular 

interactions, and achieving a detailed understanding of mechanisms (chemical and 

biological) via computational predictions. While many approaches are available for making 

such predictions, methods often suffer from poor or unpredictable performance, ultimately 

limiting their predictive power. It is often difficult to know which method would give the 

most accurate predictions for a target system without extensive evaluation of methods. 

However, such extensive comparative evaluations are infrequent and difficult to perform, 

partly because no single group has expertise in or access to all relevant methods and also 

because of the scarcity of blind experimental data sets that would allow prospective 

evaluations. In addition, many publications which report method comparisons for a target 

system constructs these studies with the intention of highlighting the success of a method 

being developed.

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) Challenges 

[http://samplchallenges.github.io] provide a forum to test and compare methods with the 

following goals:
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1. Determine prospective predictive power rather than accuracy in retrospective 

tests.

2. Allow a head to head comparison of a wide variety of methods on the same data.

Regular SAMPL challenges focus attention on modeling areas that need improvement, and 

sometimes revisit key test systems, providing a crowdsourcing mechanism to drive progress. 

Systems are carefully selected to create challenges of gradually increasing complexity 

spanning between prediction objectives that are tractable and that are understood to be 

slightly beyond the capabilities of contemporary methods. So far, most frequent SAMPL 

challenges have been on solvation and binding systems. Iterated blind prediction challenges 

have played a key role in driving innovations in the prediction of physical properties and 

binding. Here we report on a SAMPL6 log P Challenge on octanol-water partition 

coefficients, treating molecules resembling fragments of kinase inhibitors. This is a follow-

on to the earlier SAMPL6 pKa Challenge which included the same compounds.

The partition coefficient describes the equilibrium concentration ratio of the neutral state of 

a substance between two phases:

log P = log10 Kow = log10
[unionized solute]octanol
[unionized solute]water

(1)

The log P challenge examines how well we model transfer free energy of molecules between 

different solvent environments in the absence of any complications coming from predicting 

protonation states and pKa values. Assessing log P prediction accuracy also allows 

evaluating methods for modeling protein-ligand affinities in terms of how well they capture 

solvation effects.

1.1 SAMPL Challenge History and Motivation

The SAMPL blind challenges aim to focus the field of quantitative biomolecular modeling 

on major issues that limit the accuracy of protein-ligand binding prediction. Companion 

exercises such as the Drug Design Data Resource (D3R) blind challenges aim to assess the 

current accuracy of biomolecular modeling methods in predicting bound ligand poses and 

affinities on real drug discovery project data. D3R blind challenges serve as an accurate 

barometer for accuracy. However, due to the conflation of multiple accuracy-limiting 

problems in these complex test systems it is difficult to derive clear insights into how to 

make further progress towards better accuracy.

Instead, SAMPL seeks to isolate and focus attention on individual accuracy-limiting issues. 

We aim to field blind challenges just at the limit of tractability in order to identify 

underlying sources of error and help overcome these challenges. Working on similar model 

systems or the same target with new blinded datasets in multiple iterations of prediction 

challenges maximize our ability to learn from successes and failures. Often, these challenges 

focus on physical properties of high relevance to drug discovery in their own right, such as 

partition or distribution coefficients critical to the development of potent, selective, and 

bioavailable compounds.
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The partition coefficient (log P) and the distribution coefficient (log D) are driven by the free 

energy of transfer from an aqueous to a nonpolar phase. Transfer free energy of only neutral 

species are considered for log P, whereas both neutral and ionizable species contribute to log 

D. Such solute partitioning models are a simple proxy for the transfer free energy of a drug-

like molecule to a relatively hydrophobic receptor binding pocket, in the absence of specific 

interactions. Protein-ligand binding equilibrium is analogous to partitioning of a small 

molecule between two environments: protein binding site and aqueous phase. Methods that 

employ thermodynamic cycles, such as free energy calculations, can therefore use similar 

strategies for calculating binding affinities and partition coefficients, and given the similarity 

in technique and environment, we might expect the accuracy on log P and log D may be 

related to the accuracy expected from binding calculations, or at least a lower bound for the 

error these techniques might make in more complex protein-ligand binding phenomena. 

Evaluating log P or log D predictions makes it far easier to probe the accuracy of 

computational tools used to model protein-ligand interactions and to identify sources of 

error to be corrected. For physical modeling approaches, evaluation of partition coefficient 

predictions comes with the additional advantage of separating force field accuracy from 

protonation state modeling challenges.

The SAMPL5 log D challenge uncovered surprisingly large modeling errors—
Hydration free energies formed the basis of several previous SAMPL challenges, but 

distribution coefficients (log D) capture many of the same physical effects—namely, 

solvation in the respective solvents—and thus replaced hydration free energies in SAMPL5 

[1, 2]. This choice was also driven due to a lack of ongoing experimental work with the 

potential to generate new hydration free energy data for blind challenges. Octanol-water log 

D is also a property relevant to drug discovery, often used as a surrogate for lipophilicity, 

further justifying its choice for a SAMPL challenge. The SAMPL5 log D Challenge allowed 

decoupled evaluation of small molecule solvation models (captured by the transfer free 

energy between environments) from other issues, such as the sampling of slow receptor 

conformational degrees of freedom. This blind challenge generated considerable insight into 

the importance of various physical effects [1, 2]; see the SAMPL5 special issue (https://

link.springer.com/journal/10822/30/11/page/1) for more details.

The SAMPL5 log D Challenge used cyclohexane as an apolar solvent, partly to further 

simplify this challenge by avoiding some complexities of octanol. In particlar, log D is 

typically measured using water-saturated octanol for the nonaqueous phase, which can give 

rise to several challenges in modeling accuracy such as a heterogeneous environment with 

potentially micelle-like bubbles [3–6], resulting in relatively slow solute transitions between 

environments [4, 7]. The precise water content of wet octanol is unknown, as it is affected by 

environmental conditions such as temperature as well as the presence of solutes, the organic 

molecule of interest, and salts (added to control pH and ionic strength). Inverse micelles 

transiently formed in wet octanol create spatial heterogeneity and can have long correlation 

times in molecular dynamics simulations, potentially presenting a challenge to modern 

simulation methods[3–6], resulting in relatively slow solute transitions between 

environments [4, 7].
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Performance in the SAMPL5 log D Challenge was much poorer than the organizers initially 

expected—and than would have been predicted based on past accuracy in hydration free 

energy predictions—and highlighted the difficulty of accurately accounting for protonation 

state effects [2]. In many SAMPL5 submissions, many participants treated distribution 

coefficients (log D) as if they were asked to predict partition coefficients (log P). The 

difference between log D (reflects the transfer free energy at a given pH including the effects 

of accessing all equilibrium protonation states of the solute in each phase) and log P (reflects 

aqueous-to-apolar phase transfer free energies of the neutral species only) proved 

particularly important. In some cases, other effects like the presence of a small amount of 

water in cyclohexane may also have played a role.

Because the SAMPL5 log D Challenge highlighted the difficulty in correctly predicting 

transfer free energies involving protonation states (the best methods obtained an RMSE of 

2.5 log units [2]), the SAMPL6 Challenge aimed to further subdivide the assessment of 

modeling accuracy into two challenges: A small-molecule pKa prediction challenge [8] and 

a log P challenge. The SAMPL6 pKa Challenge asked participants to predict microscopic 

and macroscopic acid dissociation constants (pKas) of 24 small organic molecules and 

concluded in early 2018. Details of the challenge are maintained on the GitHub repository 

(https://github.com/samplchallenges/SAMPL6/). pKa prediction proved to be difficult. A 

large number of methods showed RMSE in the range of 1–2 pKa units, with only a handful 

achieving less than 1 pKa unit. These results were in line with expectations from the 

SAMPL5 Challenge about protonation state predictions being one of the major sources of 

error for log D. But the present challenge allows us delve deeper into modeling the solvation 

of neutral species and focus on log P.

The SAMPL6 log P Challenge focused on small molecules resembling kinase 
inhibitor fragments—By measuring the log P of a series of compounds resembling 

fragments of kinase inhibitors—a subset of those used in the SAMPL6 pKa Prediction 

Challenge—we sought to assess the limitations of force field accuracy in modeling transfer 

free energies of drug-like molecules in binding-like processes. This time, the challenge 

featured octanol as the apolar medium to assess whether wet octanol presented as much of a 

problem as was previously suspected. Participants are asked to predict the partition 

coefficient (log P) of the neutral species between octanol and water phases. Here we focus 

on different aspects of the challenge, particularly the staging, analysis, results, and lessons 

learned. Experimental work for collecting the log P values are described elsewhere [9]. One 

of the goals of this challenge is to encourage prediction of model uncertainties (an estimate 

of the inaccuracy with which your model predicts the physical property), since the ability to 

tell when methods will be successful or not would be very useful for increasing the 

application potential and impact of computational methods.

The SAMPL challenges aim to advance predictive quantitative models—The 

SAMPL challenges have a key focus on lessons learned. In principle, they are a challenge or 

competition, but we see it as far more important to learn how to improve accuracy than to 

announce the top-performing methods. To aid in learning as much as possible, this overview 

paper provides an overall assessment of performance and some analysis of the relative 
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performance of different methods in different categories, provides some insights into lessons 

we have learned (and/or other participants have learned). Additionally, this work presents 

our own reference calculations which provide points of comparison for participants (some 

relatively standard and some more recent, especially in the physical category) and also allow 

us to provide some additional lessons learned. The data, from all participants and all 

reference calculations, is made freely available (see Section 6) to allow others to compare 

methods retrospectively and dig into additional lessons learned.

1.2 Common computational approaches for predicting log P

Many methods have been developed to predict octanol-water log values of small organic 

molecules including physical modeling (QM and MM-based methods) and knowledge-based 

empirical prediction approaches (atom-contribution approaches and QSPR). There are also 

log P prediction methods that combine the strengths of physical and empirical approaches. 

Here, we briefly highlight some of the major ideas and background behind physical and 

empirical log P prediction methods.

1.2.1 Physical modeling approaches for predicting log P—Physical approaches 

begin with a detailed atomistic model of the solute and its conformation and attempt to 

estimate partitioning behavior directly from that. Details depend on the approach employed.

1.2.1.1. Quantum mechanical (QM) approaches for predicting log P: QM approaches 

to solvation modeling utilize numerical solution of the Schrödinger equation to estimate 

solvation free energies (and thereby partitioning) directly from first principles. There are a 

number of approaches for these calculations, and discussing them is outside the scope of this 

work. However, it is important to note that direct solution of the underlying equations, 

especially when coupled with dynamics, becomes impractical for large systems such as 

molecules in solution. So, several approximations must be made before such approaches can 

be applied to estimating phase transfer free energies. These typical approximations include 

assuming the solute has one or a small number of dominant conformations in each phase 

being considered, and using an implicit solvent model to represent the solvent. The basis set 

and level of theory can be important choices and can significantly affect accuracy of 

calculated values. Additionally, protonation or tautomerization state selected as an input can 

also introduce errors. With QM approaches possible protonation states and tautomers can be 

evaluated to find the lowest energy state in each solvent. However, if these estimates are 

erroneous, any errors will propagate into the final transfer free energy and log P predictions.

Implicit solvent models can be used, in the context of the present SAMPL, both to represent 

water and octanol. Such models are often parameterized—sometimes highly so—based on 

experimental solvation free energy data. This means that such models perform well for 

solvents (and solute chemistries) where solvation free energy data is abundant (as in the 

present challenge) but are often less successful when far less training data is available. In 

this respect, QM methods, by virtue of the solvent model, have some degree of overlap with 

the empirical methods discussed further below.

Several solvent models are particularly common, and in the present challenge two were 

particularly commonly employed. One was Marenich, Cramer and Truhlar’s SMD solvation 
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model [10], which derives its electrostatics from the widely used IEF-PCM model and was 

empirically trained on various solutes/solvents utilizing a total of some 2821 different 

solvation data points. This has been employed in various SAMPL challenges in the past in 

the context of calculation of hydration free energies, including the earliest SAMPL 

challenges [11, 12]. Others in the Cramer-Truhlar series of solvent models were also used, 

including the 2012 SM12 solvation model, which is based on the generalized born (GB) 

approximation [13]. Another set of submissions also used the reference interaction site 

model (RISM) integral equation approach, discussed further below.

The COSMO-RS solvation model is another method utilized in this context which covers a 

particularly broad range of solvents, typically quite well [14–18]. In the present challenge, a 

“Cosmoquick” variant was also applied and falls into the “Mixed” method category, as it 

utilizes additional empirical adjustments. The COSMO-RS implementation of 

COSMOtherm takes into account conformational effects to some extent; the chemical 

potential in each phase is computed using the Boltzmann weights of a fixed set of 

conformers.

In general, while choice of solvation model can be a major factor impacting QM approaches, 

the neglect of conformational changes means these approaches typically (though not always) 

neglect any possibility of significant change of conformation on transfer between phases and 

they simply estimate solvation by the difference in (estimated) solvation free energies for 

each phase of a fixed conformation. Additionally, solute entropy is often neglected, 

assuming the single-conformation solvation free energy plays the primary role in driving 

partitioning between phases. In addition to directly estimating solvation, QM approaches can 

also be used to drive the selection of the gas- or solution-phase tautomer, and thus can be 

used to drive the choice of inputs for MM approaches discussed further below.

Integral equation-based approaches: Integral equation approaches provide an alternate 

approach to solvation modeling (for both water and non-water solvents) and have been 

applied in SAMPL challenges within both the MM and QM frameworks [19–21]. In this 

particular challenge, however, the employed approaches were entirely QM, and utilized the 

reference interaction site model (RISM) approach [22–24]. Additionally, as noted above, the 

IEF-PCM model used by the SMD solvation model (discussed above) is also an integral 

equation approach. Practical implementation details mean that RISM approaches typically 

have one to a few adjustable parameters (e.g. four [25]) which are empirically tuned to 

experimental solvation free energies, in contrast to the SMD and SM-n series of solvation 

models which tend to have a larger number of adjustable parameters and thus require larger 

training sets. In this particular SAMPL challenge, RISM participation was limited to 

embedded cluster EC-RISM methods [19, 22, 26], which combine RISM with a quantum 

mechanical treatment of the solute.

1.2.1.2. Molecular mechanics (MM) approaches for predicting log P: MM approaches 

to computing solvation and partition free energies (and thus log P values), as typically 

applied in SAMPL, use a force field or energy model which gives the energy (and, usually, 

forces) in a system as a function of the atomic positions. These models include all-atom 

fixed charge additive force fields, as well as polarizable force fields. Such approaches 
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typically (though not always) are applied in a dynamical framework, integrating the 

equations of motion to solve for the time evolution of the system, though Monte Carlo 

approaches are also possible.

MM-based methods are typically coupled with free energy calculations to estimate 

partitioning. Often, these are so-called alchemical methods which utilize a non-physical 

thermodynamic cycle to estimate transfer between phases, though pulling-based techniques 

which directly model phase transfer are in principle possible [27, 28]. Such free energy 

methods allow detailed all-atom modeling of each phase, and compute the full free energy of 

the system, in principle (in the limit of adequate sampling) providing the correct free energy 

difference given the choice of energy model (“force field”). However, adequate sampling can 

sometimes prove difficult to achieve.

Key additional limitations facing MM approaches are the accuracy of the force field, the fact 

that protonation state/tautomer is generally selected as an input and held fixed (meaning that 

incorrect assignment or multiple relevant states can introduce significant errors), and 

timescale—simulations only capture motions that are faster than simulation timescale. 

However, these approaches do capture conformational changes on phase transfer, as long as 

such changes occur on timescales faster than the simulation timescale.

1.2.2 Empirical log P predictions—Due to the importance of accurate log predictions, 

ranging from pharmaceutical sciences to environmental hazard assessment, a large number 

of empirical models to predict this property have been developed and reviewed [29–31]. An 

important characteristic of many of these methods is that they are very fast, so even large 

virtual libraries of molecules can be characterized.

In general, two main methodologies can be distinguished: group- or atom-contribution 

approaches, also called additive group methods, and quantitative structure-property 

relationship (QSPR) methods.

1.2.2.1 Atom- and group-contribution approaches: Atom contribution methods, 

pioneered by Crippen in the late 1980s [32, 33], are the easiest to understand conceptually. 

These assume that each atom contributes a specific amount to the solvation free energy and 

that these contributions to log P are additive. Using a potentially large number of different 

atom types (typically in the order of 50–100), the log P is the sum of the individual atom 

types times the number of their occurrences in the molecule:

log P = ∑
i = 1

n
niai (2)

A number of log P calculation programs are based on this philosophy, including AlogP [34], 

AlogP98 [34], and moe_SlogP [35].

The assumption of independent atomic contributions fails for compounds with complex 

aromatic systems or stronger electronic effects. Thus correction factors and contributions 
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from neighboring atoms were introduced to account for these shortcomings (e.g. in XlogP 

[36–38] and SlogP [35].

In contrast, in group contribution approaches, log P is calculated as a sum of group 

contributions, usually augmented by correction terms that take into account intramolecular 

interactions. Thus, the basic equation is

log P = ∑
i = 1

n
aifi + ∑

j = 1

m
bjFj (3)

where the first term describes the contribution of the fragments fi (each occurring ai times), 

the second term gives the contributions of the correction factors Fj occurring bj times in the 

compound. Group contribution approaches assume that the details of the electronic or 

intermolecular structure can be better modeled with whole fragments. However, this breaks 

down when molecular features are not covered in the training set. Prominent examples of 

group contribution approaches include clogP [39–42], KlogP [43], ACD/logP [44] and 

KowWIN [45].

clogP is probably one of the most widely used log P calculation programs [39–41]. clogP 

relies on fragment values derived from measured data of simple molecules, e.g., carbon and 

hydrogen fragment constants were derived from measured values for hydrogen, methane, 

and ethane. For more complex hydrocarbons, correction factors were defined to minimize 

the difference to the experimental values. These can be structural correction factors taking 

into account bond order, bond topology (ring/chain/branched) or interaction factors taking 

into account topological proximity of certain functional groups, electronic effects through π-

bonds, or special ortho-effects.

1.2.2.2 QSPR approaches: Quantitative structure-property relationships (QSPR) provide 

an entirely different category of approaches. In QSPR methods, a property of a compound is 

calculated from molecular features that are encoded by so-called molecular descriptors. 

Often, these theoretical molecular descriptors are classified as 0D-descriptors (constitutional 

descriptors, only based on the structural formula), 1D-descriptors (i.e. list of structural 

fragments, fingerprints), 2D-descriptors (based on the connection table, topological 

descriptors), and 3D-descriptors (based on the three-dimensional structure of the compound, 

thus conformation-dependent). Sometimes, this classification is extended to 4D-descriptors, 

which are derived from molecular interaction fields (e.g., GRID, CoMFA fields).

Over the years, a large number of descriptors have been suggested, with varying degrees of 

interpretability. Following the selection of descriptors, a regression model that relates the 

descriptors to the molecular property is derived by fitting the individual contributions of the 

descriptors to a dataset of experimental data; both linear and nonlinear fitting is possible. 

Various machine learning approaches such as random forest models, artificial neural 

network models, etc. also belong to this category. Consequently, a large number of 

estimators of this type have been proposed; some of the more well- known ones include 

MlogP [46] and VlogP [47].
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1.2.3 Expectations from different prediction approaches—Octanol-water log P 
literature data abounds, impacting our expectations. Given this abundance of data, in 

contrast to cyclohexane-water log D data, e.g., for the SAMPL5 log D Challenge, we 

expected higher accuracy here. Some sources of public octanol-water log P values include 

DrugBank [48], ChemSpider [49], PubChem, the NCI CACTUS databases [50, 51], and 

SRC’s PHYSPROP Database [52].

Our expectation was that empirical knowledge-based and other trained methods (implicit 

solvent QM, mixed methods) would outperform other methods in the present challenge as 

they are impacted directly by the availability of octanol-water data. Methods well trained to 

experimental octanol-water partitioning data should typically result in higher accuracy, if 

fitting is done well. The abundance of octanol-water data may also provide empirical and 

mixed approaches with an advantage over physical modeling methods. Current molecular 

mechanics-based methods and other methods not trained to experimental log P data ought to 

do worse in this challenge. Performance of strictly physical modeling based prediction 

methods might generalize better across other solvent types where training data is scarce, but 

that will not be tested by this challenge. In principle, molecular mechanics-based methods 

could also be fitted using octanol-water data as one of the targets for force field 

optimization, but present force fields have not made broad use of this data in fitting. Thus, 

top methods are expected to be from empirical knowledge-based, QM-based approaches and 

combination of QM-based and empirical approaches because of training data availability. 

These categories are broken out separately for analysis.

2 Challenge design and evaluation

2.1 Challenge structure

The SAMPL6 Part II Challenge was conducted as a blind prediction challenge on predicting 

octanol-water partition coefficients of 11 small molecules that resemble fragments of kinase 

inhibitors. The challenge molecule set was composed of small molecules with limited 

flexibility (less than 5 non-terminal rotatable bonds) and covers limited chemical diversity. 

There are six 4-aminoquinazolines, two benzimidazoles, one pyrazolo[3,4-d]pyrimidine, one 

pyridine, one 2-oxoquinoline substructure containing compounds with log P values in the 

range of 1.95–4.09. Information on experimental data collection is presented elsewhere [9].

The dataset composition was announced several months before the challenge including 

details of the measurement technique (potentiometric log P measurement, at room 

temperature, using water saturated octanol phase, and ionic strength-adjusted water with 

0.15 M KCl [9]), but not the identity of the small molecules. The instructions and the 

molecule set were released at the challenge start date (Nov 1, 2018), and then submissions 

were accepted until March 22, 2019.

Following the conclusion of the blind challenge, the experimental data was made public on 

Mar 25, 2019 and results are first discussed in a virtual workshop (on May 16, 2019) [54] 

then later in an in person workshop (Joint D3R/SAMPL Workshop, San Diego, Aug 22–23, 

2019). The purpose of the virtual workshop was to go over a preliminary evaluation of 

results, begin considering analysis and lessons learned, and nucleate opportunities for follow 
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up and additional discussion. Part of the goal was to facilitate discussion so that participants 

can work together to maximize lessons learned in the lead up to an in-person workshop and 

special issue of a journal. The SAMPL6 log P Virtual Workshop video [54] and presentation 

slides [55] are available, as are organizer presentation slides from the joint D3R/SAMPL 

Workshop 2019 [56, 57] on the SAMPL Community Zenodo page (https://zenodo.org/

communities/sampl/).

A machine-readable submission file format was speci1ed for blind submissions. Participants 

were asked to report SAMPL6 Molecule IDs, predicted octanol-water log P values, the log P 
standard error of the mean (SEM), and model uncertainty. It was mandatory to submit 

predictions for all these values, including the estimates of uncertainty. The log P SEM 

captures the statistical uncertainty of the predicted method, and the model uncertainty is an 

estimate of how well prediction and experimental values will agree. Molecule IDs assigned 

in SAMPL6 pKa Challenge were conserved in the challenge for the ease of reference.

Participants were asked to categorize their methods as belonging to one of four method 

categories — physical, empirical, mixed or other. The following are definitions provided to 

participants for selecting a method category: Empirical models are prediction methods that 

are trained on experimental data, such as QSPR, machine learning models, artificial neural 

networks etc. Physical models are prediction methods that rely on the physical principles of 

the system such as molecular mechanics or quantum mechanics based methods to predict 

molecular properties. Methods taking advantage of both kinds of approaches were asked to 

be reported as “Mixed”. The “other” category was for methods which do not match the 

previous ones. At the analysis stage, some categories were further refined, as discussed in 

Section 2.2.

The submission files also included fields for naming the method, listing the software 

utilized, and a free text method section for the detailed documentation of each method. Only 

one log P value for each molecule per submission and only full prediction sets were allowed. 

Incomplete submissions – such as for a subset of compounds – were not accepted. We 

highlighted various factors for participants to consider in their log P predictions. These 

included:

1. There is a significant partitioning of water into the octanol phase. The mole 

fraction of water in octanol was previously measured as 0.271±0.003 at 25°C 

[58].

2. The solutes can impact the distribution of water and octanol. Dimerization or 

oligomerization of solute molecules in one or more of the phases may also 

impact results [59].

3. log P measurements capture partition of neutral species which may consist of 

multiple tautomers with significant populations or the major tautomer may not be 

the one given in the input file.

4. Shifts in tautomeric state populations on transfer between phases are also 

possible.
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Research groups were allowed to participate with multiple submissions, which allowed them 

to submit prediction sets to compare multiple methods or to investigate the effect of varying 

parameters of a single method. All blind submissions were assigned a 5-digit alphanumeric 

submission ID, which will be used throughout this paper and also in the evaluation papers of 

participants. These abbreviations are defined in Table 3.

2.2 Evaluation approach

A variety of error metrics were considered when analyzing predictions submitted to the 

SAMPL6 log P Challenge. Summary statistics were calculated for each submission for 

method comparison, as well as error metrics of predictions of each method. Both summary 

statistics and individual error analysis of predictions were provided to participants before the 

virtual workshop. Details of the analysis and scripts are maintained on the SAMPL6 Github 

Repository (described in section 6).

There are six error metrics reported: the root-mean-squared error (RMSE), mean absolute 

error (MAE), mean (signed) error (ME), coefficient of determination (R2), linear regression 

slope (m), and Kendall’s Rank Correlation Coefficient (τ). In addition to calculating these 

performance metrics, 95% confidence intervals were computed for these values using a 

bootstrappingover-molecules procedure (with 10000 bootstrap samples) as described 

elsewhere in a previous SAMPL overview article [60]. Due to the small dynamic range of 

experimental log P values of the SAMPL6 set, it is more appropriate to use accuracy based 

performance metrics, such as RMSE and MAE, to evaluate methods than correlation-based 

statistics. This observation is also typically reflected in the confidence intervals on these 

metrics. Calculated errors statistics of all methods can be found in Tables S4 and S5.

Submissions were originally assigned to four method categories (physical, empirical, mixed, 

and other) by participants. However, when we evaluated the set of participating methods it 

became clear that it was going to be more informative to group them using the following 

categories: physical (MM), physical (QM), empirical, and mixed. Methods from the 

“other” group were reassigned to empirical or physical (QM) categories as appropriate. 

Methods submitted as Physical by participants included quantum mechanical (QM), 

molecular mechanics-based (MM) and, to a lesser extent, integral equation-based 

approaches (ECRISM). We subdivided these submissions into “physical (MM)” and 

“physical (QM)” categories. Integral equation-based approaches were also evaluated under 

the Physical (QM) category. The “mixed” category includes methods that physical and 

empirical approaches are used in combination. Table 3 indicates the final category 

assignments in the “Category” column.

We created a shortlist of consistently well-performing methods that were ranked in the top 

20 consistently according to two error and two correlation metrics: RMSE, MAE, R-

Squared, and Kendall’s Tau. These are shown in Table 4.

We included null and reference method prediction sets in the analysis to provide perspective 

for performance evaluations of blind predictions. Null models or null predictions employ a 

model which is not expected to be useful and can provide a simple point of comparison for 

more sophisticated methods, as ideally, such methods should improve on predictions from a 
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null model. We created a null prediction set (submission ID NULL0) by predicting a 

constant log P value for every compound, based on a plausible log P value for drug-like 

compounds. We also provide reference calculations using several physical (alchemical) and 

empirical approaches as a point of comparison. The analysis is presented with and without 

the inclusion of reference calculations in the SAMPL6 GitHub repository. All figures and 

statistics tables in this manuscript include reference calculations. As the reference 

calculations were not formal submissions, these were omitted from formal ranking in the 

challenge, but we present plots in this article which show them for easy comparison. These 

are labeled with submission IDs of the form REF## to allow easy recognition of non-blind 

reference calculations.

In addition to the comparison of methods we also evaluated the relative difficulty of 

predicting log P of each molecule in the set. For this purpose, we plotted prediction error 

distributions of each molecule considering all prediction methods. We also calculated MAE 

for each molecule’s overall predictions as well as for predictions from each category as a 

whole.

3 Methods for reference calculations

Here we highlight the null prediction method and reference methods. We have included 

several widely-used physical and empirical methods as reference calculations in the 

comparative evaluation of log P prediction methods, in addition to the blind submissions of 

the SAMPL6 log P Challenge. These reference calculations are not formally part of the 

challenge but are provided as comparison methods. They were collected after the blind 

challenge deadline when the experimental data was released to the public. For a more 

detailed description of the methods used in the reference calculations, please refer to Section 

12.1.

3.1 Physical Reference Calculations

Physical reference calculations were carried out using YANK [61], an alchemical free 

energy calculation toolkit [62, 63]. YANK implements Hamiltonian replica exchange 

molecular dynamics (H-REMD) simulations to sample multiple alchemical states and is able 

to explore a number of different alchemical intermediate functional forms using the 

OpenMM toolkit for molecular simulation [64–66].

The GAFF 1.81 [67] and SMIRNOFF (smirnoff99Frosst 1.0.7) [68] force fields were 

combined with three different water models. Water models are important for accuracy in 

modeling efforts in molecular modeling and simulation. The majority of modeling packages 

make use of rigid and fixed charge models due to their computational efficiency. To test how 

different water models can impact predictions, we combined three explicit water models 

TIP3P [69], TIP3P Force Balance (TIP3P-FB) [70] and the Optimal Point Charge (OPC) 

model [71] with the GAFF and SMIRNOFF force fields. The TIP3P and TIP3P-FB models 

are a part of the three-site water model class where each atom has partial atomic charges and 

a Lennard-Jones interaction site centered at the oxygen atom. The OPC model is a rigid 4-

site, 3-charge water model that has the same molecular geometry as TIP3P, but the negative 

charge on the oxygen atom is located on a massless virtual site at the HOH angle bisector. 
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This arrangement is meant to improve the water molecule’s electrostatic distribution. While 

TIP3P is one of the older and more common models used, OPC and TIP3P-FB are newer 

models that were parameterized to more accurately reproduce more of the physical 

properties of liquid bulk water.

Reference calculations also included wet and dry conditions for the octanol phase using the 

GAFF and SMIRNOFF force field with TIP3P water. The wet octanol phase was 27% water 

by mole fraction [58]. The methods used for physical reference calculations are summarized 

in Table 1.

Physical reference calculations (submission IDs: REF01-REF08) were done using a 

previously untested direct transfer free energy calculation protocol (DFE) which involved 

calculating the transfer free energy between water and octanol phases (explained in detail in 

Section 12.1.1), rather than a more typical protocol involving calculating a gas-to-solvent 

transfer free energy for each phase – an indirect solvation-based transfer free energy (IFE) 

protocol. In order to check for problems caused by this error, we included additional 

calculations performed by the more typical IFE protocol. Method details for the IFE 

protocol are presented in Section 12.1.2 and results are discussed in Section 4.2. However, 

only reference calculations performed with DFE protocol were included in overall 

evaluation of the SAMPL6 Challenge presented in Section 4.1, because only these spanned 

the full range of force fields and solvent models we sought to explore.

3.2 Empirical Reference Calculations

As empirical reference models, we used a number of commercial calculation programs, with 

the permission of the respective vendors, who agreed to have the results included in the 

SAMPL6 comparison. The programs are summarized in Table 2 and cover several of the 

different methodologies described in sections 1.2.2 and 12.1.3.

3.3 Our null prediction method

This submission set is designed as a null model which predicts the log of all molecules to be 

equal to the mean clogP of FDA approved oral new chemical entities (NCEs) between the 

years 1998 and 2017 based on the analysis of Micheal D. Shultz (2019) [72]. We show this 

null model with submission ID NULL0. The mean clogP of FDA approved oral NCEs 

approved between 1900–1997, 1998–2007, and 2008–2017 were reported 2.1, 2.4, and 2.9, 

respectively, using StarDrop clogP calculations (https://www.optibrium.com/). We 

calculated the mean of NCEs approved between 1998 – 2017, which is 2.66, to represent the 

average log P of contemporary drug-like molecules. We excluded the years 1900–1997 from 

this calculation as the early drugs tend to be much smaller and much more hydrophilic than 

the ones being developed at present.

4 Results and Discussion

4.1 Overview of challenge results

A large variety of methods were represented in the SAMPL6 log P Challenge. There were 

91 blind submissions collected from 27 participating groups in the log P challenge (Tables of 
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participants and the predictions they submitted are presented in SAMPL6 GitHub 

Repository and its archived copy in the Supporting Information.) This represented an 

increase in interest over the previous SAMPL challenges. In the SAMPL5 Cyclohexane-

Water log D Challenge, there were 76 submissions from 18 participating groups [2], so 

participation was even higher this iteration.

Out of blind submissions of the SAMPL6 log P Challenge, there were 31 in the physical 

(MM) category, 25 in the physical (QM) category, 18 in the empirical category, and 17 in the 

mixed method category (Table 3). We also provided additional reference calculations – five 

in the empirical category, and eight in the physical (MM) category.

The following sections present detailed performance evaluation of blind submissions and 

reference prediction methods. Performance statistics of all the methods can be found in S4. 

Methods are referred to by their submission ID’s which are provided in 3.

4.1.1 Performance statistics for method comparison—Many methods in the 

SAMPL6 Challenge achieved good predictive accuracy for octanol-water log P values. 

Figure 3 shows the performance comparison of methods based on accuracy with RMSE and 

MAE. 10 methods achieved an RMSE ≤ 0.5 log P units. These methods were QM-based, 

empirical, and mixed approaches (submission IDs: hm0n, gm0q5, 3vqbi, sq07q, j8nwc, 
xxh4i, hdpuj, dqxk4, vzgyt, ypmr0). Many of the methods had an RMSE ≤ 1.0 log P units. 

These 40 methods include 34 blind predictions, 5 reference calculations, and the null 

prediction method.

Correlation-based statistics methods only provide a rough comparison of methods of the 

SAMPL6 Challenge, given the small dynamic range of the experimental log P dataset. 

Figure 4 shows R2 and Kendall’s Tau values calculated for each method, sorted from high to 

low performance. However, the uncertainty of each correlation statistic is quite high, not 

allowing a true ranking based on correlation. Methods with R2 and Kendall’s Tau higher 

than 0.5 constitute around 50% of the methods and can be considered as the better half. 

However, the performance of individual methods is statistically indistinguishable. 

Nevertheless, it is worth noting that QM-based methods appeared marginally better at 

capturing the correlation and ranking of experimental log P values. These methods 

comprised the top four based on R2 (≥ 0.75; submission IDs: 2tzb0, rdsnw, hmz0n, mm0jf), 
and the top six based on Kendall’s Tau, (≥ 0.70; submission IDs: j8nwc, qyzjx, 2tzb0, rdsnw, 

mm0jf, and 6fyg5). However, due to the small dynamic range and the number of 

experimental log P values of the SAMPL6 set, correlation-based statistics are less 

informative than accuracy-based performance metrics such as RMSE and MAE.

4.1.2 Results from physical methods—One of the aims of the SAMPL6 log P 
Challenge was to assess the accuracy of physical approaches in order to potentially provide 

direction for improvements which could later impact accuracy in downstream applications 

like protein-ligand binding. Some MM-based methods used for log P predictions use the 

same technology applied to protein-ligand binding predictions, so improvements made to 

modeling of partition may in principle carry over. However, prediction of partition between 

two solvent phases is a far simpler test only capturing some aspects of affinity prediction – 
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specifically, small molecule and solvation modeling – in the absence of protein-ligand 

interactions and protonation state prediction problems.

Figure 5 shows a comparison of the performance of MM- and QM-based methods in terms 

of RMSE and Kendall’s Tau. Both in terms of accuracy and ranking ability, QM methods 

resulted in better results, on average. QM methods using implicit solvation models 

outperformed MM-based methods with explicit solvent methods that were expected to 

capture the heterogeneous structure of the wet octanol phase better. Only 3 MM-based 

methods and 8 QM-based methods achieved RMSE less than 1 log P unit. 5 of these QM-

based methods showed very high accuracy (RMSE ≤ 0.5 log P units). The three MM-based 

methods with the lowest RMSE were:

• Molecular-Dynamics-Expanded-Ensembles (nh6c0): This submission used an 

AMBER/OPLS-based force field with manually adjusted parameters (following 

rules from the participant’s article [86]), modified Toukan-Rahman water model 

with Nonzero Lennard-Jones parameters [84], and modified Expanded 

Ensembles (EEMD) method [87] for free energy estimations.

• Alchemical-CGenFF (ujsgv, 2mi5w, [83]): These two submissions used Multi-

Phase Boltzmann Weighting with the CHARMM Generalized Force Field 

(CGenFF) [88], and the TIP3P water model [69]. From the brief method 

descriptions submitted to the challenge we could not identify the difference 

between these prediction sets.

RMSE values for predictions made with MM-based methods ranged from 0.74 to 4.00 log P 
units, with the average of the better half being 1.44 log P units.

Submissions included diverse molecular simulation-based log P predictions made using 

alchemical approaches. These included Free Energy Perturbation (FEP) [89] and BAR 

estimation [90], Thermodynamic integration (TI) [91], and non-equilibrium switching (NES) 

[92, 93]. Predictions using YANK [61] Hamiltonian replica exchange molecular dynamics 

and MBAR [94] were provided as reference calculations.

A variety of combinations of force fields and water models were represented in the 

challenge. These included CGenFF with TIP3P or OPC3 [95] water models; OPLS-AA [96] 

with OPC3 and TIP4P [69] water models; GAFF [67] with TIP3P, TIP3P Force Balance 

[70], OPC [71], and OPC3 water models; GAFF2 [97] with the OPC3 water model; GAFF 

with Hirshfeld-I [98] and Minimal Basis Set Iterative Stockholder(MBIS) [99] partial 

charges and the TIP3P or SPCE water models [100]; the SMIRNOFF force field [68] with 

the TIP3P, TIP3P Force Balance, and OPC water models; and submissions using Drude 

[101] and ARROW [102] polarizable force fields.

Predictions that used polarizable force fields did not show an advantage over fixed-charged 

force fields in this challenge. RMSEs for polarizable force field submissions range from 

1.85 to 2.86 (submissions with the Drude Force Field were fyx45, pnc4j, and those with the 

ARROW Force Field were odex0, padym fcspk, and 6cm6a).
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Predictions using both dry and wet octanol phases were submitted to the log P challenge. 

When submissions from the same participants were compared, we find that including water 

in the octanol phase only slightly lowers the RMSE (0.05–0.10 log P units), as seen in 

Alchemical-CGenFF predictions (wet: ujshv, 2mi5w, ttzb5; dry: 3wvyh), YANK-GAFF-

TIP3P predictions (wet: REF02, dry: REF07), MD-LigParGen predictions with OPLS and 

TIP4P (wet: mwuua, dry: eufcy), and MD-OPLSAA predictions with TIP4P (wet: 623c0, 

dry: cp8kv). However this improvement in performance with wet octanol phase was not 

found to be a significant effect on overall prediction accuracy. Methodological differences 

and choice of force field have a greater impact on prediction accuracy than the composition 

of the octanol phase.

Refer to Table S1 for a summary of force fields and water models used in MM-based 

submissions. For additional analysis, we refer the interested reader to the work of Piero 

Procacci and Guido Guarnieri, who provide a detailed comparison of MM-based alchemical 

equilibrium and non-equilibrium approaches in SAMPL6 Challenge in their paper [73]. 

Specifically, in the section “Overview on MD-based SAMPL6 submissions” of their paper, 

they provide comparisons subdividing submissions based force field (for CGenFF, 

GAFF1/2, and OPLS-AA).

4.1.3 A shortlist of consistently well-performing methods—Although there was 

not any single method that performed significantly better than others in the log P challenge, 

we identified a group of consistently well performing methods. There were many methods 

with good performance when judged based on RMSE, but not many methods consistently 

showed up at the top according to all metrics. When individual error metrics are considered, 

many submissions were not different from one another in a statistically significant way, and 

ranking typically depends on the metric chosen due overlapping confidence intervals. 

Instead, we identified several consistently well performing methods by looking at several 

different metrics – two assessing accuracy (RMSE and MAE) and two assessing correlation 

(Kendall’s Tau and R2). We determined those methods which are in the top 20 by each of 

these metrics. This resulted in a list of eight methods which are consistently well 

performing. The shortlist of consistently well-performing methods are presented in Table 4.

The resulting eight consistently well-performing methods were QM-based physical models 

and empirical methods. These eight methods were fairly diverse. Traditional QM-based 

physical methods included log P predictions with COSMO-RS method as implemented in 

COSMOtherm v19 at the BP//TZVPD//FINE Single Point level (hmz0n, [16–18]) and the 

SMD solvation model with the M06 density functional family (dqxk4, [79]). Additionally, 

two other top QM-based methods seen in this shortlist used EC-RISM theory with wet or 

dry octanol (j8nwc and qyzjx) [22]. Several empirical submissions also were among these 

well-performing methods – specifically, the Global XGBoost-Based QSPR LogP Predictor 

(gmoq5), the RayLogP-II (hdpuj) approach, and rfs-logp (vzgyt). Among reference 

calculations, SlogP calculated by MOE software (REF13) was the only method that was 

consistently well performing.

Figure 6 compares log P predictions with experimental values for these 8 well-performing 

methods, as well as one additional method which has an average level of performance. This 
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representative method (rdsnw, [22]) is the method with the highest RMSE below the median 

of all methods (including reference methods).

4.1.4 Difficult chemical properties for log P predictions—In addition to 

comparing method performance, we analyzed the prediction errors for each compound in the 

challenge set to assess whether particular compounds or chemistries are especially 

challenging (Figure 7). For this analysis, MAE is a more appropriate statistical value for 

following global trends, as its value is less affected by outliers than is RMSE.

Performance on individual molecules shows relatively uniform MAE across the challenge 

set (Figure 7A). Predictions of SM14 and SM16 were slightly more accurate than the rest of 

the molecules when averaged across all methods. Prediction accuracy on each molecule, 

however, is highly variable depending on method category (Figure 7B). Predictions of 

SM08, SM13, SM09, and SM12 were significantly less accurate with physical (MM) 

methods than the other method categories by 2 log P units in terms of MAE over all methods 

in each category. These molecules were not challenging for QM-based methods. 

Discrepancies in predictions of SM08 and SM13 are discussed in Section 4.2. For QM-based 

methods, SM04 and SM02 were most challenging. The largest MAE for empirical methods 

was observed for SM11 and SM15.

Figure 7C shows the error distribution for each SAMPL6 molecule over all prediction 

methods. It is interesting to note that most distributions are peaked near an error of zero, 

suggesting that perhaps a consensus model might outperform most individual models. 

However, SM15 is more significantly shifted away from zero than any other compound (ME 

calculated accross all molecules is −0.88±1.49 for SM15). SM08 had the most spread in log 

P prediction error.

This challenge focused on log P of neutral species, rather than log D as studied in SAMPL5, 

which meant that we do not see the same trends where performance is significantly worse 

for compounds with multiple protonation states/tautomers or where pKa values are 

uncertain. However, in principle, tautomerization can still influence log P values. Multiple 

neutral tautomers can be present at significant populations in either solvent phase, or the 

major tautomer can be different in each solvent phase. However, this was not expected to be 

the case for any of the 11 compounds in this SAMPL6 Challenge. We do not have 

experimental data on the identity or ratio of tautomers, but tautomers other than those 

depicted in Figure 2 would be much higher in energy according to QM predictions [22] and, 

thus, very unlikely to play a significant role. Still, for most log P prediction methods, it was 

at least necessary for participants to select the major neutral tautomer. We do not observe 

statistically worse error for compounds with potential tautomer uncertainties here, 

suggesting it was not a major factor in overall accuracy, some participants did chose to run 

calculations on tautomers that were not provided in the challenge input files (Figure 11 and 

Table 5), as we discuss in Section 4.2.

4.1.5 Comparison to the past SAMPL challenges—Overall, SAMPL6 log P 
predictions were more accurate than log D predictions in the SAMPL5 Cyclohexane-Water 

log D Challenge (Figure 3). In the log D challenge, only five submissions had an RMSE ≤ 
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2.5 log units, with the best having an RMSE of 2.1 log P units. A rough estimate of expected 

error for log P and log D is 1.54 log units. This comes from taking the mean RMSE of the 

top half of submissions in SAMPL4 Hydration Free Energy Prediction Challenge (1.5 kcal/

mol) [60] and assuming the error in each phase is independent and equal to this value, 

yieding an expected error of 1.54 log P units [2]. Here, 64 log P challenge methods 

performed better than this threshold (58 blind predictions, 5 reference calculations, and the 

null prediction). However, only 10 of them were MM-based methods, with the lowest RMSE 

of 0.74 observed for method named Molecular-Dynamics-Expanded-Ensembles (nh6c0).

Challenge construction and experimental data availability are factors that contributed to the 

higher prediction accuracy observed in SAMPL6 compared to prior years. The log P 
challenge benefited from having a well-defined protonation state, especially for physical 

methods. Empirical methods benefited from the wealth of octanol-water training data. 

Accordingly, empirical methods were among the best performers here. But also, the 

chemical diversity represented by 11 compounds of the SAMPL6 log P challenge is very 

restricted and lower than the 53 small molecules in the SAMPL5 log D Challenge set. This 

was somewhat consistent with our expectations (discussed in Section 1.2.3)—that empirical, 

QM (with trained implicit solvation models), and mixed methods would outperform MM 

methods given their more extensive use of abundant octanol-water data in training (Figure 

3).

4.2 Lessons learned from physical reference calculations

4.2.1 Comparison of reference calculations did not indicate a single force 
field or water model with dramatically better performance—As in previous 

SAMPL challenges, we conducted a number of reference calculations with established 

methods to provide a point of comparison. These included calculations with alchemical 

physical methods. Particularly, to see how the choice of water model affects accuracy we 

included three explicit solvent water models – TIP3P, TIP3P-FB and the OPC model – with 

the GAFF and SMIRNOFF force fields in our physical reference calculations. Deviations 

from experiment were significant (RMSE values ranged from 2.3 [1.1, 3.5] to 4.0 [2.7, 5.3] 

log units) across all the conditions used in the physical reference predictions (Figure 3A). In 

general, all the water models tend to overestimate the log P, especially for the carboxylic 

acid in the challenge set, SM08, though our calculations on this molecule had some specific 

difficulties we discuss further below. Relative to the TIP3P-FB and OPC water models, 

predictions which used TIP3P showed improvement in some of the error metrics, such as 

lower deviation from experiment with an RMSE range of 2.3 [1.1, 3.5] to 2.34 [1.0, 3.7] log 

units. The OPC and TIP3P-FB containing combinations had a higher RMSE range of 3.2 

[2.0, 4.5] to 4.0 [2.7, 5.3] log units.

Physical reference calculations also included wet and dry conditions for the octanol phase 

using the GAFF and SMIRNOFF force field with TIP3P water. The wet octanol phase was 

composed of 27% water and dry octanol was modeled as pure octanol (0% water content). 

For reference calculations with the TIP3P water model the GAFF, and SMIRNOFF force 

fields using wet or dry octanol phases resulted in statistically indistinguishable performance. 

With GAFF, the dry octanol (REF07) RMSE was 2.4 [1.0, 3.7]. The wet octanol (REF02) 
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RMSE was 2.3 [1.1, 3.5]. With SMIRNOFF, the dry octanol RMSE was 2.4 [1.0, 3.7], with 

a wet octanol (REF05) RMSE of 2.3 [1.2, 3.5] (Table S4 and S5).

While water model and force 1eld may have signi1cantly impacted differences in 

performance across methods in some cases in this challenge, we have very few cases – aside 

from these reference calculations – where submitted protocols differed only by force 1eld or 

water model, making it difficult to know the origin of performance differences for certain.

4.2.2 Different simulation protocols lead to different results between 
“equivalent” methods that use the same force field and water model—Several 

participants submitted predictions from physical methods which are equivalent to those used 

in our reference calculations and use the same force field and water model, which in 

principle ought to give identical results given adequate simulation time. There were three 

submissions which used the GAFF force field, TIP3P water model, and wet octanol phase: 

6nmtt (MD-AMBER-wetoct), v2q0t (InterX_GAFF_ WET_OCTANOL), and REF02 
(YANK-GAFF-TIP3P-dry-oct). As can be seen in Figure 3A, v2q0t (InterX_GAFF_ 

WET_OCTANOL) showed the best accuracy with an RMSE of 1.31 [0.94, 1.65]. 6nmtt 
(MD-AMBER-wetoct) and REF02 (YANK-GAFF-TIP3P-dry-oct) had higher RMSE values 

of 1.87 [1.33, 2.45] and 2.29 [1.07, 3.53], respectively. Two methods that used GAFF force 

field, TIP3P water model and wet octanol phase are sqosi (MD-AMBER-dryoct) and REF07 
(YANK-GAFF-TIP3P-dry-oct). These two also have an RMSE difference of 0.7 log P units. 

Although, in terms of overall accuracy there are differences, Figure 8 shows that in terms of 

individual predictions, submissions using the same force field and water model largely agree 

for most compounds.

Some discrepancies are observed for molecules SM13 and SM07, but are largest for SM08. 

For SM13 and SM07, method v2q0t (InterX_GAFF_WET_OCTANOL) performs over 1 log 

P unit better than 6nmtt (MD-AMBER-wetoct). The rest of the predictions for these two 

methods differ by no more than about 1 log P unit, with the majority of the molecules 

differing by about 0.5 log P units or less from each other. Comparing 6nmtt (MD-AMBER-

wetoct) vs REF02 (YANK-GAFF-TIP3P-wet-oct) (Figure 8A), there is a substantial 

difference in the predicted values for molecules SM08 (4.6 log unit difference), SM13 (1.4 

log unit difference), and SM07 (1.2 log unit difference). Method v2q0t (InterX_GAFF_ 

WET_OCTANOL) and 6nmtt (MD-AMBER-wetoct) perform about 5 log P units better 

thanREF02 (YANK-GAFF-TIP3P-wet-oct) for molecule SM08. Besides SM08, predictions 

from v2q0t (InterX_GAFF_WET_OCTANOL) and REF02 (YANK-GAFF-TIP3P-wet-oct) 

differ by 0.5 log P units or less from each other. In dry octanol, REF07 (YANK-GAFF-

TIP3P-dry-oct) performs about 4 log P units worse than sqosi (MD-AMBER-dryoct) for 

SM08 (Figure 8B).

Submissions 6nmtt (MD-AMBER-wetoct), sqosi (MD-AMBER-dryoct) and v2q0t 
(InterX_GAFF_WET_OCTANOL) used GAFF version 1.4 and the reference calculations 

used version 1.81, though GAFF differences are not expected to play a signi1cant role here 

(i.e. only the valence parameters differ).
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4.2.3 Selected small molecule state differences may have caused divergence 
between otherwise equivalent methods—In several of these approaches, users 

selected their own starting conformation, protonation state and tautomer, rather than those 

provided in the SAMPL6 challenge, so the differences here could possibly be attributed to 

differences in tautomer or resonance structures. Submissions 6nmtt (MD-AMBER-wetoct) 

and sqosi (MD-AMBER-dryoct) used different tautomers for SM08 and different resonance 

structures for SM11 and SM14 (microstates SM08_micro010, SM11_micro005, 

SM14_micro001 from the previous SAMPL6 pKa Challenge). We will discuss possible 

differences due to tautomer choice below in Section 4.2.6. The majority of the calculated log 

P values in 6nmtt (MD-AMBER-wetoct), sqosi (MD-AMBER-dryoct), v2q0t 
(InterX_GAFF_WET_OCTANOL), REF02 (YANK-GAFF-TIP3P-wet-oct), and REF07 
(YANK-GAFF-TIP3P-dry-oct) show the molecules having a greater preference for octanol 

over water than the experimental measurements (Figure 8A, B). Methods 6nmtt (MD-

AMBER-wet-oct) and REF02 (YANK-GAFF-TIP3P-wet-oct) overestimate log P more than 

v2q0t (InterX_GAFF_WET_OCTANOL) (Figure 8A). Method REF07 (YANK-GAFF-

TIP3P-dry-oct) overestimates log P slightly more than sqosi (MD-AMBER-dryoct) (Figure 

8B).

Three equivalent wet octanol methods and 2 equivalent dry octanol methods gave dissimilar 

results, and speci1c molecules were identi1ed that show the major differences in predicted 

values (Figure 8C–F). GAFF and the TIP3P water model were used in all of these cases, but 

different simulation setups and codes were used, as well as different equilibration protocols 

and production methods. Submissions 6nmtt (MD-AMBER-wetoct) and sqosi (MD-

AMBER-dryoct), which come from the same group, used 10 ps NPT, 15 ns additional 

equilibration with MD, and Thermodynamic integration for production in their setup. 

Submission v2q0t (InterX_GAFF_WET_OCTANOL) used 200 ns of molecular dynamics to 

pre-equilibrate octanol systems, 10 ns of Temperature replica exchange in equilibration, and 

Isothermal-isobaric ensemble based molecular dynamics simulations in production. The 

reference calculations (REF02 and REF07) were equilibrated for about 500 ns and used 

Hamiltonian replica exchange in production. Reference calculations performed with the IFE 

protocol and MD-AMBER-dryoct (sqosi) method used shorter equilibration times than the 

DFE protocol (REF07).

4.2.4 DFE and IFE protocols led to indistinguishable performance, except for 
SM08 and SM02—The direct transfer free energy (DFE) protocol was used for the 

physical reference calculations (REF01-REF08). Because the DFE protocol implemented in 

YANK [61] (which was also used in our reference calculations (REF01-REF08)) was 

relatively untested (see Section 12.1.1 for more details), we wanted to ensure it had not 

dramatically affected performance, so we compared it to the indirect solvation-based transfer 

free energy protocol (IFE) [103] protocol. The DFE protocol directly computed the transfer 

free energy between solvents without any gas phase calculation, whereas the IFE protocol 

(used in the blind submissions and some additional reference calculations labeled IFE) 

computed gas-to-solution solvation free energies in water and octanol separately and then 

subtracted to obtain the transfer free energy. The IFE protocol calculates the transfer free 

energy as the difference between the solvation free energy of the solute going from the gas 
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to the octanol phase, and the hydration free energy going from the gas to the water phase. 

These protocols ought to yield equivalent results in the limit of sufficient sampling, but may 

have different convergence behavior.

Figure 9A shows calculations from our two different reference protocols using the DFE and 

IFE methods. We find that the two protocols yield similar results, with the exception of two 

molecules. Molecule SM08 is not substantially overestimated using the IFE protocol, where 

it is with the DFE protocol, and SM02 is largely overestimated by IFE, but not DFE (Figure 

9A). The DFE (REF07) and IFE protocol both tend to overestimate the molecules’ 

preference for octanol over water than in experiment, with the DFE protocol overestimating 

it slightly more. Figure 9D shows comparison of predicted log P values of the same 

tautomers by the DFE (REF07) and IFE protocols. The DFE and IFE protocols are almost 

within statistical error of one another, with the largest discrepancies coming from SM02 and 

SM08. The DFE and IFE protocols are in better agreement for some tautomers of SM08 

more than others. They agree better on the predicted values for SM08_micro008 and 

SM08_micro010 than for SM08_micro011.

In the SAMPL6 blind submissions, there was a third putatively equivalent method to our 

reference predictions with the DFE protocol (REF07) and IFE protocol: sqosi (MD-

AMBER-dryoct). It is identical in chosen force 1eld, water model, and composition of 

octanol phase, however, different tautomers and resonance states for some molecules were 

used. All three predictions used free energy calculations with GAFF, TIP3P water, and a dry 

octanol phase. Additionally, sqosi (MD-AMBER-dryoct) also used the more traditional 

indirect solvation free energy protocol. We chose to investigate the differences in these 

equivalent approaches approaches by comparing predictions using matching tautomers and 

resonance structures (Figure 9). Figure 9B shows comparison of these three methods using 

predictions made with DFE and IFE protocols using identical tautomer and resonance input 

states as sqosi (MD-AMBER-dryoct): SM08_micro010, SM11_micro005, and 

SM14_micro001 (structures can be found in Figure 11. Except SM02, there is general 

agreement between these predictions. Figure 9C, other than the SM08_micro010 tautomer, 

predictions of DFE (REF07) and sqosi (MD-AMBER-dryoct) largely agree. Figure 9E 

highlights SM02 and SM08_micro010 predictions as the major differences between our 

predictions with IFE protocol and sqosi (MD-AMBER-dryoct).

Only results from the DFE protocol were assigned submission numbers (of the form REF##) 

and presented in the overall method analysis in Section 4.1. More details of the solvation and 

transfer free energy protocol can be found in section 12.1.

4.2.5 SM08 and SM13 were the most challenging for physical reference 
calculations—For the physical reference calculations category, some of the challenge 

molecules were harder to predict than others (Figure 10). Overall, the chemical diversity in 

the SAMPL6 Challenge dataset was limited. This set has 6 molecules with 4-amino 

quinazoline groups and 2 molecules with a benzimidazole group. The experimental values 

have a narrow dynamic range from 1.95 to 4.09 and the number of heavy atoms ranges from 

16 to 22 (with the average being 19), and the number of rotatable bonds ranges from 1 to 4 

(with most having 3 rotatable bonds). SM13 had the highest number of rotatable bonds and 
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number of heavy atoms. This molecule was overestimated in the reference calculations. As 

noted earlier, molecule SM08, a carboxylic acid, was predicted poorly across all reference 

calculations. The origin of problems with molecule SM08 are discussed below in Section 

4.2.6.

SM08 is a carboxylic acid and can potentially form an internal hydrogen bond. This 

molecule was greatly overestimated in the physical reference calculations. When this one 

molecule in the set is omitted from the analysis, log p prediction accuracy improves. For 

example, the average RMSE and R2 values across all of the physical reference calculations 

when the carboxylic acid is included are 2.9 (2.3–4.0 RMSE range) and 0.2 (0.1–0.2 R2 

range), respectively. Excluding this molecule gives an average RMSE of 2.1 (1.3–3,3 RMSE 

range) and R2 of 0.57 (0.3–0.7 R2 range), which is still considerably worse than best-

performing methods.

4.2.6 Choice of tautomer, resonance state, and assignment of partial 
charges impact log P predictions appreciably—Some physical submissions selected 

alternate tautomers or resonance structures for some compounds. Figure 11 shows three 

tautomers of SM08, and two alternative resonance structures of SM11 and SM14, all of 

which were considered by some participants. The leftmost structure of the alternate structure 

group of each molecule depicts the structure provided to participants.

Because some participants chose alternate structures, we explored how much variation in the 

selected input structures impacted the results. Particularly, for molecules SM14, SM11 and 

SM08, both AMBER MD protocols (submissions sqosi (MD670 AMBER-dryoct) and 6nmtt 
(MD-AMBER-wetoct)) used the SM14_micro001 microstate for SM14, SM11_micro005 

for SM11 and SM08_micro010 for SM08, rather than the input structures provided as 

SMILES in the SAMPL6 log P Challenge instructions (See Figure 11 for depictions). The 

reference calculations and the submission from InterX (v2q0t 
(InterX_GAFF_WET_OCTANOL)) used the exact input structures provided as input 

SMILES for the challenge. Below, we refer to these several submissions as the MD-AMBER 

and InterX submissions.

To assess whether the choice of tautomer or resonance structure was important, we 

performed direct transfer free energy (DFE) and indirect solvation-based transfer free energy 

(IFE) [103] calculations for these alternate structures (please refer to section 4.2.4 for an 

explanation of the DFE and IFE methods). We—and the other participants utilizing these 

MM-based methods—assumed that the tautomers and resonance structures are 1xed on 

transfer between phases and we did not do any assessments of how such populations might 

shift between octanol and water. Table 5 and Figure 9B compare log P calculations starting 

from the same input structures across the three methods: sqosi (MD-AMBER-dryoct), 

REF07 (YANK-GAFF-TIP3P-dry-oct) which used the DFE protocol, and an additional set 

of calculations with the IFE protocol (using YANK, the GAFF force 1eld, and TIP3P water 

just like REF07). The DFE protocol prediction set presented in Figure 9A is the same as 

REF07 (YANK-GAFF-TIP3P-dry-oct), but includes extra tautomers for SM08, and extra 

resonance structures for SM11 and SM14.
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From our comparison of our reference calculations and those with the InterX and MD-

AMBER, we find that the choice of input tautomer has a significant effect on log P 
predictions. Particularly, within the traditional IFE method, our results indicate up to 2.7 log 

units variation between log P values for different tautomers of SM08 (between 

SM08_micro011, SM08_micro08 and SM08_micro10) (Table 5). Our exploration of these 

issues was prompted by the fact that the MD-AMBER protocols had utilized different 

tautomers than those initially employed in our physical reference calculations.

We also find that the choice of resonance structure affects calculated values, though less 

strongly so than the choice of tautomer. Within the IFE method we find 1.3 log units of 

variation between log P values calculated with different resonance structures of SM11 

(SM11 and SM11_micro005) and 0.6 log units of variation between resonance structures of 

SM14 (SM14 and SM14_micro001) (Table 5).

We also find that the partial charge assignment procedure can also dramatically impact log P 
values for carboxylic acids (Table S7). Particularly, our calculations with the DFE and IFE 

protocols employed different partial charge assignment procedures as an unintentional 

feature of the protocol difference, as we detail below, and this impacted calculated log P 
values by up to 6.7 log units for SM08 (specifically SM08_micro011, the carboxylic acid in 

the set) compared to experiment. Particularly, the DFE protocol utilized antechamber for 

assigning AM1-BCC charges, whereas the IFE protocol used OpenEye’s quacpac. 

Antechamber utilizes the provided conformer (in this case, the anti conformation) for each 

molecule, whereas quacpac’s procedure computes charges for carboxylic acids in the syn 
conformation because this has been viewed as the relevant conformation, and because of 

concerns that the anti conformation might result in unusually large and inappropriate 

charges. Thus, because of this difference, the DFE and IFE protocols used dramatically 

different partial charges for these molecules (Table S7). Our results for SM08_micro011 

(likely the dominant state) indicate that indeed, the conformer used for charging plays a 

major role in assigned charges and the resulting log P values (Table S7, Figure S). We find 

our DFE protocol, which used the anti conformation for charging, overestimates the log P by 

about 6.7 log units, whereas the IFE protocol which used the syn conformation only 

overestimates it by about 0.3 log units. With the IFE method, we calculated a log P of 2.8 ± 

0.2 for SM08, whereas with DFE method we obtained a value of 9.8 ± 0.1 (Table 5).

4.3 Lessons learned from empirical reference calculations

Empirical methods are fast and can be applied to large virtual libraries (100 000 cmps/min/

CPU). This is in contrast to physical methods, which are often far more computationally 

demanding. Most of the empirical methods are among the top performers, with the exception 

of a few approaches that use descriptors and/or pre-factors that do not yield accurate log P 
predictions. Most empirical methods obtain RMSE and MAE values below 1 log P unit. The 

best empirical method achieved RMSE and MAE below 0.5 (gmoq5, Global XGBoost-

Based QSPR LogP Predictor). In all these cases, using a relatively large training set (>1000–

10000 compounds) seems to be key.

The exact choice of method or descriptors seems to be less critical. Predictions based on 

atom or group contributions perform as well as those using either a small set of EHT-derived 
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descriptors or a large set of diverse descriptors, sometimes additionally including fingerprint 

descriptors. A possible explanation could be that log P is, to first order, primarily an additive 

property so that empirical methods can do well since a wealth of octanol-water data is 

available for training. This is also reflected in the success of the simple methods summing 

up atom contributions. This approach may become problematic, however, when a functional 

group is present that was underrepresented or missing in the training set. In such cases, 

higher are expected.

As is true for the physical methods, empirical methods depend on the tautomeric state of the 

compound. Here we have observed that clogP is particularly sensitive. clogP shifts of more 

than one log unit upon change of the tautomer are not uncommon. h_logP is much less 

sensitive to tautomers with shifts usually below 0.5 log P units. This is also true for molecule 

SM08, for which different tautomeric forms are possible (as seen in Figure 11). For the 

pyridone form of SM08 (SM08_micro011), clogP predicts a log P of 2.17, whereas the 

hydroxy-pyridine form (SM08_micro010) yields a log P of 3.63. For h_logP, the respective 

values are 3.09 and 3.06.

Despite the small training sets of the MOE models, good prediction for kinase inhibitor 

fragments and the extra compounds was achieved. This is possibly because the training set 

for this model was biased towards drug-like compounds, with substantial similarity to the 

SAMPL6 Challenge set.

Other studies have found that some empirical methods tend to overestimate log P when 

molecular weight increases [104, 105]. In this challenge, this was less of an issue as 

molecular size remained relatively constant.

According to in-house experience at Boehringer-Ingelheim, different experimental log 

measurement methods produce values that are correlated with one another with an R2 value 

of around 0.7 (T. Fox, P. Sieger, unpublished results), indicating that experimental methods 

themselves can disagree with one another significantly. This is especially true when it comes 

to more approximate methods of estimating log P experimentally, such as HPLC-based 

methods [42, 106]. A dataset composed of 400 compounds from Boehringer-Ingelheim 

measured both with GLpKa and HPLC assays covering a range from 0–7 log P units had R2 

of 0.56, though in some cases these methods may have higher correlations with 

potentiometric approaches [107]. Thus, if an empirical model is trained on log P data from 

one particular method, testing it on data collected via another method may not yield 

performance as high as expected.

Here, all of the analyzed empirical reference methods achieved absolute error <2.0, and 

often <1.5 calculated for each molecule in the SAMPL6 log P Challenge set. This is a sign 

of more consistent accuracy of the predictions across different molecules compared to 

physical methods. However, it is difficult to draw general conclusions given the small size of 

the data set, and many hypotheses being based on only one example.
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4.4 Performance of reference methods on additional molecules

To broaden the analysis with a larger set with more chemical diversity and larger dynamic 

range of log P values, an extra set of log P values collected using the same method as the 

SAMPL6 dataset. This set is composed of substituted phenols, substituted quinolines, 

barbiturate derivatives and other pharmaceutically relevant compounds [108].

This set of molecules is larger and more diverse than the SAMPL6 challenge set, spanning a 

range of 4.5 log units compared to the challenge set which had a range of 2.1 log units. For 

this set, the number of rotatable bonds ranges from 0 to 12, with an average of 3 per 

compound. The number of heavy atoms ranges from 7 to 27, and the average per compound 

is 14. Most of the worst-performing compounds for the physical reference calculations had a 

higher number of heavy atoms – celiprolol (27), acebutolol (24) and pericyazine (26). 

Celiprolol and acebutolol both have the highest number of rotatable bonds in the set, 12 and 

11 respectively. Chlorpromazine, pericyazine, and sulfamethazine all contain sulfur. Sulfur 

can in some cases pose particular challenges for force fields, especially hypervalent sulfur 

[109], which may account for the poor performance of pericyazine, chlorpromazine, and 

sulfamethazine. Pericyazine, one of the worst performing compounds, is also the only 

molecule in the set that has a nitrile.

In the physical reference calculations, the mean absolute errors are below 1 log P unit for 

dry octanol conditions and below 1 log P units for wet octanol conditions (Table 6). The 

calculated log P values had an average RMSE of 1.4 (RMSE range of 1.3 [0.9, 1.6] to 1.5 

[1.0, 2.0]), and an average R2 of 0.5 (with a correlation range of 0.5 [0.1, 0.8] to 0.6 [0.3, 

0.8]). Physical methods are on par with empirical ones for the smaller, less flexible 

compounds, but in general are worse, especially for compounds with long flexible 

hydrophilic tails. The exception is chlorpromazine, but the smaller error seen in this 

molecule might be due to an error compensation caused by the presence of the sulfur atom 

since force fields have challenges with sulfur-containing compounds. [109].

Empirical methods are more stable in the sense that there are no gross outliers found in the 

extended set. For the empirical reference calculations, the absolute errors for the 27 extra 

compounds are all below 1 log P unit. For clogP, most compounds have errors below 0.4 log 

P unit, with only (±)-propanolol a bit higher. Compound 3,5-dichlorophenol and 3,4-

dichlorophenol consistently had a slightly higher error; there is no obvious correlation 

between method performance and size or complexity of the compounds. Figure 13A shows 

that 3,5-dichlorophenol, 3,4-dichlorophenol, and (±)-propranolol were the most challenging 

compounds for empirical reference methods. The MAE calculated for these three molecules 

as the average of five methods (EXT09, EXT10, EXT11, EXT12, EXT13) was higher than 

0.5 log P units (Table 6). RMSE overall compounds between 0.23 for clogP and 0.59 for 

MOE_SlogP, significantly below the best physical model. This is mirrored in the Kendall tau 

values, where the best empirical method (clogP) achieves 0.85, whereas the best physical 

methods are comparable to the worst empirical method with a value of 0.55.

When prediction performance of empirical prediction methods for this dataset and for the 

SAMPL6 Challenge set are compared, we observe better prediction accuracy for this set, 

with an RMSE range of 0.2 [0.2, 0.3] to 0.6 [0.5,0.7] for the extra molecules and 0.5 [0.2, 
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0.8] to 0.8 [0.5, 1.1] for the challenge molecules. The average R2 was 0.6 (with a correlation 

range of 0.38 [0.01, 0.82] to 0.7 [0.3, 0.9]). This may be due to SAMPL6 compounds being 

more challenging, or it may be that these extra molecules appear in the training sets used in 

developing empirical methods.

4.5 Take-away lessons from the SAMPL6 Challenge

Empirical and QM-based prediction methods represented in SAMPL6 Challenge in general 

performed better than MM-based methods. Ten empirical and QM-based methods achieved 

an RMSE < 0.5 log P units. The lowest RMSE observed for MM-based physical methods 

was 0.74 and the average RMSE of the better half of MM-based methods was 1.44 log P 
units. However, the RMSE of the best two MM-based methods was similar to the null 

model, which simply guessed that all compounds had a constant, typical log P value.

For MM approaches, prediction accuracy varied based on methodological choices such as 

simulation method, equilibration protocol, free energy estimation method, force field, and 

water model. Only a small number of MM-based physical models achieved an accuracy 

similar to the null model, which had an RMSE of 0.8. Some MM methods outperformed the 

null model, but such performance was variable across approaches and not clearly linked to a 

single choice of force field, water model, etc. Polarizable force fields also did not provide an 

advantage for log P predictions, possibly due to solute simplicity and the absence of formal 

charge, or because other sources of error dominated.

Analysis of the MM-based reference calculations highlighted equilibration and charging 

protocols, sampling challenges, identification of the dominant neutral tautomer, and 

selection of input resonance states as confounding factors. Comparison of equivalent 

calculations from independent participants (identical methods such as free energy 

calculations using GAFF and TIP3P water with different setups and code) showed 

significant systematic deviations between predicted values for some compounds. The 

comparison of identical methods also showed that the tautomer and resonance state choice 

for some molecules resulted in discrepancies in calculated log P values. In one case, 

conformation selected for a carboxylic acid before charging was important. We have also 

noticed differences in in equilibration protocols, which could be particularly important for 

the octanol phase, though the present challenge does not conclusively demonstrate that 

differences in equilibration made a significant difference.

Fast empirical methods showed greater consistency of prediction accuracy across test 

molecules compared to physical methods. Most of the empirical methods were among the 

better-performing methods. The size of the training sets seems to be more important for 

accuracy than the exact methods and descriptors used in each model. Although not observed 

in the SAMPL6 Challenge set, empirical methods may experience problems if a functional 

group is underrepresented in training sets. Just like the physical methods, the choice of 

tautomer makes a difference. For example, shifts greater than 1 log unit in the calculated log 

P of different tautomers are common.

Performance in the SAMPL6 log P challenge was generally better than in the SAMPL5 log 

D Challenge. The change of partition solvent from cyclohexane to octanol, absence of 
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protonation state effects, and smaller chemical diversity represented in the challenge are 

likely reasons. In the SAMPL5 log D Challenge, only five submissions had an RMSE below 

2.5 log units, while here, 10 methods achieved an RMSE ≤ 0.5 log P units and many of the 

submissions had an RMSE ≤ 1.0 log P units. The design of the SAMPL6 log P Challenge 

removed some of the factors confounding accuracy in the earlier log D challenge, namely 

pKa prediction and cyclohexane (a challenging solvent for empirical methods).

Compared to expected accuracy for partition coefficients based on SAMPL4 Challenge 

performance, many QM-based methods were better while only a small number of MM-

based methods achieved slightly better results. In SAMPL4, the top-performing hydration 

free energy predictions had an error of about 1.5 kcal/mol, which would yield an expected 

error here (assuming independent errors/no error cancellation) of about 1.54 log units [2], if 

log P values were estimated from a difference in solvation free energies. Many physical 

methods achieved roughly this accuracy or slightly better.

Partition coefficient predictions can also serve, for physical calculations, as a model system 

that reflects how well solvation effects can be captured by the same techniques developed 

for protein-ligand binding predictions – where solvation also plays a role in calculations. 

Relative binding free energy calculations tend to achieve errors, in the best-case scenario, in 

the 1–2 kcal/mol range [110], or about 1.03–2.06 log units if similar accuracy were achieved 

here for solvation in each phase (with independent errors). Many methods did better than 2 

log P units of error in this challenge, which is in agreement with the expectation that 

partition coefficients present an easier model system compared to protein-ligand binding 

affinities.

Performance of empirical methods far surpassed these thresholds taking advantage of the 

available octanol-water experimental data, however, these empirical techniques are 

specifically oriented towards predicting partitioning and cannot be applied to the binding 

problem.

4.6 Suggestions for the design of future challenges

In the SAMPL6 Challenge, the log P focus proved helpful to allow a focus on modeling of 

solvation effects without the complexities of modeling different protonation states present in 

a log D challenge. Challenges which focus on specific aspects of modeling help isolate 

methodological problems, making challenges like log P and log D modeling particularly 

helpful. We believe the largest benefits to the field will be achieved from iterated challenges, 

as seen from the progress achieved in predicting hydration free energies over multiple 

SAMPL challenges [60].

As MM-based physical methods struggled with octanol-water log P predictions in SAMPL6, 

we recommend additional SAMPL iterations focused on log P with larger datasets and more 

chemical diversity to facilitate progress. The conclusions of SAMPL6 pKa and log P 
Challenges indicate that, if this had been posed as a log D challenge rather than a log P 
challenge, larger pKa prediction errors would have masked underlying issues in predicting 

equilibrium partitioning of neutral solutes between solvent phases. The fact that performance 
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for physical methods was still relatively poor illustrates the potential benefit of future log P 
challenges.

For near-term challenges, we would like to keep the level of difficulty reasonable by keeping 

the focus on smaller and fragment-like compounds and limiting the number of non-terminal 

rotatable bonds (maximum of 6) similar to SAMPL5. The SAMPL5 Challenge suggested 

that molecules with many rotatable bonds still pose challenges for contemporary methods, 

suggesting this is a criterion for difficulty. However, in later challenges we hope to gradually 

increase the difficulty of the compounds considered to provide a more diverse set that 

includes more difficult compounds including varying numbers of rotatable bonds.

Ideally, a more diverse combination of functional groups in the compounds should be 

included in future sets, with improved chemical diversity posing more challenges and also 

helping provide additional lessons learned. For example, a dataset could include matched 

molecular pairs which differ by only a single functional group, helping to isolate which 

functional groups pose particular challenges. Current MM-based methods are known to 

often have difficulty modeling sulfonyl and sulfonamide groups, but a challenge utilizing 

matched molecular pairs could reveal other such challenging functional groups. In addition, 

expanding partition coefficient challenges with a diverse set of solvent phases would be 

beneficial for improving solute partitioning models.

The statistical power of the SAMPL6 log P Challenge for comparative method evaluation 

was limited due to the narrow experimental data set with only 2 log P units of dynamic range 

and 11 data points, both of which were driven by limitations of theP experimental 

methodology chosen for this challenge [9]. Future log P challenges would benefit from 

larger blind datasets with a broader dynamic range. We recommend at least a log P range of 

1–5. The potentiometric log P measurement method used for the collection for SAMPL6 

data was rather low throughput, requiring method optimization for each molecule. High-

throughput log D measurement methods performed at pHs that would ensure neutral states 

of the analytes may provide a way to collect larger datasets of log P measurements. 

However, this approach poses some challenges. First, it is necessary to measure pKa values 

of the molecules first. Second, partitioning measurements need to be done at a pH that 

guarantees that the compound has neutral charge, in which case solubility will be lower than 

if it is charged and may become a limitation for the experiment.

SAMPL6 log P Challenge molecules were not expected to have multiple tautomers affecting 

log P predictions (based on QM predictions). The choice of the challenge set also ensured 

participants did not have to calculate contributions of multiple relevant tautomerization 

states or shifts in tautomerization states during transfer between phases. However, 

participants still had to select a major tautomer for each compound. To evaluate the tautomer 

predictions in the future, experimental measurement of tautomer populations in each solvent 

phase would provide valuable information. However, such experimental measurements are 

difficult and low throughput. If measuring tautomers is not a possibility, the best approach 

may be to exclude compounds that present potential tautomerization issues from the 

challenge, unless the challenge focus is specifically on tautomer prediction.
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Overall, for future solute partitioning challenges, we would like to focus on fragment-like 

compounds, matched molecular pairs, larger dynamic range, larger set size, and functional 

group diversity.

5 Conclusion

Several previous SAMPL challenges focused on modeling solvation to help address this key 

accuracy-limiting component of protein-ligand modeling. Thus, the SAMPL0 through 

SAMPL4 challenges included hydration free energy prediction as a component, followed by 

cyclohexane-water distribution coefficient in SAMPL5.

Here, a community-wide blind partition coefficient prediction challenge was fielded for the 

first time, and participants were asked to predict octanol-water partition coefficients for 

small molecules resembling fragments of kinase inhibitors. As predicting log D in the 

previous challenge was quite challenging due to issues with pKa prediction, the present 

challenge focused on log P, avoiding these challenges and placing it at roughly the right 

level of complexity for evaluating contemporary methods and issues they face regarding the 

modeling of small molecule solvation in different liquid phases. The set of molecules 

selected for the challenge were small and relatively rigid fragment-like compounds without 

tautomerization issues which further reduces the difficulty of the prospective prediction 

challenge.

Participation in the challenge was much higher than in SAMPL5, and included submissions 

from many diverse methods. A total of 27 research groups participated, submitting 91 blind 

submissions in total. The best prospective prediction performance observed in SAMPL6 log 

P Challenge came from QM-based physical modeling methods and empirical knowledge-

based methods, with 10 methods achieving an RMSE below 0.5 log P units. On the other 

hand, only a small number of MM-based physical models achieved an accuracy similar to 

the null model (which predicted a constant, typical log P value), which had an RMSE of 0.8. 

Empirical predictions showed performance which was less dependent on the compound/

dataset than physical methods in this study. For empirical methods, the size and chemical 

diversity of the training set employed in developing the method seems to be more important 

than the exact methods and descriptors employed. We expected many of the empirical 

methods to be the top performers, given the wealth of octanol-water log P training data 

available, and this expectation was borne out.

Better prediction performance was seen for octanol-water log P challenge than the SAMPL5 

cyclohexane-water log D challenge. In addition to absence of pKa prediction problem for the 

partition system, the molecules in the SAMPL6 log P Challenge were considerably less 

diverse than in the SAMPL5 log D Challenge, which may have also affected relative 

performance in the two challenges. Physical methods fared slightly better in this challenge 

than previous cyclohexane-water log D challenge, likely because of the elimination of the 

need to consider protonation state effects. However, MM-based physical methods with 

similar approaches did not necessarily agree on predicted values, with occasionally large 

discrepancies resulting from apparently relatively modest variations in protocol.
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All information regarding the challenge structure, experimental data, blind prediction 

submission sets, and evaluation of methods is available in the SAMPL6 GitHub Repository 

to allow follow up analysis and additional method testing.

Overall, high participation and clear lessons learned pave the way forward for improving 

solute partitioning and biomolecular binding models for structure-based drug design.

6 Code and Data Availability

All SAMPL6 log P Challenge instructions, submissions, experimental data and analysis are 

available at https://github.com/samplchallenges/SAMPL6/tree/master/physical_properties/

logP. An archive copy of SAMPL6 GitHub Repository log P Challenge directory is also 

available in the Supplementary Documents bundle (SAMPL6-supplementary-

documents.tar.gz). Some useful files from this repository are highlighted below.

• Table of participants and their submission filenames: https://github.com/

samplchallenges/SAMPL6/blob/master/physical_properties/logP/predictions/

SAMPL6-user-map-logP.csv

• Table of methods including submission IDs, method names, participant assigned 

method category, and reassigned method categories: https://github.com/

samplchallenges/SAMPL6/blob/master/physical_properties/logP/predictions/

SAMPL6-logP-method-map.csv

• Submission files of prediction sets: https://github.com/samplchallenges/

SAMPL6/tree/master/physical_properties/logP/predictions/submission_files

• Python analysis scripts and outputs: https://github.com/samplchallenges/

SAMPL6/blob/master/physical_properties/logP/

analysis_with_reassigned_categories/

• Table of performance statistics calculated for all methods: https://github.com/

samplchallenges/SAMPL6/blob/master/physical_properties/logP/

analysis_with_reassigned_categories/analysis_outputs_withrefs/StatisticsTables/

statistics.csv

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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0.2 Abbreviations

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands

log P log10 of the organic solvent-water partition coefficient (Kow) of 

neutral species

log D log10 of organic solvent-water distribution coefficient (Dow)

pKa log10 of the acid dissociation equilibrium constant

SEM Standard error of the mean

RMSE Root mean squared error

MAE Mean absolute error

τ Kendall’s rank correlation coefficient (Tau)

R2 Coefficient of determination (R-Squared)

QM Quantum Mechanics

MM Molecular Mechanics
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Figure 1. The desire to deconvolute the distinct sources of error contributing to the large errors 
observed in the SAMPL5 log D challenge motivated the separation of pKa and log P challenges 
in SAMPL6.
The SAMPL6 pKa and log P challenges aim to evaluate protonation state predictions of 

small molecules in water and transfer free energy predictions between two solvents, isolating 

these prediction problems.
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Figure 2. Structures of the 11 protein kinase inhibitor fragments used for the SAMPL6 log P 
Blind Prediction Challenge.
These compounds are a subset of the SAMPL6 pKa Challenge compound set [8] which were 

found to be tractable potentiometric measurements with sufficient solubility and pKa values 

far from pH titration limits. Chemical identi1ers of these molecules are available in Table S2 

and experimental log P values are published [9]. Molecular structures in the 1gure were 

generated using OEDepict Toolkit [53].
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Figure 3. Overall accuracy assessment for all methods participating in the SAMPL6 log P 
Challenge.
Both root-mean squared error (RMSE) and mean absolute error (MAE) are shown, with 

error bars denoting 95% confidence intervals obtained by bootstrapping over challenge 

molecules. Submission IDs are summarized in Table 3. Submission IDs of the form REF## 

refer to non-blinded reference methods computed after the blind challenge submission 

deadline, and NULL0 is the null prediction method; all others refer to blind, prospective 

predictions.
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Figure 4. Overall correlation assessment for all methods participating SAMPL6 log P Challenge.
Pearson’s R2 and Kendall’s Rank Correlation Coefficient Tau (τ) are shown, with error bars 

denoting 95% confidence intervals obtained by bootstrapping over challenge molecules. 

Submission IDs are summarized in Table 3. Submission IDs of the form REF## refer to non-

blinded reference methods computed after the blind challenge submission deadline, and 

NULL0 is the null prediction method; all others refer to blind, prospective predictions. 

Overall, a large number and wide variety of methods have a statistically indistinguishable 

performance on ranking, in part because of the relatively small dynamic range of this set and 

because of the small size of the set. Roughly the top half of methods with Kendall’s Tau > 
0.5 fall into this category.
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Figure 5. Performance statistics of physical methods.
Physical methods are further classified into quantum chemical (QM) methods and molecular 

mechanics (MM) methods. RMSE and Kendall’s Rank Correlation Coefficient Tau are 

shown, with error bars denoting 95% confidence intervals obtained by bootstrapping over 

challenge molecules. Submission IDs are summarized in Table 3. Submission IDs of the 

form REF## refer to non-blinded reference methods computed after the blind challenge 

submission deadline; all others refer to blind, prospective predictions.
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Figure 6. Predicted vs experimental value correlation plots of 8 best-performing methods and 
one representative average method.
Dark and light green shaded areas indicate 0.5 and 1.0 units of error. Error bars indicate 

standard error of the mean of predicted and experimental values. Experimental log P SEM 

values are too small to be seen under the data points. EC_RISM_wet_P1w+1o method 

(rdsnw) was selected as the representative average method, as it is the method with the 

highest RMSE below the median.
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Figure 7. Molecule-wise prediction error distribution plots show how variable the prediction 
accuracy was for individual molecules across all prediction methods.
(A) MAE calculated for each molecule as an average of all methods shows relatively 

uniform MAE across the challenge set. SM14 and SM16 predictions were slightly more 

accurate than the rest. (B) MAE of each molecule broken out by method category shows that 

for each method category the most challenging molecules were different. Predictions of 

SM08, SM13, SM09, and SM12 log P values were significantly less accurate with Physical 

(MM) methods than the other method categories. For QM-based methods SM04 and SM02 

were most challenging. Largest MAE for Empirical methods were observed for SM11 and 

SM15. (C) Error distribution for each SAMPL6 molecule overall prediction methods. It is 

interesting to note that most distributions are peaked near an error of zero, suggesting that 

perhaps a consensus model might outperform most individual models. However, SM15 is 

more significantly shifted away from zero than any other compound. SM08 has a significant 

tail showing probability of overestimated log P predictions by some methods. (D) Error 
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distribution for each molecule calculated for only 7 methods from blind submissions that 

were determined to be consistently well-performing (hmz0n, gmoq5, j8nwc, hdpuj, dqxk4, 

vzgyt, qyzjx).
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Figure 8. Comparison of independent predictions that use seemingly identical methods (free 
energy calculations using GAFF and TIP3P water) shows signi1cant systematic deviations 
between predictions for many compounds.
Comparison of the calculated and experimental values for submissions v2q0t 
(InterX_GAFF_WET_OCTANOL), 6nmtt (MD-AMBER-wetoct), sqosi (MD-AMBER-

dryoct) and physical reference calculations REF02 (YANK-GAFF-TIP3P-wet-oct) and 

REF07 (YANK-GAFF-TIP3P-dry-oct). (A) compares calculations that used wet octanol, and 

(B) compares those that used dry octanol. Plots C to F show the methods compared to one 

another. The dark and light-shaded region indicates 0.5 and 1.0 units of error, respectively.
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Figure 9. Comparison of predictions that use free energy calculations using GAFF and TIP3P 
water show deviations between predictions for the challenge molecules and several alternative 
tautomers and resonance structures.
Deviations seem to largely stem from differences in equilibration amount and choice of 

tautomer. A compares reference direct transfer free energy (DFE, REF07) and indirect 

solvation-based transfer free energy (IFE) protocols to experiment for the challenge 

provided resonance states of molecules and a couple of extra resonance states for SM14 and 

SM11, and extra tautomers for SM08. B compares the same exact tautomers for submission 

sqosi (MD-AMBER-dryoct) and the two reference protocols to experiment. Submission 

sqosi (MD-AMBER-dryoct) used different tautomers than the ones provided in the 
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challenge. C-E compares the calculated log P between different methods using the same 

tautomers. All of the predicted values can be found in Table 5.
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Figure 10. The prediction errors per molecule indicate some compounds were more difficult to 
predict than others for the reference calculations category.
(A) MAE of each SAMPL6 molecule broken out by physical and empirical reference 

method category. (B) Error distribution for each molecule calculated for the reference 

methods. SM08 was the most difficult to predict for the physical reference calculations, due 

to our partial charge assignment procedure.
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Figure 11. The tautomer and resonance structure choice resulted in discrepancies in the 
reference calculations.
Shown here are calculated values for different input structures using the reference direct 

transfer free energy method. The uncertainties of the log P predictions were calculated as the 

standard error of the mean (SEM) of three replicate predictions. Structures labelled as 

SM08, SM11, and SM14 are based on input SMILES provided in SAMPL6 log P Challenge 

instructions. Three microstates shown for SM08 are different tautomers. SM08 

(SM08_micro011) and SM08_micro010 are carboxylic acids, while SM08_micro008 is a 

carboxylate ion. SM08 (SM08_micro011) has a carbonyl group in the ring, while 

SM08_micro008 and SM08_micro010 have a hydroxyl in the ring. Structures pertaining to 

SM11 and SM14 are different resonance hybrids of the same tautomer (neutral microstate). 

Enumeration of all theoretically possible neutral tautomers of SAMPL6 molecules can be 

found in the SAMPL6 GitHub Repository (https://github.com/samplchallenges/SAMPL6/

tree/master/physical_properties/pKa/microstates).
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Figure 12. Structures of the 27 additional molecules that were included in follow-up assessment 
of the reference methods.
These molecules were not included in the statistics overview.
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Figure 13. Distribution of reference method calculation errors by molecule on our extra set 
shows that a few of the molecules were more challenging than others.
(A) MAE of each of the extra molecules broken out by physical and empirical reference 

method category. Majority of molecules have mean absolute errors below 1 log P unit for 

physical reference calculations. All of the mean absolute errors are well below 1 log P unit 

for empirical reference calculations. (B) Error distribution for each molecule calculated for 

the reference methods. A couple molecules have a significant tail showing probability of 

overestimated log P predictions.
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Table 1.
Methods used as reference calculations for the MM-based physical methods category.

Please see Section 12.1.1 in the Supplementary Information for detailed description of physical reference 

methods.

Submission ID Approach Force Field Water Model Octanol Phase Number of Replicates

REF01 YANK, DFE protocol GAFF 1.81 TIP3P-FB Wet 3

REF02 YANK, DFE protocol GAFF 1.81 TIP3P Wet 3

REF03 YANK, DFE protocol GAFF 1.81 OPC Wet 3

REF04 YANK, DFE protocol smirnoff99Frosst 1.0.7 TIP3P-FB Wet 3

REF05 YANK, DFE protocol smirnoff99Frosst 1.0.7 TIP3P Wet 3

REF06 YANK, DFE protocol smirnoff99Frosst 1.0.7 OPC Wet 3

REF07 YANK, DFE protocol GAFF 1.81 TIP3P Dry 3

REF08 YANK, DFE protocol smirnoff99Frosst 1.0.7 TIP3P Dry 3

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 April 01.
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Table 2.
Methods used as reference calculations for the empirical log P prediction category.

Please see section 12.1.3 in the Supplementary Information for a detailed description of empirical methods.

Submission ID Name Vendor Approach Website

REF09 clogP (BioByte) BioByte group contributions www.biobyte.com

REF13 SlogP(MOE) Chemical Computing Group atomic contributions www.chemcomp.com

REF11 logP(ow) (MOE) Chemical Computing Group atomic contributions and correction factors www.chemcomp.com

REF10 h_JogP (MOE) Chemical Computing Group QSPR, based on extended Hückel theory 
descriptors www.chemcomp.com

REF12 MoKaJogP Molecular Discovery QSPR, based on Molecular Interaction Field 
descriptors www.moldiscovery.com

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 April 01.
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Table 4.
Eight consistently well-performing prediction methods based on consistent ranking within 
the Top 20 according to various statistical metrics.

Submissions were ranked according to RMSE, MAE, R2, and τ. Many top methods were found to be 

statistically indistinguishable considering uncertainties of error metrics. Moreover, sorting of methods was 

influenced significantly by the choice of metric chosen. We assessed top 20 methods according the each metric 

to determine which methods are always among the top 20 according to all four statistical metrics chosen. A set 

of consistently well-performing methods were determined: Four QM-based and four empirical methods. Seven 

of these methods are blind submissions of SAMPL6 Challenge, and one of them (REF13) is a non-blind 

reference calculation. Performance statistics are provided as mean and 95% confidence intervals.

ID Method Name Category Type RMSE MAE R2 Kendall’s Tau 
(t)

hmz0n cosmotherm_FINE19 Physical 
(QM) Blind 0.38 [0.23, 

0.55]
0.31 [0.19, 
0.46]

0.77 
[0.36, 
0.94]

0.64 [0.17, 
1.00]

gmoq5 Global XGBoost-Based QSPR 
LogP Predictor Empirical Blind 0.39 [0.28, 

0.49]
0.34 [0.23, 
0.46]

0.74 
[0.40, 
0.92]

0.59 [0.12, 
0.89]

j8nwc EC_RISM_wet_P1w+2o Physical 
(QM) Blind 0.47 

[0.17,0.75]
0.31 [0.15, 
0.54]

0.74 
[0.33, 
0.97]

0.81 [0.46, 
1.00]

hdpuj
RayLogP-II, a cheminformatic 
QSPR model predicting the 
octanol/water partition coeZcient

Empirical Blind 0.49 [0.37, 
0.61]

0.44 [0.32, 
0.57]

0.74 
[0.40, 
0.94]

0.67 [0.22, 
1.00]

dqxk4 LogP_SMD_Solvation_DFT Physical 
(QM) Blind 0.49 [0.33, 

0.62]
0.42 [0.26, 
0.57]

0.69 
[0.35, 
0.91]

0.67 [0.27, 
0.96]

vzgyt rfs-logp Empirical Blind 0.50 
[0.27,0.68]

0.38 [0.21, 
0.58]

0.72 
[0.29, 
0.95]

0.64 [0.23, 
0.92]

qyzjx EC_RISM_dry_P1w+2o Physical 
(QM) Blind 0.54 [0.34, 

0.75]
0.46 [0.31, 
0.64]

0.73 
[0.31, 
0.97]

0.78 [0.44, 
1.00]

REF13 SlogP (MOE) Empirical Reference 0.55 [0.38, 
0.71]

0.47 
[0.31,0.65]

0.69 
[0.29, 
0.92]

0.60 [0.08, 
0.96]
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Table 5.
Predicted log P values of free energy calculations of methods using GAFF, TIP3P water, 
and dry octanol.

The methods listed are the reference direct transfer free energy (DFE) protocol, reference indirect solvation-

based transfer free energy (IFE) protocol and submission sqosi (MD-AMBER-dryoct). Details of the two 

reference protocols can be found in Section 12.1. log P predictions for multiple tautomers (SM08) and 

resonance structures (SM11 and SM14) are listed, when available. The experimental values are provided for 

comparison. The same experimental P log values are stated for multiple tautomers or resonance structures. 

Potentiometric log P measurements do not provide information about the identity or populations of tautomers.

Molecule Indirect Solvation-Based Transfer 
Free Energy (IFE) Protocol

REF07 Direct Transfer Free 
Energy (DFE) Protocol

sqosi (MD-AMBER-
dryoct) Experimental

SM02 7.6±0.3 5.5±0.1 5.3±0.3 4.09±0.03

SM04 6.2±0.4 5.2±0.1 5.9±0.3 3.98±0.03

SM07 4.3±0.2 4.2±0.3 4.8±0.4 3.21±0.04

SM08
1,2 2.8±0.2 9.8±0.1 3.10±0.03

SM08_micro008 5.5±0.6 3.8±0.1 3.10±0.03

SM08_micro010 3.9±0.3 3.7±0.2 5.9±0.4 3.10±0.03

SM09 3.1 ±0.4 4.51 ±0.03 4.0±0.3 3.0±0.1

SM11
1 1.6±0.4 2.5±0.1 2.10±0.04

SM11_micro005 2.9±0.3 2.36±0.01 2.3±0.3 2.10±0.04

SM12 4.9±0.3 5.6±0.1 5.2±0.3 3.83±0.03

SM13 5.1 ±0.3 5.3±0.1 6.0±0.5 2.92±0.04

SM14
1 2.2±0.2 2.4±0.1 1.95±0.03

SM14_micro001 2.8±0.2 3.1 ±0.1 2.5±0.3 1.95±0.03

SM15 2.7±0.2 3.1 ±0.1 3.0±0.2 3.07±0.03

SM16 4.3±0.3 3.9±0.1 4.6±0.4 2.62±0.01

1
The tautomer or resonance structure presented as the input SMILES for the SAMPL6 log P Challenge.

2
It corresponds to the microstate SM08_micro011 of the SAMPL6 pKa Challenge.
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Table 6.
Statistics of the physical and empirical reference method predictions on the extra test of 
molecules.

Methods were ranked according to increasing RMSE in this table. Performance statistics of MAE, R2, and 

Kendall’s Tau are also provided. Mean and 95% con1dence intervals of all statistics are presented.

ID Method Name Category Type RMSE MAE R2 Kendall’s Tau 
(t)

EXT09 clogP (Biobyte) Empirical Reference 0.23 [0.16,0.29] 0.17 [0.12,0.23] 0.94 [0.86,0.98] 0.85 [0.75,0.93]

EXT12 MoKaJogP Empirical Reference 0.28 [0.20,0.35] 0.22 [0.16,0.28] 0.91 [0.82,0.97] 0.83 [0.73,0.91]

EXT11 logP(o/w) (MOE) Empirical Reference 0.32 [0.22,0.41] 0.24 [0.17,0.33] 0.90 [0.81,0.95] 0.80 [0.66,0.91]

EXT10 h_JogP (MOE) Empirical Reference 0.43 [0.34,0.51] 0.35 [0.26,0.45] 0.83 [0.62,0.93] 0.74 [0.55,0.90]

EXT13 SlogP (MOE) Empirical Reference 0.59 [0.48,0.69] 0.49 [0.36,0.61] 0.71 [0.41,0.87] 0.55 [0.33,0.73]

EXT08 YANK-SMIRNOFF-
TIP3P-dry-oct

Physical 
(MM) Reference 1.26 [0.88,1.60] 0.97 [0.69,1.28] 0.56 [0.16,0.83] 0.50 [0.23,0.73]

EXT07 YANK-GAFF-TIP3P-
dry-oct

Physical 
(MM) Reference 1.27 [0.69,1.74] 0.88 [0.57,1.26] 0.55 [0.19,0.88] 0.60 [0.34,0.81]

EXT02 YANK-GAFF-TIP3P-
wet-oct

Physical 
(MM) Reference 1.38 [0.94,1.78] 1.03 [0.70,1.40] 0.58 [0.26,0.83] 0.58 [0.35,0.78]

EXT05 YANK-SMIRNOFF-
TIP3P-wet-oct

Physical 
(MM) Reference 1.50 [0.96,1.98] 1.11 [0.75,1.52] 0.50 [0.13,0.81] 0.54 [0.29,0.75]
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