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Abstract

The SAMPL Challenges aim to focus the biomolecular and physical modeling community on
issues that limit the accuracy of predictive modeling of protein-ligand binding for rational drug
design. In the SAMPLS5 log D Challenge, designed to benchmark the accuracy of methods for
predicting drug-like small molecule transfer free energies from aqueous to nonpolar phases,
participants found it difficult to make accurate predictions due to the complexity of protonation
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state issues. In the SAMPLG6 log P Challenge, we asked participants to make blind predictions of
the octanol-water partition coefficients of neutral species of 11 compounds and assessed how well
these methods performed absent the complication of protonation state effects. This challenge
builds on the SAMPL6 pKj; Challenge, which asked participants to predict pKj values of a
superset of the compounds considered in this log 2 challenge. Blind prediction sets of 91
prediction methods were collected from 27 research groups, spanning a variety of quantum
mechanics (QM) or molecular mechanics (MM)-based physical methods, knowledge-based
empirical methods, and mixed approaches. There was a 50% increase in the number of
participating groups and a 20% increase in the number of submissions compared to the SAMPL5
log D Challenge. Overall, the accuracy of octanol-water log 2 predictions in SAMPL6 Challenge
was higher than cyclohexane-water log D predictions in SAMPLY5, likely because modeling only
the neutral species was necessary for log Pand several categories of method benefited from the
vast amounts of experimental octanol-water log P data. There were many highly accurate methods:
10 diverse methods achieved RMSE less than 0.5 log 2P units. These included QM-based methods,
empirical methods, and mixed methods with physical modeling supported with empirical
corrections. A comparison of physical modeling methods showed that QM-based methods
outperformed MM-based methods. The average RMSE of the most accurate five MM-based, QM-
based, empirical, and mixed approach methods based on RMSE were 0.92+0.13, 0.48+0.06,
0.47+0.05, and 0.50+0.06, respectively.

Keywords

octanol-water partition coefficient; log 2, blind prediction challenge; SAMPL; free energy
calculations; solvation modeling

Introduction

The development of computational biomolecular modeling methodolgoies is motivated by
the goal of enabling quantitative molecular design, prediction of properties and biomolecular
interactions, and achieving a detailed understanding of mechanisms (chemical and
biological) via computational predictions. While many approaches are available for making
such predictions, methods often suffer from poor or unpredictable performance, ultimately
limiting their predictive power. It is often difficult to know which method would give the
most accurate predictions for a target system without extensive evaluation of methods.
However, such extensive comparative evaluations are infrequent and difficult to perform,
partly because no single group has expertise in or access to all relevant methods and also
because of the scarcity of blind experimental data sets that would allow prospective
evaluations. In addition, many publications which report method comparisons for a target
system constructs these studies with the intention of highlighting the success of a method
being developed.

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) Challenges
[http://samplchallenges.github.io] provide a forum to test and compare methods with the
following goals:
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1. Determine prospective predictive power rather than accuracy in retrospective
tests.
2. Allow a head to head comparison of a wide variety of methods on the same data.

Regular SAMPL challenges focus attention on modeling areas that need improvement, and
sometimes revisit key test systems, providing a crowdsourcing mechanism to drive progress.
Systems are carefully selected to create challenges of gradually increasing complexity
spanning between prediction objectives that are tractable and that are understood to be
slightly beyond the capabilities of contemporary methods. So far, most frequent SAMPL
challenges have been on solvation and binding systems. Iterated blind prediction challenges
have played a key role in driving innovations in the prediction of physical properties and
binding. Here we report on a SAMPL6 log P Challenge on octanol-water partition
coefficients, treating molecules resembling fragments of kinase inhibitors. This is a follow-
on to the earlier SAMPL6 pK; Challenge which included the same compounds.

The partition coefficient describes the equilibrium concentration ratio of the neutral state of
a substance between two phases:

) [unionized solute]qctanol
= 10 0 0
€10 [unionized solute]yater

log P = logjo Kow (€

The log P challenge examines how well we model transfer free energy of molecules between
different solvent environments in the absence of any complications coming from predicting
protonation states and pKj; values. Assessing log P prediction accuracy also allows
evaluating methods for modeling protein-ligand affinities in terms of how well they capture
solvation effects.

1.1 SAMPL Challenge History and Motivation

The SAMPL blind challenges aim to focus the field of quantitative biomolecular modeling
on major issues that limit the accuracy of protein-ligand binding prediction. Companion
exercises such as the Drug Design Data Resource (D3R) blind challenges aim to assess the
current accuracy of biomolecular modeling methods in predicting bound ligand poses and
affinities on real drug discovery project data. D3R blind challenges serve as an accurate
barometer for accuracy. However, due to the conflation of multiple accuracy-limiting
problems in these complex test systems it is difficult to derive clear insights into how to
make further progress towards better accuracy.

Instead, SAMPL seeks to isolate and focus attention on individual accuracy-limiting issues.
We aim to field blind challenges just at the limit of tractability in order to identify
underlying sources of error and help overcome these challenges. Working on similar model
systems or the same target with new blinded datasets in multiple iterations of prediction
challenges maximize our ability to learn from successes and failures. Often, these challenges
focus on physical properties of high relevance to drug discovery in their own right, such as
partition or distribution coefficients critical to the development of potent, selective, and
bioavailable compounds.
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The partition coefficient (log A) and the distribution coefficient (log D) are driven by the free
energy of transfer from an aqueous to a nonpolar phase. Transfer free energy of only neutral
species are considered for log £, whereas both neutral and ionizable species contribute to log
D. Such solute partitioning models are a simple proxy for the transfer free energy of a drug-
like molecule to a relatively hydrophobic receptor binding pocket, in the absence of specific
interactions. Protein-ligand binding equilibrium is analogous to partitioning of a small
molecule between two environments: protein binding site and aqueous phase. Methods that
employ thermodynamic cycles, such as free energy calculations, can therefore use similar
strategies for calculating binding affinities and partition coefficients, and given the similarity
in technique and environment, we might expect the accuracy on log £Pand log O may be
related to the accuracy expected from binding calculations, or at least a lower bound for the
error these techniques might make in more complex protein-ligand binding phenomena.
Evaluating log Por log D predictions makes it far easier to probe the accuracy of
computational tools used to model protein-ligand interactions and to identify sources of
error to be corrected. For physical modeling approaches, evaluation of partition coefficient
predictions comes with the additional advantage of separating force field accuracy from
protonation state modeling challenges.

The SAMPLS5 log D challenge uncovered surprisingly large modeling errors—
Hydration free energies formed the basis of several previous SAMPL challenges, but
distribution coefficients (log D) capture many of the same physical effects—namely,
solvation in the respective solvents—and thus replaced hydration free energies in SAMPLS5
[1, 2]. This choice was also driven due to a lack of ongoing experimental work with the
potential to generate new hydration free energy data for blind challenges. Octanol-water log
Dis also a property relevant to drug discovery, often used as a surrogate for lipophilicity,
further justifying its choice for a SAMPL challenge. The SAMPLS5 log D Challenge allowed
decoupled evaluation of small molecule solvation models (captured by the transfer free
energy between environments) from other issues, such as the sampling of slow receptor
conformational degrees of freedom. This blind challenge generated considerable insight into
the importance of various physical effects [1, 2]; see the SAMPLS5 special issue (https://
link.springer.com/journal/10822/30/11/page/1) for more details.

The SAMPLS5 log D Challenge used cyclohexane as an apolar solvent, partly to further
simplify this challenge by avoiding some complexities of octanol. In particlar, log Dis
typically measured using water-saturated octanol for the nonaqueous phase, which can give
rise to several challenges in modeling accuracy such as a heterogeneous environment with
potentially micelle-like bubbles [3-6], resulting in relatively slow solute transitions between
environments [4, 7]. The precise water content of wet octanol is unknown, as it is affected by
environmental conditions such as temperature as well as the presence of solutes, the organic
molecule of interest, and salts (added to control pH and ionic strength). Inverse micelles
transiently formed in wet octanol create spatial heterogeneity and can have long correlation
times in molecular dynamics simulations, potentially presenting a challenge to modern
simulation methods[3-6], resulting in relatively slow solute transitions between
environments [4, 7].
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Performance in the SAMPLS5 log D Challenge was much poorer than the organizers initially
expected—and than would have been predicted based on past accuracy in hydration free
energy predictions—and highlighted the difficulty of accurately accounting for protonation
state effects [2]. In many SAMPLS5 submissions, many participants treated distribution
coefficients (log D) as if they were asked to predict partition coefficients (log A). The
difference between log D (reflects the transfer free energy at a given pH including the effects
of accessing all equilibrium protonation states of the solute in each phase) and log P (reflects
aqueous-to-apolar phase transfer free energies of the neutral species only) proved
particularly important. In some cases, other effects like the presence of a small amount of
water in cyclohexane may also have played a role.

Because the SAMPLS5 log D Challenge highlighted the difficulty in correctly predicting
transfer free energies involving protonation states (the best methods obtained an RMSE of
2.5 log units [2]), the SAMPLG6 Challenge aimed to further subdivide the assessment of
modeling accuracy into two challenges: A small-molecule pK; prediction challenge [8] and
a log Pchallenge. The SAMPL6 pK;, Challenge asked participants to predict microscopic
and macroscopic acid dissociation constants (pK;s) of 24 small organic molecules and
concluded in early 2018. Details of the challenge are maintained on the GitHub repository
(https://github.com/samplchallenges/SAMPLE6/). pK; prediction proved to be difficult. A
large number of methods showed RMSE in the range of 1-2 pKj units, with only a handful
achieving less than 1 pKj unit. These results were in line with expectations from the
SAMPLS5 Challenge about protonation state predictions being one of the major sources of
error for log D. But the present challenge allows us delve deeper into modeling the solvation
of neutral species and focus on log ~.

The SAMPL6 log P Challenge focused on small molecules resembling kinase
inhibitor fragments—By measuring the log ~ of a series of compounds resembling
fragments of kinase inhibitors—a subset of those used in the SAMPL6 pKa Prediction
Challenge—we sought to assess the limitations of force field accuracy in modeling transfer
free energies of drug-like molecules in binding-like processes. This time, the challenge
featured octanol as the apolar medium to assess whether wet octanol presented as much of a
problem as was previously suspected. Participants are asked to predict the partition
coefficient (log A) of the neutral species between octanol and water phases. Here we focus
on different aspects of the challenge, particularly the staging, analysis, results, and lessons
learned. Experimental work for collecting the log #values are described elsewhere [9]. One
of the goals of this challenge is to encourage prediction of model uncertainties (an estimate
of the inaccuracy with which your model predicts the physical property), since the ability to
tell when methods will be successful or not would be very useful for increasing the
application potential and impact of computational methods.

The SAMPL challenges aim to advance predictive quantitative models—The
SAMPL challenges have a key focus on lessons learned. In principle, they are a challenge or
competition, but we see it as far more important to learn how to improve accuracy than to
announce the top-performing methods. To aid in learning as much as possible, this overview
paper provides an overall assessment of performance and some analysis of the relative
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performance of different methods in different categories, provides some insights into lessons
we have learned (and/or other participants have learned). Additionally, this work presents
our own reference calculations which provide points of comparison for participants (some
relatively standard and some more recent, especially in the physical category) and also allow
us to provide some additional lessons learned. The data, from all participants and all
reference calculations, is made freely available (see Section 6) to allow others to compare
methods retrospectively and dig into additional lessons learned.

1.2 Common computational approaches for predicting log P

Many methods have been developed to predict octanol-water log values of small organic
molecules including physical modeling (QM and MM-based methods) and knowledge-based
empirical prediction approaches (atom-contribution approaches and QSPR). There are also
log Pprediction methods that combine the strengths of physical and empirical approaches.
Here, we briefly highlight some of the major ideas and background behind physical and
empirical log P prediction methods.

1.2.1 Physical modeling approaches for predicting log P—Physical approaches
begin with a detailed atomistic model of the solute and its conformation and attempt to
estimate partitioning behavior directly from that. Details depend on the approach employed.

1.2.1.1. Quantum mechanical (QM) approaches for predicting log P: QM approaches
to solvation modeling utilize numerical solution of the Schrédinger equation to estimate
solvation free energies (and thereby partitioning) directly from first principles. There are a
number of approaches for these calculations, and discussing them is outside the scope of this
work. However, it is important to note that direct solution of the underlying equations,
especially when coupled with dynamics, becomes impractical for large systems such as
molecules in solution. So, several approximations must be made before such approaches can
be applied to estimating phase transfer free energies. These typical approximations include
assuming the solute has one or a small number of dominant conformations in each phase
being considered, and using an implicit solvent model to represent the solvent. The basis set
and level of theory can be important choices and can significantly affect accuracy of
calculated values. Additionally, protonation or tautomerization state selected as an input can
also introduce errors. With QM approaches possible protonation states and tautomers can be
evaluated to find the lowest energy state in each solvent. However, if these estimates are
erroneous, any errors will propagate into the final transfer free energy and log 2 predictions.

Implicit solvent models can be used, in the context of the present SAMPL, both to represent
water and octanol. Such models are often parameterized—sometimes highly so—based on
experimental solvation free energy data. This means that such models perform well for
solvents (and solute chemistries) where solvation free energy data is abundant (as in the
present challenge) but are often less successful when far less training data is available. In
this respect, QM methods, by virtue of the solvent model, have some degree of overlap with
the empirical methods discussed further below.

Several solvent models are particularly common, and in the present challenge two were
particularly commonly employed. One was Marenich, Cramer and Truhlar’s SMD solvation
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model [10], which derives its electrostatics from the widely used IEF-PCM model and was
empirically trained on various solutes/solvents utilizing a total of some 2821 different
solvation data points. This has been employed in various SAMPL challenges in the past in
the context of calculation of hydration free energies, including the earliest SAMPL
challenges [11, 12]. Others in the Cramer-Truhlar series of solvent models were also used,
including the 2012 SM12 solvation model, which is based on the generalized born (GB)
approximation [13]. Another set of submissions also used the reference interaction site
model (RISM) integral equation approach, discussed further below.

The COSMO-RS solvation model is another method utilized in this context which covers a
particularly broad range of solvents, typically quite well [14-18]. In the present challenge, a
“Cosmoquick” variant was also applied and falls into the “Mixed” method category, as it
utilizes additional empirical adjustments. The COSMO-RS implementation of
COSMOtherm takes into account conformational effects to some extent; the chemical
potential in each phase is computed using the Boltzmann weights of a fixed set of
conformers.

In general, while choice of solvation model can be a major factor impacting QM approaches,
the neglect of conformational changes means these approaches typically (though not always)
neglect any possibility of significant change of conformation on transfer between phases and
they simply estimate solvation by the difference in (estimated) solvation free energies for
each phase of a fixed conformation. Additionally, solute entropy is often neglected,
assuming the single-conformation solvation free energy plays the primary role in driving
partitioning between phases. In addition to directly estimating solvation, QM approaches can
also be used to drive the selection of the gas- or solution-phase tautomer, and thus can be
used to drive the choice of inputs for MM approaches discussed further below.

I ntegral equation-based approaches: Integral equation approaches provide an alternate
approach to solvation modeling (for both water and non-water solvents) and have been
applied in SAMPL challenges within both the MM and QM frameworks [19-21]. In this
particular challenge, however, the employed approaches were entirely QM, and utilized the
reference interaction site model (RISM) approach [22—-24]. Additionally, as noted above, the
IEF-PCM model used by the SMD solvation model (discussed above) is also an integral
equation approach. Practical implementation details mean that RISM approaches typically
have one to a few adjustable parameters (e.g. four [25]) which are empirically tuned to
experimental solvation free energies, in contrast to the SMD and SM-n series of solvation
models which tend to have a larger number of adjustable parameters and thus require larger
training sets. In this particular SAMPL challenge, RISM participation was limited to
embedded cluster EC-RISM methods [19, 22, 26], which combine RISM with a quantum
mechanical treatment of the solute.

1.2.1.2. Molecular mechanics (MM) approaches for predicting log P: MM approaches
to computing solvation and partition free energies (and thus log Pvalues), as typically
applied in SAMPL, use a force field or energy model which gives the energy (and, usually,
forces) in a system as a function of the atomic positions. These models include all-atom
fixed charge additive force fields, as well as polarizable force fields. Such approaches
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typically (though not always) are applied in a dynamical framework, integrating the
equations of motion to solve for the time evolution of the system, though Monte Carlo
approaches are also possible.

MM-based methods are typically coupled with free energy calculations to estimate
partitioning. Often, these are so-called alchemical methods which utilize a non-physical
thermodynamic cycle to estimate transfer between phases, though pulling-based techniques
which directly model phase transfer are in principle possible [27, 28]. Such free energy
methods allow detailed all-atom modeling of each phase, and compute the full free energy of
the system, in principle (in the limit of adequate sampling) providing the correct free energy
difference given the choice of energy model (“force field”). However, adequate sampling can
sometimes prove difficult to achieve.

Key additional limitations facing MM approaches are the accuracy of the force field, the fact
that protonation state/tautomer is generally selected as an input and held fixed (meaning that
incorrect assignment or multiple relevant states can introduce significant errors), and
timescale—simulations only capture motions that are faster than simulation timescale.
However, these approaches do capture conformational changes on phase transfer, as long as
such changes occur on timescales faster than the simulation timescale.

1.2.2 Empirical log P predictions—Due to the importance of accurate log predictions,
ranging from pharmaceutical sciences to environmental hazard assessment, a large number
of empirical models to predict this property have been developed and reviewed [29-31]. An
important characteristic of many of these methods is that they are very fast, so even large
virtual libraries of molecules can be characterized.

In general, two main methodologies can be distinguished: group- or atom-contribution
approaches, also called additive group methods, and quantitative structure-property
relationship (QSPR) methods.

1.2.2.1 Atom- and group-contribution approaches: Atom contribution methods,
pioneered by Crippen in the late 1980s [32, 33], are the easiest to understand conceptually.
These assume that each atom contributes a specific amount to the solvation free energy and
that these contributions to log Pare additive. Using a potentially large number of different
atom types (typically in the order of 50-100), the log Pis the sum of the individual atom
types times the number of their occurrences in the molecule:

n

IOgP = Z n;a; )

i=1

A number of log P calculation programs are based on this philosophy, including AlogP [34],
AlogP98 [34], and moe_SlogP [35].

The assumption of independent atomic contributions fails for compounds with complex
aromatic systems or stronger electronic effects. Thus correction factors and contributions
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from neighboring atoms were introduced to account for these shortcomings (e.g. in XlogP
[36-38] and SlogP [35].

In contrast, in group contribution approaches, log Pis calculated as a sum of group
contributions, usually augmented by correction terms that take into account intramolecular
interactions. Thus, the basic equation is

n

m
log P = 2a,~f,~+ ijFj ©)]

i=1 i=1

where the first term describes the contribution of the fragments 7; (each occurring &;times),
the second term gives the contributions of the correction factors £~;occurring b;times in the
compound. Group contribution approaches assume that the details of the electronic or
intermolecular structure can be better modeled with whole fragments. However, this breaks
down when molecular features are not covered in the training set. Prominent examples of
group contribution approaches include clogP [39-42], KlogP [43], ACD/logP [44] and
KowWIN [45].

clogP is probably one of the most widely used log P calculation programs [39-41]. clogP
relies on fragment values derived from measured data of simple molecules, e.g., carbon and
hydrogen fragment constants were derived from measured values for hydrogen, methane,
and ethane. For more complex hydrocarbons, correction factors were defined to minimize
the difference to the experimental values. These can be structural correction factors taking
into account bond order, bond topology (ring/chain/branched) or interaction factors taking
into account topological proximity of certain functional groups, electronic effects through -
bonds, or special ortho-effects.

1.2.2.2 QSPR approaches: Quantitative structure-property relationships (QSPR) provide
an entirely different category of approaches. In QSPR methods, a property of a compound is
calculated from molecular features that are encoded by so-called molecular descriptors.
Often, these theoretical molecular descriptors are classified as 0D-descriptors (constitutional
descriptors, only based on the structural formula), 1D-descriptors (i.e. list of structural
fragments, fingerprints), 2D-descriptors (based on the connection table, topological
descriptors), and 3D-descriptors (based on the three-dimensional structure of the compound,
thus conformation-dependent). Sometimes, this classification is extended to 4D-descriptors,
which are derived from molecular interaction fields (e.g., GRID, CoMFA fields).

Over the years, a large number of descriptors have been suggested, with varying degrees of
interpretability. Following the selection of descriptors, a regression model that relates the
descriptors to the molecular property is derived by fitting the individual contributions of the
descriptors to a dataset of experimental data; both linear and nonlinear fitting is possible.
Various machine learning approaches such as random forest models, artificial neural
network models, etc. also belong to this category. Consequently, a large number of
estimators of this type have been proposed; some of the more well- known ones include
MlogP [46] and VlogP [47].
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1.2.3 Expectations from different prediction approaches—Octanol-water log P
literature data abounds, impacting our expectations. Given this abundance of data, in
contrast to cyclohexane-water log D data, e.g., for the SAMPLS5 log D Challenge, we
expected higher accuracy here. Some sources of public octanol-water log £ values include
DrugBank [48], ChemSpider [49], PubChem, the NCI CACTUS databases [50, 51], and
SRC’s PHYSPROP Database [52].

Our expectation was that empirical knowledge-based and other trained methods (implicit
solvent QM, mixed methods) would outperform other methods in the present challenge as
they are impacted directly by the availability of octanol-water data. Methods well trained to
experimental octanol-water partitioning data should typically result in higher accuracy, if
fitting is done well. The abundance of octanol-water data may also provide empirical and
mixed approaches with an advantage over physical modeling methods. Current molecular
mechanics-based methods and other methods not trained to experimental log £ data ought to
do worse in this challenge. Performance of strictly physical modeling based prediction
methods might generalize better across other solvent types where training data is scarce, but
that will not be tested by this challenge. In principle, molecular mechanics-based methods
could also be fitted using octanol-water data as one of the targets for force field
optimization, but present force fields have not made broad use of this data in fitting. Thus,
top methods are expected to be from empirical knowledge-based, QM-based approaches and
combination of QM-based and empirical approaches because of training data availability.
These categories are broken out separately for analysis.

2 Challenge design and evaluation

2.1 Challenge structure

The SAMPLG6 Part 11 Challenge was conducted as a blind prediction challenge on predicting
octanol-water partition coefficients of 11 small molecules that resemble fragments of kinase
inhibitors. The challenge molecule set was composed of small molecules with limited
flexibility (less than 5 non-terminal rotatable bonds) and covers limited chemical diversity.
There are six 4-aminoquinazolines, two benzimidazoles, one pyrazolo[3,4-d]pyrimidine, one
pyridine, one 2-oxoquinoline substructure containing compounds with log P values in the
range of 1.95-4.09. Information on experimental data collection is presented elsewhere [9].

The dataset composition was announced several months before the challenge including
details of the measurement technique (potentiometric log £ measurement, at room
temperature, using water saturated octanol phase, and ionic strength-adjusted water with
0.15 M KCI [9]), but not the identity of the small molecules. The instructions and the
molecule set were released at the challenge start date (Nov 1, 2018), and then submissions
were accepted until March 22, 2019.

Following the conclusion of the blind challenge, the experimental data was made public on
Mar 25, 2019 and results are first discussed in a virtual workshop (on May 16, 2019) [54]
then later in an in person workshop (Joint D3R/SAMPL Workshop, San Diego, Aug 22-23,
2019). The purpose of the virtual workshop was to go over a preliminary evaluation of
results, begin considering analysis and lessons learned, and nucleate opportunities for follow
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up and additional discussion. Part of the goal was to facilitate discussion so that participants
can work together to maximize lessons learned in the lead up to an in-person workshop and
special issue of a journal. The SAMPL6 log P Virtual Workshop video [54] and presentation
slides [55] are available, as are organizer presentation slides from the joint D3R/SAMPL
Workshop 2019 [56, 57] on the SAMPL Community Zenodo page (https://zenodo.org/
communities/sampl/).

A machine-readable submission file format was speciled for blind submissions. Participants
were asked to report SAMPL6 Molecule IDs, predicted octanol-water log P values, the log P
standard error of the mean (SEM), and model uncertainty. It was mandatory to submit
predictions for all these values, including the estimates of uncertainty. The log P SEM
captures the statistical uncertainty of the predicted method, and the model uncertainty is an
estimate of how well prediction and experimental values will agree. Molecule IDs assigned
in SAMPLS6 pKj; Challenge were conserved in the challenge for the ease of reference.

Participants were asked to categorize their methods as belonging to one of four method
categories — physical, empirical, mixed or other. The following are definitions provided to
participants for selecting a method category: Empirical models are prediction methods that
are trained on experimental data, such as QSPR, machine learning models, artificial neural
networks etc. Physical models are prediction methods that rely on the physical principles of
the system such as molecular mechanics or quantum mechanics based methods to predict
molecular properties. Methods taking advantage of both kinds of approaches were asked to
be reported as “Mixed”. The “other” category was for methods which do not match the
previous ones. At the analysis stage, some categories were further refined, as discussed in
Section 2.2.

The submission files also included fields for naming the method, listing the software
utilized, and a free text method section for the detailed documentation of each method. Only
one log Pvalue for each molecule per submission and only full prediction sets were allowed.
Incomplete submissions — such as for a subset of compounds — were not accepted. We
highlighted various factors for participants to consider in their log 2 predictions. These
included:

1. There is a significant partitioning of water into the octanol phase. The mole
fraction of water in octanol was previously measured as 0.271+0.003 at 25°C
[58].

2. The solutes can impact the distribution of water and octanol. Dimerization or

oligomerization of solute molecules in one or more of the phases may also
impact results [59].

3. log P measurements capture partition of neutral species which may consist of
multiple tautomers with significant populations or the major tautomer may not be
the one given in the input file.

4. Shifts in tautomeric state populations on transfer between phases are also
possible.
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Research groups were allowed to participate with multiple submissions, which allowed them
to submit prediction sets to compare multiple methods or to investigate the effect of varying
parameters of a single method. All blind submissions were assigned a 5-digit alphanumeric
submission 1D, which will be used throughout this paper and also in the evaluation papers of
participants. These abbreviations are defined in Table 3.

2.2 Evaluation approach

A variety of error metrics were considered when analyzing predictions submitted to the
SAMPLG6 log P Challenge. Summary statistics were calculated for each submission for
method comparison, as well as error metrics of predictions of each method. Both summary
statistics and individual error analysis of predictions were provided to participants before the
virtual workshop. Details of the analysis and scripts are maintained on the SAMPL6 Github
Repository (described in section 6).

There are six error metrics reported: the root-mean-squared error (RMSE), mean absolute
error (MAE), mean (signed) error (ME), coefficient of determination (R?), linear regression
slope (m), and Kendall’s Rank Correlation Coefficient (z). In addition to calculating these
performance metrics, 95% confidence intervals were computed for these values using a
bootstrappingover-molecules procedure (with 10000 bootstrap samples) as described
elsewhere in a previous SAMPL overview article [60]. Due to the small dynamic range of
experimental log Pvalues of the SAMPLG6 set, it is more appropriate to use accuracy based
performance metrics, such as RMSE and MAE, to evaluate methods than correlation-based
statistics. This observation is also typically reflected in the confidence intervals on these
metrics. Calculated errors statistics of all methods can be found in Tables S4 and S5.

Submissions were originally assigned to four method categories (physical, empirical, mixed,
and other) by participants. However, when we evaluated the set of participating methods it
became clear that it was going to be more informative to group them using the following
categories: physical (MM), physical (QM), empirical, and mixed. Methods from the
“other” group were reassigned to empirical or physical (QM) categories as appropriate.
Methods submitted as Physical by participants included quantum mechanical (QM),
molecular mechanics-based (MM) and, to a lesser extent, integral equation-based
approaches (ECRISM). We subdivided these submissions into “physical (MM)” and
“physical (QM)” categories. Integral equation-based approaches were also evaluated under
the Physical (QM) category. The “mixed” category includes methods that physical and
empirical approaches are used in combination. Table 3 indicates the final category
assignments in the “Category” column.

We created a shortlist of consistently well-performing methods that were ranked in the top
20 consistently according to two error and two correlation metrics: RMSE, MAE, R-
Squared, and Kendall’s Tau. These are shown in Table 4.

We included null and reference method prediction sets in the analysis to provide perspective
for performance evaluations of blind predictions. Null models or null predictions employ a
model which is not expected to be useful and can provide a simple point of comparison for
more sophisticated methods, as ideally, such methods should improve on predictions from a
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null model. We created a null prediction set (submission ID NULLO) by predicting a
constant log P value for every compound, based on a plausible log Pvalue for drug-like
compounds. We also provide reference calculations using several physical (alchemical) and
empirical approaches as a point of comparison. The analysis is presented with and without
the inclusion of reference calculations in the SAMPL6 GitHub repository. All figures and
statistics tables in this manuscript include reference calculations. As the reference
calculations were not formal submissions, these were omitted from formal ranking in the
challenge, but we present plots in this article which show them for easy comparison. These
are labeled with submission IDs of the form REFRH## to allow easy recognition of non-blind
reference calculations.

In addition to the comparison of methods we also evaluated the relative difficulty of
predicting log P of each molecule in the set. For this purpose, we plotted prediction error
distributions of each molecule considering all prediction methods. We also calculated MAE
for each molecule’s overall predictions as well as for predictions from each category as a
whole.

3 Methods for reference calculations

Here we highlight the null prediction method and reference methods. We have included
several widely-used physical and empirical methods as reference calculations in the
comparative evaluation of log P prediction methods, in addition to the blind submissions of
the SAMPLS6 log P Challenge. These reference calculations are not formally part of the
challenge but are provided as comparison methods. They were collected after the blind
challenge deadline when the experimental data was released to the public. For a more
detailed description of the methods used in the reference calculations, please refer to Section
12.1.

3.1 Physical Reference Calculations

Physical reference calculations were carried out using YANK [61], an alchemical free
energy calculation toolkit [62, 63]. YANK implements Hamiltonian replica exchange
molecular dynamics (H-REMD) simulations to sample multiple alchemical states and is able
to explore a number of different alchemical intermediate functional forms using the
OpenMM toolkit for molecular simulation [64—-66].

The GAFF 1.81 [67] and SMIRNOFF (smirnoff99Frosst 1.0.7) [68] force fields were
combined with three different water models. Water models are important for accuracy in
modeling efforts in molecular modeling and simulation. The majority of modeling packages
make use of rigid and fixed charge models due to their computational efficiency. To test how
different water models can impact predictions, we combined three explicit water models
TIP3P [69], TIP3P Force Balance (TIP3P-FB) [70] and the Optimal Point Charge (OPC)
model [71] with the GAFF and SMIRNOFF force fields. The TIP3P and TIP3P-FB models
are a part of the three-site water model class where each atom has partial atomic charges and
a Lennard-Jones interaction site centered at the oxygen atom. The OPC model is a rigid 4-
site, 3-charge water model that has the same molecular geometry as TIP3P, but the negative
charge on the oxygen atom is located on a massless virtual site at the HOH angle bisector.
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This arrangement is meant to improve the water molecule’s electrostatic distribution. While
TIP3P is one of the older and more common models used, OPC and TIP3P-FB are newer
models that were parameterized to more accurately reproduce more of the physical
properties of liquid bulk water.

Reference calculations also included wet and dry conditions for the octanol phase using the
GAFF and SMIRNOFF force field with TIP3P water. The wet octanol phase was 27% water
by mole fraction [58]. The methods used for physical reference calculations are summarized
in Table 1.

Physical reference calculations (submission IDs: REF01-REF08) were done using a
previously untested direct transfer free energy calculation protocol (DFE) which involved
calculating the transfer free energy between water and octanol phases (explained in detail in
Section 12.1.1), rather than a more typical protocol involving calculating a gas-to-solvent
transfer free energy for each phase — an indirect solvation-based transfer free energy (IFE)
protocol. In order to check for problems caused by this error, we included additional
calculations performed by the more typical IFE protocol. Method details for the IFE
protocol are presented in Section 12.1.2 and results are discussed in Section 4.2. However,
only reference calculations performed with DFE protocol were included in overall
evaluation of the SAMPL6 Challenge presented in Section 4.1, because only these spanned
the full range of force fields and solvent models we sought to explore.

3.2 Empirical Reference Calculations

As empirical reference models, we used a number of commercial calculation programs, with
the permission of the respective vendors, who agreed to have the results included in the
SAMPL6 comparison. The programs are summarized in Table 2 and cover several of the
different methodologies described in sections 1.2.2 and 12.1.3.

3.3 Our null prediction method

This submission set is designed as a null model which predicts the log of all molecules to be
equal to the mean clogP of FDA approved oral new chemical entities (NCEs) between the
years 1998 and 2017 based on the analysis of Micheal D. Shultz (2019) [72]. We show this
null model with submission ID NULLO. The mean clogP of FDA approved oral NCEs
approved between 1900-1997, 1998-2007, and 2008-2017 were reported 2.1, 2.4, and 2.9,
respectively, using StarDrop clogP calculations (https://www.optibrium.com/). We
calculated the mean of NCEs approved between 1998 — 2017, which is 2.66, to represent the
average log P of contemporary drug-like molecules. We excluded the years 1900-1997 from
this calculation as the early drugs tend to be much smaller and much more hydrophilic than
the ones being developed at present.

4 Results and Discussion

4.1 Overview of challenge results

A large variety of methods were represented in the SAMPLG6 log P Challenge. There were
91 blind submissions collected from 27 participating groups in the log P challenge (Tables of
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participants and the predictions they submitted are presented in SAMPL6 GitHub
Repository and its archived copy in the Supporting Information.) This represented an
increase in interest over the previous SAMPL challenges. In the SAMPLS5 Cyclohexane-
Water log D Challenge, there were 76 submissions from 18 participating groups [2], so
participation was even higher this iteration.

Out of blind submissions of the SAMPLS6 log P Challenge, there were 31 in the physical
(MM) category, 25 in the physical (QM) category, 18 in the empirical category, and 17 in the
mixed method category (Table 3). We also provided additional reference calculations — five
in the empirical category, and eight in the physical (MM) category.

The following sections present detailed performance evaluation of blind submissions and
reference prediction methods. Performance statistics of all the methods can be found in S4.
Methods are referred to by their submission I1D’s which are provided in 3.

4.1.1 Performance statistics for method comparison—Many methods in the
SAMPL6 Challenge achieved good predictive accuracy for octanol-water log Pvalues.
Figure 3 shows the performance comparison of methods based on accuracy with RMSE and
MAE. 10 methods achieved an RMSE <0.5 log Punits. These methods were QM-based,
empirical, and mixed approaches (submission I1Ds: Am0On, gm0qg5, 3vqbi, sg07g, j8nwe,
xxhdi, hapuj, dgxk4, vzgyt, ypmr0). Many of the methods had an RMSE < 1.0 log P units.
These 40 methods include 34 blind predictions, 5 reference calculations, and the null
prediction method.

Correlation-based statistics methods only provide a rough comparison of methods of the
SAMPLG6 Challenge, given the small dynamic range of the experimental log P dataset.
Figure 4 shows R? and Kendall’s Tau values calculated for each method, sorted from high to
low performance. However, the uncertainty of each correlation statistic is quite high, not
allowing a true ranking based on correlation. Methods with R? and Kendall’s Tau higher
than 0.5 constitute around 50% of the methods and can be considered as the better half.
However, the performance of individual methods is statistically indistinguishable.
Nevertheless, it is worth noting that QM-based methods appeared marginally better at
capturing the correlation and ranking of experimental log P values. These methods
comprised the top four based on R2 (= 0.75; submission IDs: 2tzb0, rdsnw, hmz0n, mmajf,
and the top six based on Kendall’s Tau, (= 0.70; submission IDs: j8nwe, qyzjx, 2tzb0, rdsnw,
mmd0jf, and 6fyg5). However, due to the small dynamic range and the number of
experimental log P values of the SAMPLSG set, correlation-based statistics are less
informative than accuracy-based performance metrics such as RMSE and MAE.

4.1.2 Results from physical methods—One of the aims of the SAMPL6 log P
Challenge was to assess the accuracy of physical approaches in order to potentially provide
direction for improvements which could later impact accuracy in downstream applications
like protein-ligand binding. Some MM-based methods used for log 2 predictions use the
same technology applied to protein-ligand binding predictions, so improvements made to
modeling of partition may in principle carry over. However, prediction of partition between
two solvent phases is a far simpler test only capturing some aspects of affinity prediction —
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specifically, small molecule and solvation modeling — in the absence of protein-ligand
interactions and protonation state prediction problems.

Figure 5 shows a comparison of the performance of MM- and QM-based methods in terms
of RMSE and Kendall’s Tau. Both in terms of accuracy and ranking ability, QM methods
resulted in better results, on average. QM methods using implicit solvation models
outperformed MM-based methods with explicit solvent methods that were expected to
capture the heterogeneous structure of the wet octanol phase better. Only 3 MM-based
methods and 8 QM-based methods achieved RMSE less than 1 log AP unit. 5 of these QM-
based methods showed very high accuracy (RMSE < 0.5 log P units). The three MM-based
methods with the lowest RMSE were:

. Molecular-Dynamics-Expanded-Ensembles (746c0): This submission used an
AMBER/OPLS-based force field with manually adjusted parameters (following
rules from the participant’s article [86]), modified Toukan-Rahman water model
with Nonzero Lennard-Jones parameters [84], and modified Expanded
Ensembles (EEMD) method [87] for free energy estimations.

. Alchemical-CGenFF (ufsgv, Zmi5w; [83]): These two submissions used Multi-
Phase Boltzmann Weighting with the CHARMM Generalized Force Field
(CGenFF) [88], and the TIP3P water model [69]. From the brief method
descriptions submitted to the challenge we could not identify the difference
between these prediction sets.

RMSE values for predictions made with MM-based methods ranged from 0.74 to 4.00 log P
units, with the average of the better half being 1.44 log P units.

Submissions included diverse molecular simulation-based log £ predictions made using
alchemical approaches. These included Free Energy Perturbation (FEP) [89] and BAR
estimation [90], Thermodynamic integration (T1) [91], and non-equilibrium switching (NES)
[92, 93]. Predictions using YANK [61] Hamiltonian replica exchange molecular dynamics
and MBAR [94] were provided as reference calculations.

A variety of combinations of force fields and water models were represented in the
challenge. These included CGenFF with TIP3P or OPC3 [95] water models; OPLS-AA [96]
with OPC3 and TIP4P [69] water models; GAFF [67] with TIP3P, TIP3P Force Balance
[70], OPC [71], and OPC3 water models; GAFF2 [97] with the OPC3 water model; GAFF
with Hirshfeld-1 [98] and Minimal Basis Set Iterative Stockholder(MBIS) [99] partial
charges and the TIP3P or SPCE water models [100]; the SMIRNOFF force field [68] with
the TIP3P, TIP3P Force Balance, and OPC water models; and submissions using Drude
[101] and ARROW [102] polarizable force fields.

Predictions that used polarizable force fields did not show an advantage over fixed-charged
force fields in this challenge. RMSEs for polarizable force field submissions range from
1.85 to 2.86 (submissions with the Drude Force Field were fyx45, pnc4j, and those with the
ARROW Force Field were odex0, padym fespk, and 6cmé6a).
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Predictions using both dry and wet octanol phases were submitted to the log 2 challenge.
When submissions from the same participants were compared, we find that including water
in the octanol phase only slightly lowers the RMSE (0.05-0.10 log A units), as seen in
Alchemical-CGenFF predictions (wet: ufshv, 2mibw, ttzb5; dry: 3wvyh), YANK-GAFF-
TIP3P predictions (wet: REFOZ, dry: REF07), MD-LigParGen predictions with OPLS and
TIP4P (wet: mwuua, dry: eufcy), and MD-OPLSAA predictions with TIP4P (wet: 623¢0,
dry: ¢p8kv). However this improvement in performance with wet octanol phase was not
found to be a significant effect on overall prediction accuracy. Methodological differences
and choice of force field have a greater impact on prediction accuracy than the composition
of the octanol phase.

Refer to Table S1 for a summary of force fields and water models used in MM-based
submissions. For additional analysis, we refer the interested reader to the work of Piero
Procacci and Guido Guarnieri, who provide a detailed comparison of MM-based alchemical
equilibrium and non-equilibrium approaches in SAMPL6 Challenge in their paper [73].
Specifically, in the section “Overview on MD-based SAMPL6 submissions” of their paper,
they provide comparisons subdividing submissions based force field (for CGenFF,
GAFF1/2, and OPLS-AA).

4.1.3 A shortlist of consistently well-performing methods—Although there was
not any single method that performed significantly better than others in the log P challenge,
we identified a group of consistently well performing methods. There were many methods
with good performance when judged based on RMSE, but not many methods consistently
showed up at the top according to all metrics. When individual error metrics are considered,
many submissions were not different from one another in a statistically significant way, and
ranking typically depends on the metric chosen due overlapping confidence intervals.
Instead, we identified several consistently well performing methods by looking at several
different metrics — two assessing accuracy (RMSE and MAE) and two assessing correlation
(Kendall’s Tau and R2). We determined those methods which are in the top 20 by each of
these metrics. This resulted in a list of eight methods which are consistently well
performing. The shortlist of consistently well-performing methods are presented in Table 4.

The resulting eight consistently well-performing methods were QM-based physical models
and empirical methods. These eight methods were fairly diverse. Traditional QM-based
physical methods included log P predictions with COSMO-RS method as implemented in
COSMOtherm v19 at the BP//TZVPD//FINE Single Point level (Amz0n, [16-18]) and the
SMD solvation model with the M06 density functional family (dgxk4, [79]). Additionally,
two other top QM-based methods seen in this shortlist used EC-RISM theory with wet or
dry octanol (f8nwc and qyzjx) [22]. Several empirical submissions also were among these
well-performing methods — specifically, the Global XGBoost-Based QSPR LogP Predictor
(gmog5), the RayLogP-I1 (hdpuj) approach, and rfs-logp (vzgy?). Among reference
calculations, SlogP calculated by MOE software (REF13) was the only method that was
consistently well performing.

Figure 6 compares log P predictions with experimental values for these 8 well-performing
methods, as well as one additional method which has an average level of performance. This
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representative method (rdsnw; [22]) is the method with the highest RMSE below the median
of all methods (including reference methods).

4.1.4 Difficult chemical properties for log P predictions—In addition to
comparing method performance, we analyzed the prediction errors for each compound in the
challenge set to assess whether particular compounds or chemistries are especially
challenging (Figure 7). For this analysis, MAE is a more appropriate statistical value for
following global trends, as its value is less affected by outliers than is RMSE.

Performance on individual molecules shows relatively uniform MAE across the challenge
set (Figure 7A). Predictions of SM14 and SM16 were slightly more accurate than the rest of
the molecules when averaged across all methods. Prediction accuracy on each molecule,
however, is highly variable depending on method category (Figure 7B). Predictions of
SMO08, SM13, SM09, and SM12 were significantly less accurate with physical (MM)
methods than the other method categories by 2 log 2 units in terms of MAE over all methods
in each category. These molecules were not challenging for QM-based methods.
Discrepancies in predictions of SM08 and SM13 are discussed in Section 4.2. For QM-based
methods, SM04 and SM02 were most challenging. The largest MAE for empirical methods
was observed for SM11 and SM15.

Figure 7C shows the error distribution for each SAMPL6 molecule over all prediction
methods. It is interesting to note that most distributions are peaked near an error of zero,
suggesting that perhaps a consensus model might outperform most individual models.
However, SM15 is more significantly shifted away from zero than any other compound (ME
calculated accross all molecules is —0.88+1.49 for SM15). SMO08 had the most spread in log
Pprediction error.

This challenge focused on log P of neutral species, rather than log D as studied in SAMPLYS5,
which meant that we do not see the same trends where performance is significantly worse
for compounds with multiple protonation states/tautomers or where pKj values are
uncertain. However, in principle, tautomerization can still influence log Pvalues. Multiple
neutral tautomers can be present at significant populations in either solvent phase, or the
major tautomer can be different in each solvent phase. However, this was not expected to be
the case for any of the 11 compounds in this SAMPL6 Challenge. We do not have
experimental data on the identity or ratio of tautomers, but tautomers other than those
depicted in Figure 2 would be much higher in energy according to QM predictions [22] and,
thus, very unlikely to play a significant role. Still, for most log £ prediction methods, it was
at least necessary for participants to select the major neutral tautomer. We do not observe
statistically worse error for compounds with potential tautomer uncertainties here,
suggesting it was not a major factor in overall accuracy, some participants d7d chose to run
calculations on tautomers that were not provided in the challenge input files (Figure 11 and
Table 5), as we discuss in Section 4.2.

4.1.5 Comparison to the past SAMPL challenges—Overall, SAMPL6 log P
predictions were more accurate than log D predictions in the SAMPL5 Cyclohexane-Water
log D Challenge (Figure 3). In the log D challenge, only five submissions had an RMSE <
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2.5 log units, with the best having an RMSE of 2.1 log P units. A rough estimate of expected
error for log Pand log Dis 1.54 log units. This comes from taking the mean RMSE of the
top half of submissions in SAMPL4 Hydration Free Energy Prediction Challenge (1.5 kcal/
mol) [60] and assuming the error in each phase is independent and equal to this value,
yieding an expected error of 1.54 log Punits [2]. Here, 64 log P challenge methods
performed better than this threshold (58 blind predictions, 5 reference calculations, and the
null prediction). However, only 10 of them were MM-based methods, with the lowest RMSE
of 0.74 observed for method named Molecular-Dynamics-Expanded-Ensembles (n/6¢0).

Challenge construction and experimental data availability are factors that contributed to the
higher prediction accuracy observed in SAMPL6 compared to prior years. The log P
challenge benefited from having a well-defined protonation state, especially for physical
methods. Empirical methods benefited from the wealth of octanol-water training data.
Accordingly, empirical methods were among the best performers here. But also, the
chemical diversity represented by 11 compounds of the SAMPLS6 log P challenge is very
restricted and lower than the 53 small molecules in the SAMPLS5 log D Challenge set. This
was somewhat consistent with our expectations (discussed in Section 1.2.3)—that empirical,
QM (with trained implicit solvation models), and mixed methods would outperform MM
methods given their more extensive use of abundant octanol-water data in training (Figure
3).

4.2 Lessons learned from physical reference calculations

4.2.1 Comparison of reference calculations did not indicate a single force
field or water model with dramatically better performance—As in previous
SAMPL challenges, we conducted a number of reference calculations with established
methods to provide a point of comparison. These included calculations with alchemical
physical methods. Particularly, to see how the choice of water model affects accuracy we
included three explicit solvent water models — TIP3P, TIP3P-FB and the OPC model — with
the GAFF and SMIRNOFF force fields in our physical reference calculations. Deviations
from experiment were significant (RMSE values ranged from 2.3 [1.1, 3.5] to 4.0 [2.7, 5.3]
log units) across all the conditions used in the physical reference predictions (Figure 3A). In
general, all the water models tend to overestimate the log 2, especially for the carboxylic
acid in the challenge set, SM08, though our calculations on this molecule had some specific
difficulties we discuss further below. Relative to the TIP3P-FB and OPC water models,
predictions which used TIP3P showed improvement in some of the error metrics, such as
lower deviation from experiment with an RMSE range of 2.3 [1.1, 3.5] to 2.34 [1.0, 3.7] log
units. The OPC and TIP3P-FB containing combinations had a higher RMSE range of 3.2
[2.0, 4.5] to 4.0 [2.7, 5.3] log units.

Physical reference calculations also included wet and dry conditions for the octanol phase
using the GAFF and SMIRNOFF force field with TIP3P water. The wet octanol phase was
composed of 27% water and dry octanol was modeled as pure octanol (0% water content).
For reference calculations with the TIP3P water model the GAFF, and SMIRNOFF force
fields using wet or dry octanol phases resulted in statistically indistinguishable performance.
With GAFF, the dry octanol (REF07) RMSE was 2.4 [1.0, 3.7]. The wet octanol (REFO2)
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RMSE was 2.3 [1.1, 3.5]. With SMIRNOFF, the dry octanol RMSE was 2.4 [1.0, 3.7], with
a wet octanol (REF05) RMSE of 2.3 [1.2, 3.5] (Table S4 and S5).

While water model and force 1leld may have signilcantly impacted differences in
performance across methods in some cases in this challenge, we have very few cases — aside
from these reference calculations — where submitted protocols differed on/y by force leld or
water model, making it difficult to know the origin of performance differences for certain.

4.2.2 Different simulation protocols lead to different results between
“equivalent” methods that use the same force field and water model—Several
participants submitted predictions from physical methods which are equivalent to those used
in our reference calculations and use the same force field and water model, which in
principle ought to give identical results given adequate simulation time. There were three
submissions which used the GAFF force field, TIP3P water model, and wet octanol phase:
é6nmitt (MD-AMBER-wetoct), v2q0rt (InterX_GAFF_WET_OCTANOL), and REF0Z2
(YANK-GAFF-TIP3P-dry-oct). As can be seen in Figure 3A, v2q0t (InterX_GAFF_
WET_OCTANOL) showed the best accuracy with an RMSE of 1.31 [0.94, 1.65]. énmitt
(MD-AMBER-wetoct) and REFO2 (YANK-GAFF-TIP3P-dry-oct) had higher RMSE values
of 1.87 [1.33, 2.45] and 2.29 [1.07, 3.53], respectively. Two methods that used GAFF force
field, TIP3P water model and wet octanol phase are sgosi (MD-AMBER-dryoct) and REFO7
(YANK-GAFF-TIP3P-dry-oct). These two also have an RMSE difference of 0.7 log P units.
Although, in terms of overall accuracy there are differences, Figure 8 shows that in terms of
individual predictions, submissions using the same force field and water model largely agree
for most compounds.

Some discrepancies are observed for molecules SM13 and SMO7, but are largest for SMO08.
For SM13 and SMO07, method v2q0t (InterX_GAFF_WET_OCTANOL) performs over 1 log
Punit better than 6nmit (MD-AMBER-wetoct). The rest of the predictions for these two
methods differ by no more than about 1 log £ unit, with the majority of the molecules
differing by about 0.5 log P units or less from each other. Comparing 6nmtt (MD-AMBER-
wetoct) vs REFO2 (YANK-GAFF-TIP3P-wet-oct) (Figure 8A), there is a substantial
difference in the predicted values for molecules SMO08 (4.6 log unit difference), SM13 (1.4
log unit difference), and SM07 (1.2 log unit difference). Method v2q0t (InterX_GAFF_
WET_OCTANOL) and 6nmtt (MD-AMBER-wetoct) perform about 5 log P units better
than REFOZ (YANK-GAFF-TIP3P-wet-oct) for molecule SMO08. Besides SM08, predictions
from v2q0t (InterX_GAFF_WET_OCTANOL) and REFO2 (YANK-GAFF-TIP3P-wet-oct)
differ by 0.5 log Punits or less from each other. In dry octanol, REFO7 (YANK-GAFF-
TIP3P-dry-oct) performs about 4 log £ units worse than sqosi (MD-AMBER-dryoct) for
SMO08 (Figure 8B).

Submissions 6nmit (MD-AMBER-wetoct), sgosi (MD-AMBER-dryoct) and v2q0t
(InterX_GAFF_WET_OCTANOL) used GAFF version 1.4 and the reference calculations
used version 1.81, though GAFF differences are not expected to play a signilcant role here
(i.e. only the valence parameters differ).
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4.2.3 Selected small molecule state differences may have caused divergence
between otherwise equivalent methods—In several of these approaches, users
selected their own starting conformation, protonation state and tautomer, rather than those
provided in the SAMPL6 challenge, so the differences here could possibly be attributed to
differences in tautomer or resonance structures. Submissions 6nmtt (MD-AMBER-wetoct)
and sgosi (MD-AMBER-dryoct) used different tautomers for SM08 and different resonance
structures for SM11 and SM14 (microstates SM08_micro010, SM11_micro005,
SM14_micro001 from the previous SAMPL6 pK; Challenge). We will discuss possible
differences due to tautomer choice below in Section 4.2.6. The majority of the calculated log
Pvalues in 6nmtt (MD-AMBER-wetoct), sqosi (MD-AMBER-dryoct), v2q0t
(InterX_GAFF_WET_OCTANOL), REF02 (YANK-GAFF-TIP3P-wet-oct), and REFO7
(YANK-GAFF-TIP3P-dry-oct) show the molecules having a greater preference for octanol
over water than the experimental measurements (Figure 8A, B). Methods 6nmtt (MD-
AMBER-wet-oct) and REFO2 (YANK-GAFF-TIP3P-wet-oct) overestimate log £ more than
v2q0t (InterX_GAFF_WET_OCTANOL) (Figure 8A). Method REF07 (YANK-GAFF-
TIP3P-dry-oct) overestimates log Pslightly more than sqgosi (MD-AMBER-dryoct) (Figure
8B).

Three equivalent wet octanol methods and 2 equivalent dry octanol methods gave dissimilar
results, and specilc molecules were identiled that show the major differences in predicted
values (Figure 8C—F). GAFF and the TIP3P water model were used in all of these cases, but
different simulation setups and codes were used, as well as different equilibration protocols
and production methods. Submissions 6nmitt (MD-AMBER-wetoct) and sgosi (MD-
AMBER-dryoct), which come from the same group, used 10 ps NPT, 15 ns additional
equilibration with MD, and Thermodynamic integration for production in their setup.
Submission v2q0r (InterX_GAFF_WET_OCTANOL) used 200 ns of molecular dynamics to
pre-equilibrate octanol systems, 10 ns of Temperature replica exchange in equilibration, and
Isothermal-isobaric ensemble based molecular dynamics simulations in production. The
reference calculations (REFO2and REFO7) were equilibrated for about 500 ns and used
Hamiltonian replica exchange in production. Reference calculations performed with the IFE
protocol and MD-AMBER-dryoct (sgosi) method used shorter equilibration times than the
DFE protocol (REFO07).

4.2.4 DFE and IFE protocols led to indistinguishable performance, except for
SMO08 and SM02—The direct transfer free energy (DFE) protocol was used for the
physical reference calculations (REFOI-REF08). Because the DFE protocol implemented in
YANK [61] (which was also used in our reference calculations (REF01I-REF0O8)) was
relatively untested (see Section 12.1.1 for more details), we wanted to ensure it had not
dramatically affected performance, so we compared it to the indirect solvation-based transfer
free energy protocol (IFE) [103] protocol. The DFE protocol directly computed the transfer
free energy between solvents without any gas phase calculation, whereas the IFE protocol
(used in the blind submissions and some additional reference calculations labeled IFE)
computed gas-to-solution solvation free energies in water and octanol separately and then
subtracted to obtain the transfer free energy. The IFE protocol calculates the transfer free
energy as the difference between the solvation free energy of the solute going from the gas
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to the octanol phase, and the hydration free energy going from the gas to the water phase.
These protocols ought to yield equivalent results in the limit of sufficient sampling, but may
have different convergence behavior.

Figure 9A shows calculations from our two different reference protocols using the DFE and
IFE methods. We find that the two protocols yield similar results, with the exception of two
molecules. Molecule SMO08 is not substantially overestimated using the IFE protocol, where
it is with the DFE protocol, and SMO02 is largely overestimated by IFE, but not DFE (Figure
9A). The DFE (REF07) and IFE protocol both tend to overestimate the molecules’
preference for octanol over water than in experiment, with the DFE protocol overestimating
it slightly more. Figure 9D shows comparison of predicted log P values of the same
tautomers by the DFE (REF07) and IFE protocols. The DFE and IFE protocols are almost
within statistical error of one another, with the largest discrepancies coming from SM02 and
SMO08. The DFE and IFE protocols are in better agreement for some tautomers of SM08
more than others. They agree better on the predicted values for SM08_micro008 and
SMO08_micro010 than for SM08_micro011.

In the SAMPLG6 blind submissions, there was a third putatively equivalent method to our
reference predictions with the DFE protocol (REF07) and IFE protocol: sgosi (MD-
AMBER-dryoct). It is identical in chosen force 1eld, water model, and composition of
octanol phase, however, different tautomers and resonance states for some molecules were
used. All three predictions used free energy calculations with GAFF, TIP3P water, and a dry
octanol phase. Additionally, sgosi (MD-AMBER-dryoct) also used the more traditional
indirect solvation free energy protocol. We chose to investigate the differences in these
equivalent approaches approaches by comparing predictions using matching tautomers and
resonance structures (Figure 9). Figure 9B shows comparison of these three methods using
predictions made with DFE and IFE protocols using identical tautomer and resonance input
states as sqosi (MD-AMBER-dryoct): SM08_micro010, SM11_micro005, and

SM14 micro001 (structures can be found in Figure 11. Except SMO02, there is general
agreement between these predictions. Figure 9C, other than the SM08_micro010 tautomer,
predictions of DFE (REF07) and sqosi (MD-AMBER-dryoct) largely agree. Figure 9E
highlights SM02 and SM08_micro010 predictions as the major differences between our
predictions with IFE protocol and sgos/ (MD-AMBER-dryoct).

Only results from the DFE protocol were assigned submission numbers (of the form REFR##)
and presented in the overall method analysis in Section 4.1. More details of the solvation and
transfer free energy protocol can be found in section 12.1.

4.2.5 SMO08 and SM13 were the most challenging for physical reference
calculations—For the physical reference calculations category, some of the challenge
molecules were harder to predict than others (Figure 10). Overall, the chemical diversity in
the SAMPLG6 Challenge dataset was limited. This set has 6 molecules with 4-amino
quinazoline groups and 2 molecules with a benzimidazole group. The experimental values
have a narrow dynamic range from 1.95 to 4.09 and the number of heavy atoms ranges from
16 to 22 (with the average being 19), and the number of rotatable bonds ranges from 1 to 4
(with most having 3 rotatable bonds). SM13 had the highest number of rotatable bonds and
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number of heavy atoms. This molecule was overestimated in the reference calculations. As
noted earlier, molecule SMO08, a carboxylic acid, was predicted poorly across all reference
calculations. The origin of problems with molecule SMO8 are discussed below in Section
4.2.6.

SMO08 is a carboxylic acid and can potentially form an internal hydrogen bond. This
molecule was greatly overestimated in the physical reference calculations. When this one
molecule in the set is omitted from the analysis, log p prediction accuracy improves. For
example, the average RMSE and R? values across all of the physical reference calculations
when the carboxylic acid is included are 2.9 (2.3-4.0 RMSE range) and 0.2 (0.1-0.2 R2
range), respectively. Excluding this molecule gives an average RMSE of 2.1 (1.3-3,3 RMSE
range) and R? of 0.57 (0.3-0.7 R2 range), which is still considerably worse than best-
performing methods.

4.2.6 Choice of tautomer, resonance state, and assignment of partial
charges impact log P predictions appreciably—Some physical submissions selected
alternate tautomers or resonance structures for some compounds. Figure 11 shows three
tautomers of SM08, and two alternative resonance structures of SM11 and SM14, all of
which were considered by some participants. The leftmost structure of the alternate structure
group of each molecule depicts the structure provided to participants.

Because some participants chose alternate structures, we explored how much variation in the
selected input structures impacted the results. Particularly, for molecules SM14, SM11 and
SM08, both AMBER MD protocols (submissions sqgosi (MD670 AMBER-dryoct) and 6nmit
(MD-AMBER-wetoct)) used the SM14_micro001 microstate for SM14, SM11_micro005
for SM11 and SM08_micro010 for SMO08, rather than the input structures provided as
SMILES in the SAMPLG6 log P Challenge instructions (See Figure 11 for depictions). The
reference calculations and the submission from InterX (v2q0t
(InterX_GAFF_WET_OCTANOL)) used the exact input structures provided as input
SMILES for the challenge. Below, we refer to these several submissions as the MD-AMBER
and InterX submissions.

To assess whether the choice of tautomer or resonance structure was important, we
performed direct transfer free energy (DFE) and indirect solvation-based transfer free energy
(IFE) [103] calculations for these alternate structures (please refer to section 4.2.4 for an
explanation of the DFE and IFE methods). We—and the other participants utilizing these
MM-based methods—assumed that the tautomers and resonance structures are 1xed on
transfer between phases and we did not do any assessments of how such populations might
shift between octanol and water. Table 5 and Figure 9B compare log P calculations starting
from the same input structures across the three methods: sgos/ (MD-AMBER-dryoct),
REFO7 (YANK-GAFF-TIP3P-dry-oct) which used the DFE protocol, and an additional set
of calculations with the IFE protocol (using YANK, the GAFF force leld, and TIP3P water
just like REF07). The DFE protocol prediction set presented in Figure 9A is the same as
REFO7 (YANK-GAFF-TIP3P-dry-oct), but includes extra tautomers for SM08, and extra
resonance structures for SM11 and SM14.
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From our comparison of our reference calculations and those with the InterX and MD-
AMBER, we find that the choice of input tautomer has a significant effect on log
predictions. Particularly, within the traditional IFE method, our results indicate up to 2.7 log
units variation between log P values for different tautomers of SM08 (between
SMO08_micro011, SM08_micro08 and SM08_micro10) (Table 5). Our exploration of these
issues was prompted by the fact that the MD-AMBER protocols had utilized different
tautomers than those initially employed in our physical reference calculations.

We also find that the choice of resonance structure affects calculated values, though less
strongly so than the choice of tautomer. Within the IFE method we find 1.3 log units of
variation between log Pvalues calculated with different resonance structures of SM11
(SM11 and SM11_micro005) and 0.6 log units of variation between resonance structures of
SM14 (SM14 and SM14_micro001) (Table 5).

We also find that the partial charge assignment procedure can also dramatically impact log P
values for carboxylic acids (Table S7). Particularly, our calculations with the DFE and IFE
protocols employed different partial charge assignment procedures as an unintentional
feature of the protocol difference, as we detail below, and this impacted calculated log P
values by up to 6.7 log units for SM08 (specifically SM08 _micro011, the carboxylic acid in
the set) compared to experiment. Particularly, the DFE protocol utilized antechamber for
assigning AM1-BCC charges, whereas the IFE protocol used OpenEye’s quacpac.
Antechamber utilizes the provided conformer (in this case, the anti conformation) for each
molecule, whereas quacpac’s procedure computes charges for carboxylic acids in the syn
conformation because this has been viewed as the relevant conformation, and because of
concerns that the anti conformation might result in unusually large and inappropriate
charges. Thus, because of this difference, the DFE and IFE protocols used dramatically
different partial charges for these molecules (Table S7). Our results for SM08_micro011
(likely the dominant state) indicate that indeed, the conformer used for charging plays a
major role in assigned charges and the resulting log Pvalues (Table S7, Figure S). We find
our DFE protocol, which used the anti conformation for charging, overestimates the log 2 by
about 6.7 log units, whereas the IFE protocol which used the sy conformation only
overestimates it by about 0.3 log units. With the IFE method, we calculated a log Pof 2.8 +
0.2 for SM08, whereas with DFE method we obtained a value of 9.8 + 0.1 (Table 5).

4.3 Lessons learned from empirical reference calculations

Empirical methods are fast and can be applied to large virtual libraries (100 000 cmps/min/
CPU). This is in contrast to physical methods, which are often far more computationally
demanding. Most of the empirical methods are among the top performers, with the exception
of a few approaches that use descriptors and/or pre-factors that do not yield accurate log P
predictions. Most empirical methods obtain RMSE and MAE values below 1 log Punit. The
best empirical method achieved RMSE and MAE below 0.5 (grmog5, Global XGBoost-
Based QSPR LogP Predictor). In all these cases, using a relatively large training set (>~1000-
10000 compounds) seems to be key.

The exact choice of method or descriptors seems to be less critical. Predictions based on
atom or group contributions perform as well as those using either a small set of EHT-derived
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descriptors or a large set of diverse descriptors, sometimes additionally including fingerprint
descriptors. A possible explanation could be that log Pis, to first order, primarily an additive
property so that empirical methods can do well since a wealth of octanol-water data is
available for training. This is also reflected in the success of the simple methods summing
up atom contributions. This approach may become problematic, however, when a functional
group is present that was underrepresented or missing in the training set. In such cases,
higher are expected.

As is true for the physical methods, empirical methods depend on the tautomeric state of the
compound. Here we have observed that clogP is particularly sensitive. clogP shifts of more
than one log unit upon change of the tautomer are not uncommon. h_logP is much less
sensitive to tautomers with shifts usually below 0.5 log Punits. This is also true for molecule
SMO08, for which different tautomeric forms are possible (as seen in Figure 11). For the
pyridone form of SM08 (SM08_micro011), clogP predicts a log P of 2.17, whereas the
hydroxy-pyridine form (SM08_micro010) yields a log £ of 3.63. For h_logP, the respective
values are 3.09 and 3.06.

Despite the small training sets of the MOE models, good prediction for kinase inhibitor
fragments and the extra compounds was achieved. This is possibly because the training set
for this model was biased towards drug-like compounds, with substantial similarity to the
SAMPLG6 Challenge set.

Other studies have found that some empirical methods tend to overestimate log Zwhen
molecular weight increases [104, 105]. In this challenge, this was less of an issue as
molecular size remained relatively constant.

According to in-house experience at Boehringer-Ingelheim, different experimental log
measurement methods produce values that are correlated with one another with an R? value
of around 0.7 (T. Fox, P. Sieger, unpublished results), indicating that experimental methods
themselves can disagree with one another significantly. This is especially true when it comes
to more approximate methods of estimating log P experimentally, such as HPLC-based
methods [42, 106]. A dataset composed of 400 compounds from Boehringer-Ingelheim
measured both with GLpKa and HPLC assays covering a range from 07 log 2 units had R?
of 0.56, though in some cases these methods may have higher correlations with
potentiometric approaches [107]. Thus, if an empirical model is trained on log £ data from
one particular method, testing it on data collected via another method may not yield
performance as high as expected.

Here, all of the analyzed empirical reference methods achieved absolute error <2.0, and
often <1.5 calculated for each molecule in the SAMPL6 log P Challenge set. This is a sign
of more consistent accuracy of the predictions across different molecules compared to
physical methods. However, it is difficult to draw general conclusions given the small size of
the data set, and many hypotheses being based on only one example.
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4.4 Performance of reference methods on additional molecules

To broaden the analysis with a larger set with more chemical diversity and larger dynamic
range of log Pvalues, an extra set of log P values collected using the same method as the
SAMPLG6 dataset. This set is composed of substituted phenols, substituted quinolines,
barbiturate derivatives and other pharmaceutically relevant compounds [108].

This set of molecules is larger and more diverse than the SAMPL6 challenge set, spanning a
range of 4.5 log units compared to the challenge set which had a range of 2.1 log units. For
this set, the number of rotatable bonds ranges from 0 to 12, with an average of 3 per
compound. The number of heavy atoms ranges from 7 to 27, and the average per compound
is 14. Most of the worst-performing compounds for the physical reference calculations had a
higher number of heavy atoms — celiprolol (27), acebutolol (24) and pericyazine (26).
Celiprolol and acebutolol both have the highest number of rotatable bonds in the set, 12 and
11 respectively. Chlorpromazine, pericyazine, and sulfamethazine all contain sulfur. Sulfur
can in some cases pose particular challenges for force fields, especially hypervalent sulfur
[109], which may account for the poor performance of pericyazine, chlorpromazine, and
sulfamethazine. Pericyazine, one of the worst performing compounds, is also the only
molecule in the set that has a nitrile.

In the physical reference calculations, the mean absolute errors are below 1 log 2 unit for
dry octanol conditions and below 1 log 2~ units for wet octanol conditions (Table 6). The
calculated log P values had an average RMSE of 1.4 (RMSE range of 1.3[0.9, 1.6] to 1.5
[1.0, 2.0]), and an average R? of 0.5 (with a correlation range of 0.5 [0.1, 0.8] to 0.6 [0.3,
0.8]). Physical methods are on par with empirical ones for the smaller, less flexible
compounds, but in general are worse, especially for compounds with long flexible
hydrophilic tails. The exception is chlorpromazine, but the smaller error seen in this
molecule might be due to an error compensation caused by the presence of the sulfur atom
since force fields have challenges with sulfur-containing compounds. [109].

Empirical methods are more stable in the sense that there are no gross outliers found in the
extended set. For the empirical reference calculations, the absolute errors for the 27 extra
compounds are all below 1 log P unit. For clogP, most compounds have errors below 0.4 log
Punit, with only (£)-propanolol a bit higher. Compound 3,5-dichlorophenol and 3,4-
dichlorophenol consistently had a slightly higher error; there is no obvious correlation
between method performance and size or complexity of the compounds. Figure 13A shows
that 3,5-dichlorophenol, 3,4-dichlorophenol, and (£)-propranolol were the most challenging
compounds for empirical reference methods. The MAE calculated for these three molecules
as the average of five methods (EXT709, EXTI10, EXT11, EXT12, EXT13) was higher than
0.5 log Punits (Table 6). RMSE overall compounds between 0.23 for clogP and 0.59 for
MOE_SlogP, significantly below the best physical model. This is mirrored in the Kendall tau
values, where the best empirical method (clogP) achieves 0.85, whereas the best physical
methods are comparable to the worst empirical method with a value of 0.55.

When prediction performance of empirical prediction methods for this dataset and for the
SAMPLG6 Challenge set are compared, we observe better prediction accuracy for this set,
with an RMSE range of 0.2 [0.2, 0.3] to 0.6 [0.5,0.7] for the extra molecules and 0.5 [0.2,

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Isik et al.

Page 27

0.8] to 0.8 [0.5, 1.1] for the challenge molecules. The average R2 was 0.6 (with a correlation
range of 0.38 [0.01, 0.82] to 0.7 [0.3, 0.9]). This may be due to SAMPL6 compounds being

more challenging, or it may be that these extra molecules appear in the training sets used in

developing empirical methods.

4.5 Take-away lessons from the SAMPL6 Challenge

Empirical and QM-based prediction methods represented in SAMPLG6 Challenge in general
performed better than MM-based methods. Ten empirical and QM-based methods achieved
an RMSE <0.5 log Punits. The lowest RMSE observed for MM-based physical methods
was 0.74 and the average RMSE of the better half of MM-based methods was 1.44 log P
units. However, the RMSE of the best two MM-based methods was similar to the null
model, which simply guessed that all compounds had a constant, typical log P value.

For MM approaches, prediction accuracy varied based on methodological choices such as
simulation method, equilibration protocol, free energy estimation method, force field, and
water model. Only a small number of MM-based physical models achieved an accuracy
similar to the null model, which had an RMSE of 0.8. Some MM methods outperformed the
null model, but such performance was variable across approaches and not clearly linked to a
single choice of force field, water model, etc. Polarizable force fields also did not provide an
advantage for log P predictions, possibly due to solute simplicity and the absence of formal
charge, or because other sources of error dominated.

Analysis of the MM-based reference calculations highlighted equilibration and charging
protocols, sampling challenges, identification of the dominant neutral tautomer, and
selection of input resonance states as confounding factors. Comparison of equivalent
calculations from independent participants (identical methods such as free energy
calculations using GAFF and TIP3P water with different setups and code) showed
significant systematic deviations between predicted values for some compounds. The
comparison of identical methods also showed that the tautomer and resonance state choice
for some molecules resulted in discrepancies in calculated log P values. In one case,
conformation selected for a carboxylic acid before charging was important. We have also
noticed differences in in equilibration protocols, which could be particularly important for
the octanol phase, though the present challenge does not conclusively demonstrate that
differences in equilibration made a significant difference.

Fast empirical methods showed greater consistency of prediction accuracy across test
molecules compared to physical methods. Most of the empirical methods were among the
better-performing methods. The size of the training sets seems to be more important for
accuracy than the exact methods and descriptors used in each model. Although not observed
in the SAMPL6 Challenge set, empirical methods may experience problems if a functional
group is underrepresented in training sets. Just like the physical methods, the choice of
tautomer makes a difference. For example, shifts greater than 1 log unit in the calculated log
P of different tautomers are common.

Performance in the SAMPLG6 log P challenge was generally better than in the SAMPLS5 log
D Challenge. The change of partition solvent from cyclohexane to octanol, absence of
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protonation state effects, and smaller chemical diversity represented in the challenge are
likely reasons. In the SAMPLS5 log D Challenge, only five submissions had an RMSE below
2.5 log units, while here, 10 methods achieved an RMSE < 0.5 log P units and many of the
submissions had an RMSE < 1.0 log P units. The design of the SAMPL6 log # Challenge
removed some of the factors confounding accuracy in the earlier log D challenge, namely

p K prediction and cyclohexane (a challenging solvent for empirical methods).

Compared to expected accuracy for partition coefficients based on SAMPLA4 Challenge
performance, many QM-based methods were better while only a small number of MM-
based methods achieved slightly better results. In SAMPLA4, the top-performing hydration
free energy predictions had an error of about 1.5 kcal/mol, which would yield an expected
error here (assuming independent errors/no error cancellation) of about 1.54 log units [2], if
log Pvalues were estimated from a difference in solvation free energies. Many physical
methods achieved roughly this accuracy or slightly better.

Partition coefficient predictions can also serve, for physical calculations, as a model system
that reflects how well solvation effects can be captured by the same techniques developed
for protein-ligand binding predictions — where solvation also plays a role in calculations.
Relative binding free energy calculations tend to achieve errors, in the best-case scenario, in
the 1-2 kcal/mol range [110], or about 1.03-2.06 log units if similar accuracy were achieved
here for solvation in each phase (with independent errors). Many methods did better than 2
log Punits of error in this challenge, which is in agreement with the expectation that
partition coefficients present an easier model system compared to protein-ligand binding
affinities.

Performance of empirical methods far surpassed these thresholds taking advantage of the
available octanol-water experimental data, however, these empirical techniques are
specifically oriented towards predicting partitioning and cannot be applied to the binding
problem.

4.6 Suggestions for the design of future challenges

In the SAMPLG6 Challenge, the log P focus proved helpful to allow a focus on modeling of
solvation effects without the complexities of modeling different protonation states present in
a log D challenge. Challenges which focus on specific aspects of modeling help isolate
methodological problems, making challenges like log £and log O modeling particularly
helpful. We believe the largest benefits to the field will be achieved from iterated challenges,
as seen from the progress achieved in predicting hydration free energies over multiple
SAMPL challenges [60].

As MM-based physical methods struggled with octanol-water log P predictions in SAMPLS,
we recommend additional SAMPL iterations focused on log P with larger datasets and more
chemical diversity to facilitate progress. The conclusions of SAMPL6 pKj and log P
Challenges indicate that, if this had been posed as a log D challenge rather than a log P
challenge, larger pK; prediction errors would have masked underlying issues in predicting
equilibrium partitioning of neutral solutes between solvent phases. The fact that performance
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for physical methods was still relatively poor illustrates the potential benefit of future log P
challenges.

For near-term challenges, we would like to keep the level of difficulty reasonable by keeping
the focus on smaller and fragment-like compounds and limiting the number of non-terminal
rotatable bonds (maximum of 6) similar to SAMPL5. The SAMPLS5 Challenge suggested
that molecules with many rotatable bonds still pose challenges for contemporary methods,
suggesting this is a criterion for difficulty. However, in later challenges we hope to gradually
increase the difficulty of the compounds considered to provide a more diverse set that
includes more difficult compounds including varying numbers of rotatable bonds.

Ideally, a more diverse combination of functional groups in the compounds should be
included in future sets, with improved chemical diversity posing more challenges and also
helping provide additional lessons learned. For example, a dataset could include matched
molecular pairs which differ by only a single functional group, helping to isolate which
functional groups pose particular challenges. Current MM-based methods are known to
often have difficulty modeling sulfonyl and sulfonamide groups, but a challenge utilizing
matched molecular pairs could reveal other such challenging functional groups. In addition,
expanding partition coefficient challenges with a diverse set of solvent phases would be
beneficial for improving solute partitioning models.

The statistical power of the SAMPLG6 log 2 Challenge for comparative method evaluation
was limited due to the narrow experimental data set with only 2 log P units of dynamic range
and 11 data points, both of which were driven by limitations of the ” experimental
methodology chosen for this challenge [9]. Future log P challenges would benefit from
larger blind datasets with a broader dynamic range. We recommend at least a log Prange of
1-5. The potentiometric log 2 measurement method used for the collection for SAMPL6
data was rather low throughput, requiring method optimization for each molecule. High-
throughput log D measurement methods performed at pHs that would ensure neutral states
of the analytes may provide a way to collect larger datasets of log 2 measurements.
However, this approach poses some challenges. First, it is necessary to measure pK; values
of the molecules first. Second, partitioning measurements need to be done at a pH that
guarantees that the compound has neutral charge, in which case solubility will be lower than
if it is charged and may become a limitation for the experiment.

SAMPLG6 log P Challenge molecules were not expected to have multiple tautomers affecting
log Ppredictions (based on QM predictions). The choice of the challenge set also ensured
participants did not have to calculate contributions of multiple relevant tautomerization
states or shifts in tautomerization states during transfer between phases. However,
participants still had to select a major tautomer for each compound. To evaluate the tautomer
predictions in the future, experimental measurement of tautomer populations in each solvent
phase would provide valuable information. However, such experimental measurements are
difficult and low throughput. If measuring tautomers is not a possibility, the best approach
may be to exclude compounds that present potential tautomerization issues from the
challenge, unless the challenge focus is specifically on tautomer prediction.
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Overall, for future solute partitioning challenges, we would like to focus on fragment-like
compounds, matched molecular pairs, larger dynamic range, larger set size, and functional
group diversity.

5 Conclusion

Several previous SAMPL challenges focused on modeling solvation to help address this key
accuracy-limiting component of protein-ligand modeling. Thus, the SAMPLO through
SAMPL4 challenges included hydration free energy prediction as a component, followed by
cyclohexane-water distribution coefficient in SAMPLS5.

Here, a community-wide blind partition coefficient prediction challenge was fielded for the
first time, and participants were asked to predict octanol-water partition coefficients for
small molecules resembling fragments of kinase inhibitors. As predicting log Din the
previous challenge was quite challenging due to issues with pK; prediction, the present
challenge focused on log £, avoiding these challenges and placing it at roughly the right
level of complexity for evaluating contemporary methods and issues they face regarding the
modeling of small molecule solvation in different liquid phases. The set of molecules
selected for the challenge were small and relatively rigid fragment-like compounds without
tautomerization issues which further reduces the difficulty of the prospective prediction
challenge.

Participation in the challenge was much higher than in SAMPLS5, and included submissions
from many diverse methods. A total of 27 research groups participated, submitting 91 blind
submissions in total. The best prospective prediction performance observed in SAMPLG6 log
P Challenge came from QM-based physical modeling methods and empirical knowledge-
based methods, with 10 methods achieving an RMSE below 0.5 log 2 units. On the other
hand, only a small number of MM-based physical models achieved an accuracy similar to
the null model (which predicted a constant, typical log £ value), which had an RMSE of 0.8.
Empirical predictions showed performance which was less dependent on the compound/
dataset than physical methods in this study. For empirical methods, the size and chemical
diversity of the training set employed in developing the method seems to be more important
than the exact methods and descriptors employed. We expected many of the empirical
methods to be the top performers, given the wealth of octanol-water log Ptraining data
available, and this expectation was borne out.

Better prediction performance was seen for octanol-water log P challenge than the SAMPL5
cyclohexane-water log D challenge. In addition to absence of pKj prediction problem for the
partition system, the molecules in the SAMPLS6 log P Challenge were considerably less
diverse than in the SAMPLS5 log D Challenge, which may have also affected relative
performance in the two challenges. Physical methods fared slightly better in this challenge
than previous cyclohexane-water log D challenge, likely because of the elimination of the
need to consider protonation state effects. However, MM-based physical methods with
similar approaches did not necessarily agree on predicted values, with occasionally large
discrepancies resulting from apparently relatively modest variations in protocol.
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All information regarding the challenge structure, experimental data, blind prediction
submission sets, and evaluation of methods is available in the SAMPL6 GitHub Repository
to allow follow up analysis and additional method testing.

Overall, high participation and clear lessons learned pave the way forward for improving
solute partitioning and biomolecular binding models for structure-based drug design.

6 Code and Data Availability

All SAMPLS6 log P Challenge instructions, submissions, experimental data and analysis are
available at https://github.com/samplchallenges/SAMPL6/tree/master/physical_properties/
logP. An archive copy of SAMPL6 GitHub Repository log £ Challenge directory is also
available in the Supplementary Documents bundle (SAMPL6-supplementary-
documents.tar.gz). Some useful files from this repository are highlighted below.

. Table of participants and their submission filenames: https://github.com/
samplchallenges/SAMPL6/blob/master/physical_properties/logP/predictions/
SAMPLG6-user-map-logP.csv

. Table of methods including submission IDs, method names, participant assigned
method category, and reassigned method categories: https://github.com/
samplchallenges/SAMPLG6/blob/master/physical_properties/logP/predictions/
SAMPL6-logP-method-map.csv

. Submission files of prediction sets: https://github.com/samplchallenges/
SAMPL6/tree/master/physical_properties/logP/predictions/submission_files

. Python analysis scripts and outputs: https://github.com/samplchallenges/
SAMPLG6/blob/master/physical_properties/logP/
analysis_with_reassigned_categories/

. Table of performance statistics calculated for all methods: https://github.com/
samplchallenges/SAMPL6/blob/master/physical_properties/logP/
analysis_with_reassigned_categories/analysis_outputs_withrefs/StatisticsTables/
statistics.csv

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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0.2 Abbreviations

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands

log P log o of the organic solvent-water partition coefficient (K,) of
neutral species

log D logg of organic solvent-water distribution coefficient (D)
pKa logy of the acid dissociation equilibrium constant

SEM Standard error of the mean

RMSE Root mean squared error

MAE Mean absolute error

T Kendall’s rank correlation coefficient (Tau)

R2 Coefficient of determination (R-Squared)

oM Quantum Mechanics

MM Molecular Mechanics
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Figure 1. The desire to deconvolute the distinct sources of error contributing to the large errors
observed in the SAMPLS5 log D challenge motivated the separation of pKa and log P challenges
in SAMPLS6.

The SAMPLG6 pKa and log P challenges aim to evaluate protonation state predictions of
small molecules in water and transfer free energy predictions between two solvents, isolating
these prediction problems.
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Figure 2. Structures of the 11 protein kinase inhibitor fragments used for the SAMPLG6 log P
Blind Prediction Challenge.

These compounds are a subset of the SAMPL6 pKj; Challenge compound set [8] which were
found to be tractable potentiometric measurements with sufficient solubility and pKj values
far from pH titration limits. Chemical identilers of these molecules are available in Table S2
and experimental log Pvalues are published [9]. Molecular structures in the 1gure were
generated using OEDepict Toolkit [53].
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Pearson’s R2 and Kendall’s Rank Correlation Coefficient Tau () are shown, with error bars

denoting 95% confidence intervals obtained by bootstrapping over challenge molecules.

Submission IDs are summarized in Table 3. Submission IDs of the form REF## refer to non-

blinded reference methods computed after the blind challenge submission deadline, and

NULLOis the null prediction method; all others refer to blind, prospective predictions.

performance on ranking, in part because of the relatively small dynamic range of this set and
because of the small size of the set. Roughly the top half of methods with Kendall’s Tau >

Overall, a large number and wide variety of methods have a statistically indistinguishable
0.5 fall into this category.
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Physical methods are further classified into quantum chemical (QM) methods and molecular

mechanics (MM) methods. RMSE and Kendall’s Rank Correlation Coefficient Tau are

shown, with error bars denoting 95% confidence intervals obtained by bootstrapping over
challenge molecules. Submission IDs are summarized in Table 3. Submission IDs of the

form RERH## refer to non-blinded reference methods computed after the blind challenge

submission deadline; all others refer to blind, prospective predictions.
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Figure 6. Predicted vs experimental value correlation plots of 8 best-performing methods and
one representative average method.

Dark and light green shaded areas indicate 0.5 and 1.0 units of error. Error bars indicate
standard error of the mean of predicted and experimental values. Experimental log #SEM
values are too small to be seen under the data points. EC_RISM_wet P1w+10 method
(rdsnw) was selected as the representative average method, as it is the method with the
highest RMSE below the median.
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Figure 7. Molecule-wise prediction error distribution plots show how variable the prediction
accuracy was for individual molecules across all prediction methods.

(A) MAE calculated for each molecule as an average of all methods shows relatively
uniform MAE across the challenge set. SM14 and SM16 predictions were slightly more
accurate than the rest. (B) MAE of each molecule broken out by method category shows that
for each method category the most challenging molecules were different. Predictions of
SMO08, SM13, SM09, and SM12 log P values were significantly less accurate with Physical
(MM) methods than the other method categories. For QM-based methods SM04 and SM02
were most challenging. Largest MAE for Empirical methods were observed for SM11 and
SM15. (C) Error distribution for each SAMPL6 molecule overall prediction methods. It is
interesting to note that most distributions are peaked near an error of zero, suggesting that
perhaps a consensus model might outperform most individual models. However, SM15 is
more significantly shifted away from zero than any other compound. SM08 has a significant
tail showing probability of overestimated log P predictions by some methods. (D) Error
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distribution for each molecule calculated for only 7 methods from blind submissions that
were determined to be consistently well-performing (Amz0n, gmog5, j8nwe, hapuj, dgxk4,

vzgyt, qyzjx).

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 April 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Isik et al.

REFO02 log P (pred)

Page 48
6nmtt, v2q0t, and REF02 vs exp B11 sqosi and REF07 vs exp ) C 6nmtt vs v2q0t
SMo8 SMo8 i
v 10 e 10
d - 9 g 9
SM13 8 = 5 8
=7 a7
o
7 56 % 6
Q5 Ke]
2 5°
~ 4 g 4
4 3 = 4
SMo07 %
4 6nmtt 2 2 y
#  v2q0t 4 4+ sqosi p g
4 REF02 + REF07 -
o & 0 -
2 3 4 5 6 7 8 9 10 11 01 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8
log P (exp) log P (exp) 6nmtt log P (pred)
v2q0t vs REF02 E sqosi vs REF07 F 6nmtt vs REF02
sMos " M8~ i
SM08
= 10
L& ° A g
/ 9 / 9
~ 8 5 8
B o
g7 87
T a
a6 6
2 e
9 5 N 5
S S
w 4 T 4
W i
X 3 x 3
2 2
1 1
L 0
3 45 6 7 8 9 10N 01 2 3 4 5 6 7 8 9 101 0 1 3 4 5 6 7 8
v2q0t log P (pred) sqosi log P (pred) 6nmtt log P (pred)

Figure 8. Comparison of independent predictions that use seemingly identical methods (free
energy calculations using GAFF and TIP3P water) shows signilcant systematic deviations
between predictions for many compounds.

Comparison of the calculated and experimental values for submissions v2g0t
(InterX_GAFF_WET_OCTANOL), 6nmtt (MD-AMBER-wetoct), sqgosi (MD-AMBER-
dryoct) and physical reference calculations REFO2 (YANK-GAFF-TIP3P-wet-oct) and
REFO7 (YANK-GAFF-TIP3P-dry-oct). (A) compares calculations that used wet octanol, and
(B) compares those that used dry octanol. Plots C to F show the methods compared to one
another. The dark and light-shaded region indicates 0.5 and 1.0 units of error, respectively.

J Comput Aided Mol Des. Author manuscript; available in PMC 2021 April 01.

9 10 11

9 10 1



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Isik et al.

Page 49

DFE (REF07) and IFE protocol vs exp MD-AMBER-dryoct (sqosi), DFE (REF07), and IFE protocol vs exp
1 1
4+ IFE /SMOB_mlcrOOﬂ 4 MD-AMBER-dryoct
00 4 prem 10 & e
9 9 # DFE @
8 _1=SM0Z 8 _-Smo2
¢ ¢
7 7
g H
s £
Y [N
> O o> 9
o O
4 4
3 3
2 2
1 1
0 - 0
0O 1 2 3 4 5 6 7 8 9 10 11 01 2 3 4 5 6 7 8 9 10 1
log P (exp) log P (exp)
[ D

N
o

DFE (REF07) protocol vs MD-AMBER-dryoct (sqosi) DFE (REF07) vs IFE protocol

N
o

O
o o

89 9
& SMO02
a =
o 8 B 8 '
2, SM08_micro010 5 7
‘g Q SMO08_micro008
26 86 +
g s S 5 SMO08_micro010 |
> 2
2 4 5 4
B e 4
£ +Z = 3 +4 4
h %
o 2 \ z 2
s \ SM14_micro001 / + SM08_micro011

1 1

SM11_micro005
0~ o &
o 1 2 3 4 5 6 7 8 9 10 1 o 1 2 3 4 5 6 7 8 9 10 1
DFE (REF07) protocol log P (pred) DFE (REF07) protocol log P (pred)

IFE protocol vs MD-AMBER-dryoct (sqosi)

o o
o o

SMO08_micro010

MD-AMBER-dryoct (sqosi) log P (pred)
N w £ (¢, (] ~ o] ©

a‘\ SM14_micro001

SM11_micro005

o -

0o 1 2 3 4 5 6 7 8 9 10 11
IFE protocol log P (pred)

Figure 9. Comparison of predictions that use free energy calculations using GAFF and TIP3P
water show deviations between predictions for the challenge molecules and several alternative
tautomers and resonance structures.

Deviations seem to largely stem from differences in equilibration amount and choice of
tautomer. A compares reference direct transfer free energy (DFE, REF07) and indirect
solvation-based transfer free energy (IFE) protocols to experiment for the challenge
provided resonance states of molecules and a couple of extra resonance states for SM14 and
SM11, and extra tautomers for SM08. B compares the same exact tautomers for submission
sqosi (MD-AMBER-dryoct) and the two reference protocols to experiment. Submission
sqosi (MD-AMBER-dryoct) used different tautomers than the ones provided in the
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challenge. C-E compares the calculated log P between different methods using the same
tautomers. All of the predicted values can be found in Table 5.
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Figure 10. The prediction errors per molecule indicate some compounds were more difficult to
predict than others for the reference calculations category.

(A) MAE of each SAMPL6 molecule broken out by physical and empirical reference
method category. (B) Error distribution for each molecule calculated for the reference
methods. SM08 was the most difficult to predict for the physical reference calculations, due
to our partial charge assignment procedure.
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Figure 11. The tautomer and resonance structure choice resulted in discrepancies in the
reference calculations.

Shown here are calculated values for different input structures using the reference direct
transfer free energy method. The uncertainties of the log £ predictions were calculated as the
standard error of the mean (SEM) of three replicate predictions. Structures labelled as
SMO08, SM11, and SM14 are based on input SMILES provided in SAMPLG6 log P Challenge
instructions. Three microstates shown for SMO08 are different tautomers. SM08
(SM08_micro011) and SM08_micro010 are carboxylic acids, while SM08_micro008 is a
carboxylate ion. SM08 (SM08_micro011) has a carbonyl group in the ring, while
SMO08_micro008 and SM08_micro010 have a hydroxyl in the ring. Structures pertaining to
SM11 and SM14 are different resonance hybrids of the same tautomer (neutral microstate).
Enumeration of all theoretically possible neutral tautomers of SAMPL6 molecules can be
found in the SAMPL6 GitHub Repository (https://github.com/samplchallenges/SAMPL6/
tree/master/physical_properties/pKa/microstates).
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Figure 12. Structures of the 27 additional molecules that were included in follow-up assessment
of the reference methods.

These molecules were not included in the statistics overview.
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Figure 13. Distribution of reference method calculation errors by molecule on our extra set
shows that a few of the molecules were more challenging than others.

(A) MAE of each of the extra molecules broken out by physical and empirical reference
method category. Majority of molecules have mean absolute errors below 1 log P unit for
physical reference calculations. All of the mean absolute errors are well below 1 log P unit
for empirical reference calculations. (B) Error distribution for each molecule calculated for
the reference methods. A couple molecules have a significant tail showing probability of
overestimated log P predictions.
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Methods used as reference calculations for the MM-based physical methods category.

Please see Section 12.1.1 in the Supplementary Information for detailed description of physical reference

methods.
Submission ID  Approach Force Field Water Model Octanol Phase  Number of Replicates
REF01 YANK, DFE protocol ~GAFF 1.81 TIP3P-FB Wet 3
REF02 YANK, DFE protocol GAFF 1.81 TIP3P Wet 3
REFO3 YANK, DFE protocol ~ GAFF 1.81 OPC Wet 3
REF04 YANK, DFE protocol ~ smirnoff99Frosst 1.0.7  TIP3P-FB Wet 3
REF05 YANK, DFE protocol ~ smirnoff99Frosst 1.0.7  TIP3P Wet 3
REF06 YANK, DFE protocol  smirnoff99Frosst 1.0.7 OPC Wet 3
REFO7 YANK, DFE protocol ~GAFF 1.81 TIP3P Dry 3
REF08 YANK, DFE protocol ~ smirnoff99Frosst 1.0.7  TIP3P Dry 3
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Methods used as reference calculations for the empirical log P prediction category.

Please see section 12.1.3 in the Supplementary Information for a detailed description of empirical methods.

Submission ID  Name Vendor Approach Website

REF09 clogP (BioByte)  BioByte group contributions www.biobyte.com
REF13 SlogP(MOE) Chemical Computing Group  atomic contributions www.chemcomp.com
REF11 logP(ow) (MOE)  Chemical Computing Group  atomic contributions and correction factors www.chemcomp.com
REF10 h_JogP (MOE) Chemical Computing Group dQengEbt%?Zed on extended Hilckel theory www.chemcomp.com
REF12 MoKaJogP Molecular Discovery QSPR, based on Molecular Interaction Field www.moldiscovery.com

descriptors
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Table 4.
Eight consistently well-performing prediction methods based on consistent ranking within

the Top 20 according to various statistical metrics.

Submissions were ranked according to RMSE, MAE, R2, and z. Many top methods were found to be
statistically indistinguishable considering uncertainties of error metrics. Moreover, sorting of methods was
influenced significantly by the choice of metric chosen. We assessed top 20 methods according the each metric
to determine which methods are always among the top 20 according to all four statistical metrics chosen. A set
of consistently well-performing methods were determined: Four QM-based and four empirical methods. Seven
of these methods are blind submissions of SAMPLG6 Challenge, and one of them (REF13) is a non-blind
reference calculation. Performance statistics are provided as mean and 95% confidence intervals.

Kendall’s Tau

ID Method Name Category Type RMSE MAE R? )
. 0.77
hmzOn  cosmotherm_FINE19 E’S)ﬁ;oal Blind 8'§§][0'23’ 8'?1%][0'19’ [0.36, g'gg][o'ﬂ’
’ ‘ 0.94] '
0.74
Global XGBoost-Based QSPR . - 0.39 [0.28, 0.34[0.23, 0.59 [0.12,
gmogs | ogp Predictor Empirical - Blind 0.49] 0.46] ([)Oé‘_‘?(]’* 0.89]
. 0.74
Jjénwe  EC_RISM_wet_P1w+20 E’Sﬁ;“' Blind ?(')4177 075 8'2}1][0'15' [0.33, 2.331[0.45,
e ‘ 0.97] '
RayLogP-11, a cheminformatic 0.74
hapuj  QSPR model predicting the Empirical Blind 0.49 [0.37, 0.44 [0.32, [0.40, 0.67 [0.22,
1 . 0.61] 0.57] 1.00]
octanol/water partition coeZcient ’ ) 0.94] ’
. 0.69
- Physical - 0.49 [0.33, 0.42 [0.26, 0.67 [0.27,
dgxk4  LogP_SMD_Solvation DFT Blind 0.35,
q gP_SMD_ _ QM) 0.62] 0.57] ([)_91] 0.96]
g . 0.50 0.38 [0.21, 0.72 0.64 [0.23,
vzgyt  rfs-logp Empirical Blind [0.27,0.68] 0.58] ([)0925? 0.92]
. 0.73
. Physical - 0.54 [0.34, 0.46 [0.31, 0.78 [0.44,
qyzjx EC_RISM_dry_P1w+20 Blind [0.31,
(QM) 0.75] 0.64] 0.97] 1.00]
REF13 S . 0.55 [0.38, 0.47 0.69 0.60 [0.08,
ogP (MOE) Empirical Reference 0.71] [0.31,0.65] ([)0922? 0.96]
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Predicted log P values of free energy calculations of methods using GAFF, TIP3P water,

and dry octanol.

The methods listed are the reference direct transfer free energy (DFE) protocol, reference indirect solvation-
based transfer free energy (IFE) protocol and submission sgosi (MD-AMBER-dryoct). Details of the two
reference protocols can be found in Section 12.1. log P predictions for multiple tautomers (SM08) and
resonance structures (SM11 and SM14) are listed, when available. The experimental values are provided for
comparison. The same experimental Plog values are stated for multiple tautomers or resonance structures.
Potentiometric log £ measurements do not provide information about the identity or populations of tautomers.

Indirect Solvation-Based Transfer

REFO07 Direct Transfer Free

sgosi (MD-AMBER-

Malecule Free Energy (IFE) Protocol Energy (DFE) Protocol dryoct) Experimental
SM02 7.6+0.3 5.5+0.1 5.3+0.3 4.09+0.03
SM04 6.2+0.4 5.2+0.1 5.9+0.3 3.98+0.03
SMo07 4.3+0.2 4.2+0.3 4.8+0.4 3.21+0.04
smogt? 2.840.2 9.80.1 3.100.03
SMO08_micro008  5.5+0.6 3.8+0.1 3.10+0.03
SMO08_micro010  3.9+0.3 3.7+0.2 5.9+0.4 3.10+0.03
SM09 3.1+04 4.51+0.03 4.0£0.3 3.0£0.1
sm11? 1.6+0.4 2.540.1 2.10+0.04
SM11_micro005 2.9+0.3 2.36+0.01 2.3+0.3 2.10+0.04
SM12 4.9+0.3 5.6+0.1 5.2+0.3 3.83+0.03
SM13 5.1+0.3 5.3+0.1 6.0+0.5 2.92+0.04
smiat 2.240.2 24101 1.95+0.03
SM14_micro001 2.8+0.2 3.1+0.1 2.5%0.3 1.95+0.03
SM15 2.7+0.2 3.1+0.1 3.0+0.2 3.07+0.03
SM16 4.3+0.3 3.9+0.1 4.6+0.4 2.62+0.01

1 .
The tautomer or resonance structure presented as the input SMILES for the SAMPL6 log P Challenge.

2 . .
It corresponds to the microstate SM08_micro011 of the SAMPL6G pKy Challenge.
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Table 6.
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Statistics of the physical and empirical reference method predictions on the extra test of

molecules.

Methods were ranked according to increasing RMSE in this table. Performance statistics of MAE, R2, and
Kendall’s Tau are also provided. Mean and 95% conldence intervals of all statistics are presented.

1D Method Name Category Type RMSE MAE R2 E)endall’s Tau
EXT09 clogP (Biobyte) Empirical Reference  0.23[0.16,0.29] 0.17[0.12,0.23] 0.94[0.86,0.98] 0.85[0.75,0.93]
EXT12 MoKalogP Empirical Reference  0.28[0.20,0.35] 0.22[0.16,0.28] 0.91[0.82,0.97] 0.83 [0.73,0.91]
EXT11 logP(o/w) (MOE) Empirical Reference  0.32[0.22,0.41] 0.24[0.17,0.33] 0.90[0.81,0.95] 0.80 [0.66,0.91]
EXT10 h_JogP (MOE) Empirical Reference  0.43[0.34,0.51] 0.35[0.26,0.45] 0.83[0.62,0.93] 0.74 [0.55,0.90]
EXT13 SlogP (MOE) Empirical Reference  0.50 [0.48,0.69] 0.49[0.36,0.61] 0.71[0.41,0.87] 055 [0.33,0.73]
YANK-SMIRNOFF-  Physical
EXT08 o ot i Reference  1.26 [0.88,1.60] 0.97 [0.69,1.28] 0.56 [0.16,0.83] 050 [0.23,0.73]
ExTo7 YANK-GAFF-TIPSP-  Physical Reference 1.27[0.69,1.74] 0.88[0.57,1.26] 0.55[0.19,0.88] 0.60 [0.34,0.81]
dry-oct (MM)
ExToz YANK-GAFF-TIPSP-  Physical Reference  1.38[0.94,1.78] 1.03[0.70,1.40] 0.58[0.26,0.83] 0.58 [0.35,0.78]
wet-oct (MM)
YANK-SMIRNOFF-  Physical
EXTO5  Jian o i Reference  1.50[0.96,1.98] 1.11[0.75,1.52] 0.50[0.13,0.81] 0.54 [0.29,0.75]
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