
Nonparametric Bayes Models of Fiber Curves Connecting Brain 
Regions

Zhengwu Zhanga, Maxime Descoteauxb, David B. Dunsonc

aDepartment of Biostatistics and Computational Biology, University of Rochester, Rochester, NY

bComputer Science Department, Faculty of Science, University of Sherbrooke, Sherbrooke, QC

cDepartment of Statistical Science, Duke University, Durham, NC

Abstract

In studying structural inter-connections in the human brain, it is common to first estimate fiber 

bundles connecting different regions relying on diffusion MRI. These fiber bundles act as 

highways for neural activity. Current statistical methods reduce the rich information into an 

adjacency matrix, with the elements containing a count of fibers or a mean diffusion feature along 

the fibers. The goal of this article is to avoid discarding the rich geometric information of fibers, 

developing flexible models for characterizing the population distribution of fibers between brain 

regions of interest within and across different individuals. We start by decomposing each fiber into 

a rotation matrix, shape and translation from a global reference curve. These components are 

viewed as data lying on a product space composed of different Euclidean spaces and manifolds. To 

nonparametrically model the distribution within and across individuals, we rely on a hierarchical 

mixture of product kernels specific to the component spaces. Taking a Bayesian approach to 

inference, we develop efficient methods for posterior sampling. The approach automatically 

produces clusters of fibers within and across individuals. Applying the method to Human 

Connectome Project data, we find interesting relationships between brain fiber geometry and 

reading ability. Supplementary materials for this article, including a standardized description of the 

materials available for reproducing the work, are available as an online supplement.
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1. Introduction

There has been dramatically increasing interest in recent years in connectomics, which 

studies functional and structural inter-connections in the humanbrain (Jbabdi et al. 2015; 

Glasser et al. 2016; Park and Friston 2013; Fornito, Zalesky, and Breakspear 2013). This 

interest has been spurred by the development of new imaging technologies, which allow 

researchers to noninvasively peer into the human brain and obtain data on connections. The 

focus of this article is on structural connectomes, corresponding to fiber bundles that are 

estimated from diffusion magnetic resonance imaging (dMRI) and structural MRI (Smith et 

al. 2012; Girard et al. 2014). Focusing on two regions of interest (ROIs), Figure 1 shows the 

fiber connections for four individuals.

Fiber connections in each individual’s brain can be viewed as a type of object data. The 

current literature on statistical analysis of fiber tracts reduces the complex object data to 

simple summary statistics prior to analysis. For example, an adjacency matrix consisting of a 

count of fibers in each ROI pair (de Reus and van den Heuvel 2013; Fornito, Zalesky, and 

Breakspear 2013) is the most common connectome representation. The adjacency matrix is 

further reduced to a binary form (Durante, Dunson, and Vogelstein 2017; Durante and 

Dunson 2018) or to topological features of the network (Cheng et al. 2012; Fornito, Zalesky, 

and Breakspear 2013) to simplify the analysis. Representing the connectome as an adjacency 

matrix is appealing in its simplicity, but leads to an enormous loss of information. The rich 

geometric information of tracts is totally discarded. However, geometric features of the 

brain, such as brain size, shape, and cerebral cortex folding patterns, have been found to be 

related to cognition (Cachia et al. 2014; Rushton and Ankney 1996; Toro et al. 2008) and 

progression of neurodegenerative diseases (Cornea et al. 2017; Bachman et al. 2014; 

Querbes et al. 2009). As illustrated in Figure 1, there are varying numbers, locations and 

shapes of fiber connections; such geometric differences may be important in detecting and 

understanding group differences (Eden et al. 2015; Zhang, Allen et al. 2018). As we 

illustrate later in the article, utilizing geometry of fiber curves instead of simply the count, 

we can better distinguish subjects with good versus poor oral reading ability.

Clearly, the data represented in Figure 1 are functional data, and hence it is natural to think 

of applying functional data analysis (FDA) methodology (Gu, Pati, and Dunson 2014; 

Ramsay 2006; Srivastava, Wu et al. 2011; Müller 2008; Yang et al. 2016, 2017). However, 

most FDA methods are developed for much simpler cases in which there is a single function 

yi:T ℜ for each individual, with T ⊂ ℜ . For example, yi may represent a growth curve 

with age for individual i (Srivastava, Wu et al. 2011; Müller 2008). There is also a rich 

literature on more elaborate FDA models for curve data (Wang, Chiou, and Mueller 2015), 

for example, allowing multivariate, hierarchical (Rodriguez, Dunson, and Gelfand 2009), 

spatial and temporal dependence structures (Yao, Müller, and Wang 2005). Even in more 

complex cases, the majority of the focus has been on one-dimensional curves yi:T ℜ,
using a rich variety of representations ranging from spline expansions to functional principal 

components analysis (FPCA) to Gaussian process-based models.

Fiber tracts correspond to many three-dimensional curves snaking through ℜ3 having 

different intersection points with two nonregularly shaped ROIs. There is clear clustering 
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and heterogeneity among individuals. It is not obvious how to define a model for these data 

to sufficiently and flexibly capture the important characteristics without discarding too much 

information or becoming computationally intractable. There is a rich literature on 

nonparametric Bayesian models for functional data, which induce clustering (Rodríguez, 

Dunson, and Gelfand 2009) and can even allow joint modeling of functional predictors with 

a response (Bigelow and Dunson 2009), but these methods focus on the case in which a 

single function yi is observed for each individual.

We propose a novel approach, which characterizes each fiber curve in terms of its rotation, 

shape, and translation from a global reference curve. This allows us to define a 

nonparametric model for the fiber curve data through a dual representation of the data on a 

product space. We define a mixture of product kernels motivated by Bhattacharya and 

Dunson (2010b, 2012), who showed that Dirichlet process mixtures of product kernels 

having support on different manifolds can lead to consistent density estimation. They did not 

consider data consisting of rotation matrices or allow nested dependence, as we obtain due 

to nesting of the fibers within each individual’s brain.

Section 2 describes the basic data structure and representation of fiber curves. Section 3 

proposes a product mixture model for fiber connections in an individual’s brain, and Section 

4 proposes a nested Dirichlet process model for modeling fiber curves for a population of 

individuals. Section 5 summarizes analyses of human brain connectomics data. Section 6 

discusses the results.

2. Fiber Curves Extraction and Representation

2.1. Data Description

We use a state-of-the-art tractography algorithm (Smith et al. 2012; Girard et al. 2014) to 

generate the fiber tracts relying on two steps. First, high angular resolution diffusion imaging 

(HARDI) techniques are used to estimate the fiber orientation distribution function (ODF) at 

each location (Descoteaux et al. 2009) (implemented in dipy (Garyfallidis et al. 2014)). 

Next, streamlines following the principal directions of the fiber ODF are constructed by 

probabilistic tractography algorithms under local continuity constraints. Anatomical 

structure information is used to guide selection of where to start and stop the streamlines 

(Smith et al. 2012; Girard et al. 2014). The final constructed three-dimensional curves are 

assumed to represent the most likely pathways through the diffusion profile delineated by 

the fiber ODF. We refer to these curves as fibers, though they may not exactly correspond to 

anatomical fibers in the brain.

Let Tj denote the jth subject’s tractography dataset. In general, Tj contains millions of fiber 

curves indicating how different regions of the brain are connected. Let yji represent a single 

fiber curve in Tj; the data on yji output by the tractography algorithm consist of hundreds of 

points along a curve, but we view yji: [0, 1] ℜ3 as a parameterized curve that can be 

accurately approximated by spline interpolation of these data points. Figure 2(a) shows one 

example of the tractography dataset we generated for an individual’s brain.
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Directly analyzing all fibers in Tj is not realistic for several reasons. The data are huge 

(millions of fibers in each subject) and current statistical methods are ineffective in handling 

such big data for a sample of subjects. Second, the streamline datasets are usually in subject-

specific spaces with different coordinate systems, and it is hard to directly compare any two 

tractography datasets.

In this article, we group each fiber in Tj based on the different anatomical regions it 

connects, and focus our analysis on fibers connecting two specific regions. To achieve this, 

each individual’s brain is first parcellated into different meaningful anatomical regions based 

on an existing template (Desikan et al. 2006). Figure 2(b) shows a parcellation of the brain 

using the Desikan–Killiany atlas. Then fiber curves connecting each pair of regions are 

extracted, as illustrated in Figure 2(c).

Our goal is to build a flexible but parsimonious Bayesian model to characterize the 

distribution of fiber curves connecting two ROIs within each individual and across a 

population of individuals. The extracted fibers yji, i = 1, …, nj  connecting ra (ROI a) and rb 

(ROI b) in subject j have some special properties, for example, yji’s always start from one 

region and end at another one (due to the preprocessing in Zhang, Descoteaux et al. (2018)) 

and they are smooth and follow similar white matter pathways. These properties make the 

underlying functional space Ω ra, rb  much smaller comparing with Ω, where Ω is the entire 

functional space ℒ2 [0, 1], ℜ3  and Ω ra, rb  is the functional space for fiber curves connecting 

ra and rb for all subjects in our dataset. To build an efficient model on the correct space 

parsimoniously, we consider a variance decomposition for fibers in Ω ra, rb .

2.2. Variation Decomposition

When we treat a fiber y as a three-dimensional curve, there are five factors contributing to 

the variance: (1) translation, (2) rotation, (3) scaling, (4) reparameterization, and (5) shape, 

with (1)–(4) being shape-preserving transformations (Srivastava, Klassen et al. 2011). The 

shape of a fiber represents appearance after removing these shape-preserving 

transformations. Letting ℒ2 [0, 1], ℜ3  be a fiber, a translation of y is represented as y + a, 

where a ∈ ℝ3 . The rotation of y is represented as O * y, where O ϵ SO(3) is a rotation 

matrix. Scaling represents the length of the fiber. Reparameterization of f is represented as 

y(γ(s)), s ∈ [0, 1], where γ is a warping function in Γ, the set of all orientation-preserving 

diffeomorphisms of [0,1]. Reparameterization of f does not change the shape, it only 

changes the point-wise correspondence between fibers. In other words, if we let 

g(s) = y(γ(s)), g passes through the same path as y, but g(s) is different from y(s) if y(s) ≠ s. 

The reparameterization component performs the role of aligning fibers (Kurtek et al. 2012), 

and reduces variability of the remaining shape component.

Figure 3 illustrates the shape components for 200 simulated fiber curves. As additional 

shape-preserving components are removed, the remaining shape part has decreasing cross-

sectional variance at each point s ϵ [0,1]. Since fibers connecting two ROIs usually have 

similar lengths, we do not remove scaling. The reparameterization component does not 

Zhang et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2020 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contribute to the geometric appearance of fibers, and hence is removed in an alignment 

phase prior to statistical analysis.

2.3. Estimating Manifold Components From Curves

As a preliminary step before defining a Bayesian model, we extract each component in the 

variance decomposition by using elastic shape analysis (Srivastava, Klassen et al. 2011). 

Given a set of fiber curves y1, …, yn  in the connection (ra, rb), to separate the translation, 

we center each fiber by yic( ⋅ ) = yi( ⋅ ) − ci
(1), where ci

(1) = ∫0
1yi(s) ẏi(s) ds/Lyi, in which 

ẏi(s) = dyi s /ds and Ly is the length of fiber y. To separate rotation and reparameterization, 

we represent each fiber y as its square-root velocity function (SRVF) q(s), defined as 

q(s) = ẏ(s)/ ẏ(s) . A rotation of y by O ϵ SO(3) is denoted as O * y and its SRVF becomes 

O * q. A reparameterization of y by γ ∈ Γ is denoted as y(γ(s)), and its SRVF is denoted as 

(q, γ) = (q ∘ γ) γ̇, where ∘ denotes the composition of two functions.

To align all fibers by separating the rotation and reparameterization, we estimate a template 

fiber first, denoted as yμ, and then align all fibers to the template. We formulate the 

calculation of yμ and individual alignment as an iterative procedure: first initialize the mean 

function yμ and its SRVF qμ and then iteratively solve for

Oi, γi = argmin
O ∈ SO(3), γ ∈ Γ

qμ − O * qi, γ , and

qμ = n−1 ∑
i = 1

n
Oi * qi, γi

(1)

for i = 1,..., n until convergence. We optimize Oi through Procrustes analysis and γi through 

dynamic programming (Srivastava, Klassen et al. 2011). As the output of this iterative 

algorithm, for each fiber yi, we obtain the best rotation Oi, reparameterization γi, to the 

template yμ, and the shape part g (s = Oi * yi γi(s) . To better model the rotation component 

and avoid an arbitrary reference point for the embedding to be introduced later, we apply a 

global rotation Oμ to each Oi so that the sample mean of the new rotated {Oi} is the identify 

matrix, where Oμ is the Karcher mean of the original rotations (estimated using the 

algorithm in Rentmeesters and Absil (2011)).

To efficiently represent shape, we use FPCA to learn basis functions for the aligned fiber 

curves ϕl : [0, 1] ℜ3, l = 1, …, T . A discretization method similar to the one introduced 

in Chapter 8.4 of Ramsay and Silverman (2005) (or in Chapter 4.3 of Srivastava and Klassen 

(2016) and Zhang, Klassen, and Srivastava (2018)) is used to estimate ϕl  from training 

data. For the connection (ra, rb), we obtain a low-dimensional structure consisting of 

L ra, rb = yμ, ϕl, l = 1, …, T . Letting g be the shape part of fiber y ∈ Ω ra, rb , we can 

represent g as g(s) ≈ yμ(s) + ∑l = 1
T xlϕl(s), where xl represents the coefficient corresponding 

to ϕl. For notational convenience, we let c(2) = x1, x2, …, xT ′ ∈ ℜT .
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We decompose fiber curve y ∈ Ω rr, rb as y: = c(1), c(2), O, γ , where c(1), c(2), O, and γ are 

the translation, shape, rotation, and reparameterization components, respectively. The fiber 

path can be estimated using y(s) ≈ OT * yμ + ∑l = 1
T c(2)(l)ϕl) + c(1) . The difference between 

the recovered path y and the original path y depends on the number of basis functions. We 

did not include γ because γ does not change the geometric appearance of y but only changes 

its parameterization.

3. Model for One Individual

3.1. Product Kernel Mixture Model

In this section, we model fiber curves {yi} for i = 1, …, n from a connection in a single 

subject. After the decomposition, each fiber yi is represented as yi: = ci
(1), ci

(2), ci
(3) , where 

ci
(3) = Oi . Each of the ci

(m) has a different Euclidean or manifold support. Letting ci
(m) ∈ Ym,

we have yi ∈ Y = ⊗m ∈ I Ym, I = 1, …, M . Our goal is to specify a joint model in which yi 

~ f, with f a probability measure characterizing the joint distribution. Let ℬ(Y) denote an 

appropriate σ-algebra of Y, with f assigning probability f(B) to each B ∈ ℬ(Y) .

Initially, we focus on modeling one component ci
(m) using a mixture model with

fm(c) = ∫Θm
Km c; θ(m) dP θ(m) , c ∈ ℬ Ym , (2)

where Km ⋅ ; θ(m)  is a parametric probability measure on Ym, ℬ Ym , and P is a 

probability measure over Θm, ℬ(Θ)m) . A nonparametric Bayesian approach is realized by 

choosing P as a random probability measure and assigning an appropriate prior through

P = ∑
ℎ = 1

K
πℎδθℎ, θℎ P0

m
(3)

where P0
m is a base measure on Θm, ℬ Θm  and δθℎ denotes a degenerate distribution with 

all its mass at θh. Equation (3) contains a broad class of priors, including Dirichlet process 

and Poisson-Dirichlet process. In the Dirichlet process case, K = ∞ and πh is generated 

through a stick-breaking process (Sethuraman 1994).

To jointly model the different components of yi, we apply a product kernel mixture 

(Bhattacharya and Dunson 2010a; Banerjee, Murray, and Dunson 2013). In particular, 

supposing that yiiid∼ f,

f yi = ∫
Θ

∏
m = 1

M
Km ci

(m); θ(m) dP (θ), θ = θ(1), …, θ(M) , (4)

where Km is a parametric density on Ym, and P is a mixing measure with the form,
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P = ∑
ℎ = 1

K
πℎδθℎ, θℎ = θℎ

(1), θℎ
(2), …, θℎ

(M) P0 = ∏
m = 1

M
P0

m . (5)

Under this model, the conditional likelihood for fiber y := c(1), …, c(M)  given 

π = π1, …, πk  and θ can be written as

f(y π, θ) = ∑
ℎ = 1

K
πℎ ∏

m = 1

M
Km c(m); θℎ

(m) . (6)

Introducing a cluster index Si ∈ 1, …, k  for fiber i, we have ci
(m) Km ⋅ ; θSi

(m)  independently 

for m = 1, …, M, and Pr Si = ℎ = πℎ, for ℎ = 1, …, K . This conditional independence 

structure given the cluster indices of the fibers facilitates computation, while still allowing a 

flexible dependence structure between the different components marginally. The remaining 

task is to specify the Km ci
(m); θ(m)  for each component.

3.2. Kernel Density for Each Component

We describe the intrinsic space of each component m and define a parametric distribution 

Km having appropriate support. We have M = 3 corresponding to the translation (m = 1), 

shape (m = 2), and rotation (m = 3) components.

Translation component: The translation component c(1) is a vector in ℜ3 . We simply 

use a multivariate normal distribution for c(1),

K1 c(1); μ, Σ = 1
(2π)3 Σ

× exp − 1
2 c(1) − μ TΣ−1 c(1) − μ .

FPCA coefficient component: Let c(2) ∈ ℜT  denote the shape component 

corresponding to the coefficients of the FPCA basis functions. Similar to the translation 

component, we assign a multivariate normal distribution for c(2),

K2 c(2); μ, Σ = 1
(2π)T Σ

× exp − 1
2 c(2) − μ TΣ−1 c(2) − μ .

The rotation component: The rotation matrix c(3) is an element of the special orthogonal 

group SO(3) = X ∈ O(3) | det(X) = 1 . The most common parametric distribution on SO(3) is 

the matrix Fisher distribution, also known as the Langevin distribution (Downs 1972; Khatri 

and Mardia 1977; Jupp and Mardia 1979). Bingham, Nordman, and Vardeman (2009) and 
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Qiu, Nordman, and Vardeman (2014) proposed a more flexible class of uniform axis random 

spin (UARS) distributions, which improves upon the flexibility of the Langevin. We 

carefully considered both choices, but faced computational and stability problems in 

conducting inferences, particularly as the number of fibers increases.

To address these problems, we define a simple Gaussian like parametric distribution based 

on an embedding in the Lie algebra of SO(3). Let I3 denote the identity element of SO(3). 

The tangent space at I3, TI3 (SO(3)), forms a Lie algebra, which is usually denoted as so 3 . 

The exponential map, exp : so(3) SO(3), provides a mapping from the tangent space TI3 
(SO(3)) to SO(3). The inverse of the exponential map is called the log map. so(3) is a set of 3 

× 3 skew-symmetric matrices. We use the following notation to denote any matrix 

Av ∈ so (3):Av = v1, v2, v3 , where v1 = 0, v1, − v2 ′, v2 = −v1, 0, v3 ′, v3 = v2, − v3, 0 ′ and 

v = v1, v2, v3 ′ . The exponential map is given by Rodrigues’ formula: exp(Av) = I3 when α = 

0, and exp Av = I3 + sin(α)
α Av + 1 − cos(α)

α2 Av
2 when α ∈ (0, π), where 

α = 1
2 tr Av

TAv = v ∈ [0, π) . The log map of X ϵ SO(3) is a matrix in so(3), given by 

log(X) = 0 when α = 0, α = 0, log(X) = α
2sin(α) X − XT  when |α | ∈ (0, π), where α satisfies 

tr(X) = 2cos(α) + 1.

We define a mapping Φ to embed an element in so(3) to ℜ3 Φ:so(3) ℜ3, ϕ Av = v . Let 

ϕ(X): = Φ(log(X)) ∈ ℜ3 be the embedded vector for the element X ϵ SO(3) in ℝ3 . We define 

a trivariate normal distribution on this embedding space

K3(X; μ, Σ) = 1
(2π)3 Σ

× exp − 1
2(ϕ(X) − μ)Σ−1(ϕ(X) − μ)T .

This embedded Gaussian kernel has substantial practical advantages over alternative 

intrinsic parametric kernels we attempted to implement. Centering the sampled rotation 

matrices using the technique introduced in Section 2.3 makes their Karcher mean be I3, and 

therefore, the embedding is performed on the tangent space of the identity.

3.3. Prior Specification and Posterior Inference

To complete a Bayesian specification of the model, we choose a prior for the cluster 

probabilities: π = π1, …, πK ′ Dir α
K , …, α

K , where K is an upper bound on the number of 

clusters. In the limit as K ∞, this choice leads to a Dirichlet process mixture model. In 

addition, Rousseau and Mengersen (2011) motivated a similar choice of prior as being 

effective at favoring deletion of redundant mixture components not needed to characterize 

the data. If K is chosen to be too small, then none of the clusters will be unoccupied, and the 

analysis should be repeated for larger K. Posterior sampling of the proposed mixture model 

is standard, and the details are presented in Section 1 in the supplementary materials.
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4. Model for a Population of Individuals

Section 3 proposes a flexible mixture model for the distribution of fibers connecting two 

ROIs in a single brain; in this section, we generalize the model to accommodate multiple 

individuals. This generalization is challenging because (1) fibers in each individual have 

their own coordinate system inherited from the MRI scan; (2) there are different numbers 

and appearances of fibers for different individuals. Although (1) can potentially be addressed 

via image alignment before tractography or tractogram alignment after tractography 

(Garyfallidis et al. 2015), such multiple-subject alignment can be suboptimal and 

challenging, especially in the nonlinear case. Our variation decomposition makes the shape 

component invariant to misalignment, and thus bypasses this issue when the inference is 

performed only based on the shape component. Issue (2) can be solved by using a 

hierarchical Bayesian model to allow differences between individuals while encouraging 

borrowing of information.

Let yji  for j = 1, …, J and i = 1, …, nj be a collection of fiber curves for the same pair of 

brain regions in n subjects, where nj represents the number of fiber curves in the jth subject. 

We have yji = cji
(1), …, cji

(M) , so that the fibers are represented by their different geometric 

components. In addition, let wj denote a scalar summary of the strength of connection 

between the brain regions for individual j, which is usually set as the number of fibers, nj.

4.1. Nested Dirichlet Process Model

Generalizing the model in Section 3 to multiple individuals, we have distributions fj, for 

subject j = 1, …, J , and require a model for an unknown distribution of distributions, fj Q,
with Q unknown. One natural possibility is a hierarchical Dirichlet process (HDP) mixture 

(Teh et al. 2006), which would induce clusters of fibers, with these clusters having different 

weights for each individual. This model assumes that white matter pathways (each pathway 

represents a cluster) connecting two ROIs are shared by all individuals, but the proportions 

of fiber curves in each pathway are different. However, we found that this model has poor 

performance, as our data (illustrated in Figure 1) show that many subjects have completely 

different white matter bundles. This motivates us to instead use the nested Dirichlet process 

(NDP) (Rodríguez, Dunson, and Gelfand 2008), which clusters subjects based on their fiber 

curve distribution, with subjects in a cluster having similar clusters of fibers.

Our NDP model has the following form

fj yji = ∫ ∏
m = 1

M
Km cji

(m); θ(m) dGj(θ), θ = θ(1), …, θ(M) ,

Gj( · ) ∑
ℎ = 1

∞
πℎ*δGℎ*( · ), Gℎ*( · ) = ∑

l = 1

∞
ωlℎ* δθlℎ* ,

(7)

where θlℎ* = θlℎ
(1) * , …, θlℎ

(M) *  and 

θlℎ* ∏m = 1
M P0

m, ωlℎ* = ulℎ* ∏s = 1
l − 1 1 − usℎ* , πℎ* = vℎ*∏s = 1

ℎ − 1 1 − vs* , vℎ*  beta(1, α), and ulℎ*
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beta(1, β). The collection of individual-specific mixing measures Gj  are drawn from an 

NDP, Gj NDP α, β, P0 , where P0 = ∏m = 1
M P0

m is the base measure.

Under this structure, the prior probability that two individuals are assigned to the same brain 

structure cluster is 1/(1 + α), while the prior probability of clustering two fibers together 

within a brain is 1/(1 + β). The model can be used for any combination of the components of 

variability in the fiber curves; for example, one can use only the shape component or a 

combination of different components to estimate fj. In applying these models to brain 

connectomics data, we will assess how clustering performance depends on which 

components are included. Section 2 in the supplementary materials shows an extension to 

include information on strength for connection; length of connection can also be easily 

incorporated.

4.2. Posterior Inference

Following Rodríguez, Dunson, and Gelfand (2008), we propose a blocked Gibbs sampling 

algorithm. An approximation of the stick-breaking process is used, with the infinite sums in 

(7) replaced by finite sums of K (for Gj) and L (for Gℎ*) elements. Let ζj, for j = 1, …, J , be 

the membership indicator of individuals and let ξji, for i = 1, …, nj, be the membership 

indicator of fiber curves for the jth subject. Sampling proceeds via the following steps:

1. Sample the membership indicator for the jth individual (j = 1, …, J) from a 

multinomial

P ζj = ℎ| − ∝ πℎ* ∏
i = 1

nj
∑

l = 1

L
wlℎ* ∏

m = 1

M
Km cji

(m) |θlℎ
(m)* .

2. Sample the membership indicator ξji, for j = 1, …, J and i = 1, …, nj, with

P ξji = l | − ∝ wlζj
* ∏

m = 1

M
K cji

(m) |θlζj
(m) * .

3. Sample πℎ* by first sampling uℎ* | −  beta 

1 + mℎ, α + ∑s = ℎ + 1
K ms), ℎ = 1, …, K − 1, and uK* = 1, where mh is the number of 

subjects assigned to cluster h, and then let πℎ* = uℎ*∏s = 1
ℎ − 1 1 − us* .

4. Sample wlℎ*  by first sampling 

vlℎ* | − beta 1 + nlℎ, β + ∑s = l + 1
L nsℎ), l = 1, …, L − 1, ℎ = 1, …, K and vLK* = 1,

where nlh is the number of observations assigned to atom l of distribution h, and 

then wlℎ* = vlℎ* ∏s = 1
l − 1 1 − vsℎ* .

5. Sample the parameters θlℎ
(m) *  for l = 1, …, L, ℎ = 1, …, K and m = 1, …, M from
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P θlℎ
(m) * − ∝ P0

m θlℎ
(m) * ∏

i, j ζj = ℎ, ξij = l
Km cji

(m) θlℎ
(m) * ,

where P0
m( ⋅ ) is the conjugate prior for parameters in Km ⋅ |θ(m) . If no 

observation is assigned to the lhth cluster, we draw θlℎ
(m) *  from the prior P0

m .

6. Sample the concentration parameters α and β: we choose conjugate priors,α ~ 

gamma(aα, bα) and β ~ gamma(aβ, bβ). The posterior samples for α and β are 

constructed as

P (α − ) gamma aα + (K − 1), bα − ∑
ℎ = 1

K − 1
log 1 − μℎ* ,

P (β − ) gamma aβ + K(L − 1), bβ

− ∑
l = 1

L − 1
∑

ℎ = 1

K
log(1 − vlℎ* ) .

We will evaluate the performance of this Gibbs sampler through application to human brain 

connectome data.

5. Application to Human Brain Connectome Data

We consider two datasets: a test-retest dataset and the Human Connectome Project dataset.

Test-retest dataset:

This dataset contains 3 scans for each subject taken at one month intervals. A total of 15 

acquisitions, from 5 healthy participants, were used for our analysis. In each scan, a dMRI 

image and an anatomical T1-weighted image were acquired on a 1.5 Tesla SIEMENS 

Magnetom. The dMRI image has a 2 mm isotropic resolution and was acquired along 64 

uniformly distributed directions. The T1 image has a 1 mm isotropic resolution.

Human Connectome Project (HCP) dataset:

The dMRI images in HCP have isotropic voxel size of 1.25 mm, and 270 diffusion weighted 

scans. HCP has processed the diffusion image and T1 image such that they have the same 

resolution and lie in the same space (aligned). See Van Essen et al. (2012) for more details. 

A subset of 50 subjects was used in our analyses.

The tractography data for each subject were generated using the probabilistic method of 

Girard et al. (2014) with the recommended optimal parameters. About 1 million fiber curves 

for each subject were generated. Under the Desikan–Killiany atlas, the brain cortical bands 

were segmented into 68 anatomical regions (34 regions per hemisphere). Fiber curves 

connecting any pair of regions were extracted. Before applying our method to each 

connection, outlying fiber curves that do not follow major white matter pathways (false 
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positives caused by the fiber tracking algorithm) were removed using the method proposed 

in Zhang, Descoteaux et al. (2018).

5.1. Component Estimation—For connection (ra, rb), to learn a low-dimensional 

structure L ra, rb  representing the shape component, we use 30 subjects from HCP as the 

training data and learn a basis using FPCA (our numerical experiments indicate that 30 

subjects are adequate for estimating the FPCA basis, and using more training data does not 

significantly change the estimated FPCA basis). We focus on two connections: (1) between 

right paracentral lobule (r_pl) and left postcentral gyrus (l_pg); (2) between right paracentral 
lobule (r_pl) and left posterior cingulate cortex (l pcc). Figure 4 illustrates these connections 

in a subject in the test-retest dataset.

Using the method introduced in Section 2.3, we estimated three components c(1), c(2), and 

c(3) for all fibers. For c(2) ∈ ℜT , we set T = 3, so we use three coefficients (on three major 

FPCA basis functions) to represent a fiber. Using a larger T will increase representation 

precision, but for balancing representation accuracy and computational cost, we set T = 3 

(refer to more details in Section 3 in the supplementary materials. In Figure 5, we plot the 

estimated components for fiber curves in the two connections. For the connection (r_pl, 
l_pg), the fiber curves start from the right paracentral lobule, group into a bundle, traverse 

the corpus callosum, and then split into two bundles to connect the left postcentral gyrus 

region. The split makes the fiber curves have two distinct shapes. For the connection (r_pl, 
l_pcc), there are a few distinct pathways, differing in both shape and location. In Figure 5(d), 

we plot the recovered fiber curves using c(1), c(2), and c(3). The color along the curves 

indicates the discrepancy (with a unit of mm) between the original fiber and the recovered 

fiber. These fibers were recovered from images with an isotropic resolution of 2 mm. In 

Figure 2 of the supplementary materials, we plot the histograms of cross-sectional distances 

between the raw and recovered fibers, where we observe that the major pathways can be 

recovered well with only nine parameters. The biggest discrepancies generally focus on the 

starting and ending points, which are either in gray matter or in interface of gray matter and 

white matter. Diffusion in these regions is close to isotropy (Descoteaux et al. 2009) and 

accurate fiber reconstruction is intrinsically difficult.

5.2. Simulation Study—The proposed model for representing and modeling fiber 

curves is similar to random effects models for functional data (Yang et al. 2016, 2017), but 

we use nonparametric Bayesian tools for characterizing the random effects distributions, 

leading to clustering. We estimate the random effects through the variance decomposition in 

Section 2.3 (the two-step procedure leads to some under-estimation of uncertainty, but in 

Section 3 of the supplementary materials we show that this under-estimation is mild). We 

conduct a simulation study to evaluate our approach and compare with existing random 

effect models for functional data. Data were generated to mimic fiber curves in the corpus 

callosum, while introducing clustering effects and different deviations between clusters. We 

generated two clusters of fibers by combining simulated shapes, rotations and translations. 

The shapes were simulated from a mixture of two Gaussians; the rotations and translations 

were from Gaussians. Figure 6 column (a) shows two examples of the simulated data (each 

of them contains 70 fibers), where in the first row the deviation between the two clusters of 
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fibers is smaller than the second row (the L2 distances between the means of the two clusters 

are 0.3 and 0.8 in row one and two, respectively).

The nonparametric mixture model defined in (4) was used to model the simulated fibers. We 

decomposed the fibers into multivariate data with T = 3 for the shape component. The data 

were centered and rescaled such that each coordinate has unit variation. The prior 

specification and posterior sampling procedure are described in Section 3.3. We assigned a 

normal-inverse-Wishart NIW μ0
(m), λ0

(m), Φ0
(m), v0

(m)  for P0
m θ(m) θ(m) = μ(m), Σ(m) , where 

μ0
(m) = [0, 0, 0]T , λ0

(m) = 1, Φ0
(m) = I3, and v0

(m) = 5 for m = 1, 2, 3, implying that 

E μ(m) |Σ(m) = [0, 0, 0]T  and E Σ(m) = I3 . The above hyper-parameter values will be used in 

all our analyses, including for the real data. The inference is based on 10,000 samples from 

the MCMC sampler after a burn in of 1000 samples. After post-processing to fix the label 

switching issue (Stephens 2000; Jasra, Holmes, and Stephens 2005), trace plots (illustrated 

in Figure 8 in the supplementary materials) suggest that this burn-in is sufficient and there is 

no evidence of lack of convergence.

As a comparison, we applied the random effect model for functional data in Yang et al. 

(2017). Each fiber is represented by yi(t) = zi(t) + ϵi(t), where ϵi(t) N 0, δϵ
2  represents the 

measurement noise, and zi(t) represents the ground truth fiber. Yang et al. represent zi(t) as a 

linear combination of basis functions bk( ⋅ )  with coefficients ζik  for k = 1, …, K . Letting 

ζi = ζi1, ζi2, …, ζiK
T  and assuming ζi N μζ, Σζ , a Bayesian hierarchical model is used to fit 

the data and estimate the distribution of ζ . Since fiber curves are in ℜ3, we performed the 

inference using Yang et al. (2017) for each coordinate independently and let K = 5 (fibers 

cannot be represented well with fewer parameters). While our model used 9 parameters to 

represent each fiber, Yang et al. used 15.

A good model is expected to fit the data well and produce similar random samples to the 

training data. We generated 70 randomly sampled fibers from the posterior predictive 

distributions. The results are presented in Figure 6, where the second column shows our 

results and the third column shows the results of Yang et al. (2017). The colors in Figure 6 

represent data from different classes. The random effect model in Yang et al. (2017) only 

uses one Gaussian to capture the distribution of fibers and there is no clustering information 

to display. Our model captures the structure and variation of the data better than Yang et al. 

(2017). In addition, because of our efficient representation, it took about 30 sec to run 

10,000 MCMC samples with a 2.9 GHz Intel Core i7 CPU, while Yang et al.’s method took 

240 sec. A post-clustering using K-means was performed using ζi to compare with our 

clustering result. We used the Rand index (RI; Rand 1971) and adjusted Rand index (ARI; 

Hubert and Arabie 1985) to measure the accuracy of clustering. We achieved (1,1) in both 

examples for (RI, ARI), while Yang et al.’s method achieved (0.49, –0.01) and (1,1) in the 

two examples.

5.3. Modeling Brain Connection—We first consider a single subject scenario with 

data from connections (r_pl, l_pg) and (r_pl, l_pcc). While Figures 3 and 5 in the 
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supplementary materials summarize the posterior results of each ci
(m) , Figure 7 shows the 

results of modeling all three components together for the connection (r_pl, l_pg). Column 

(a) shows posterior samples of number of clusters and (b) shows the pairwise probability 

heat map according to the posterior samples. We reordered the fiber curves such that fibers 

with similar shapes are close to each other. We used the mode of the posterior distribution on 

number of clusters k as the final cluster number and map the heat map matrix into a 

membership matrix that has k clusters. To quantitatively evaluate the clustering results, we 

manually clustered the fibers in each connection to assign “ground truth” labels (see Section 

5 in the supplementary materials). Table 1 quantifies agreement between the manual and 

model-based clustering. We see that the shape contains most of the information, followed by 

the rotation and translation. Combining all components together gives us better clustering 

results.

Next, we study the connections in a set of individuals using the test-retest dataset. Figure 8 

shows fiber curves of the connection (r_pl, l_pg) from three subjects in three different scans. 

Routinely, each connection is reduced to either a binary number or a scalar number (e.g., the 

count of fibers) for brain network analysis. However, as all subjects have at least one fiber in 

the connection, the usual 0–1 representation of the connection would show no heterogeneity; 

the rich information about the connection is totally discarded. From Figure 8, we see that 

although the counts do vary, they change erratically across scans from the same subject. The 

variation within subjects for different scans is not smaller than the variation between 

subjects, which is mainly caused by noise introduced by image acquisition and 

preprocessing.

To assess whether shape provides a more discriminative and reproducible summary of a 

connection, we applied our NDP model to fibers in the test-retest dataset to cluster 

individual brain scans. Due to potential misalignment between subjects, our analysis 

indicates that using all three components is not a good choice. We merged rotation to shape, 

and decomposed each fiber curve into only translation c(1) ∈ ℜ3 and shape c(2) ∈ ℜ3 to 

simplify our model. We set P0 = ∏m = 1
M P0

m, where P0
m NIW [0, 0, 0]T , 1, I3, 5 , α, β

gamma(3,3), K = 9 and L = 15, a priori. The prior on α and β implies that E(α) = 1 and E(β) 

= 1, which is a common choice in the literature. K and L are upper bounds on the cluster 

number of subjects and curves, respectively. The results that follow are based on 5000 

MCMC samples with a burn-in of 500. As a comparison, we clustered subjects according to 

their fiber counts by the rounded kernel mixture model of Canale and Dunson (2011), using 

their recommended priors, collecting 10,000 posterior draws, and discarding the first 1000.

With all 5 subjects and their 15 scans from the test-retest dataset, we extracted 45 between-

hemisphere connections that have more than 30 fiber curves. We compared clustering results 

using geometric information or only fiber count. For connections with very rich fibers, we 

randomly subsampled them to have an upper limit of n curves (n = 400 in our experiments; 

our numerical study indicated that this subsampling does not greatly affect the clustering 

results and the fitted distributions of fibers; refer to Figure 12 in the supplementary materials 

for more details). Table 2 shows results for 16 connections, with the remaining results in 

Sections 7 and 8 in the supplementary materials (including a detailed analysis for 
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connections in Figure 8). The ROIs are indexed by numbers and their names are provided in 

the supplementary materials. These results provide evidence that shape provides the most 

useful summary of a connection: (1) shape can be reproduced robustly, (2) it is much more 

informative than other features (e.g., the widely used count); (3) using the whole fiber curves 

(shape and translation) is not a good idea due to registration issues and the relatively limited 

information in the translation component (a preregistration of tractography data using 

Garyfallidis et al. (2015) and O’Donnell et al. (2012) may improve the clustering results for 

shape and translation).

5.4. Relationship Between Fiber Geometry and Cognition—The HCP provides 

rich trait measures of each subject, enabling study of relationships between fiber geometry 

and traits. In this section, we study the relationship between geometry of fibers and the oral 

reading recognition ability (Van Essen et al. 2013). We first focused on a set of 20 subjects 

to identify ROI pairs that have potential geometry differences between people having high 

and low reading scores (refer to Section 10 in the supplementary materials for more details). 

Among the 20 subjects, 10 have very low reading scores (67.4 ± 3.3) and 10 have very high 

scores (134.9 ± 2.6) (Section 10 in the supplementary materials contains more details on 

how these subjects were selected). Similar to Section 5.3, we applied our NDP model to 

study distributions of the shape component in the 45 between-hemisphere connections. 

Labels of 0 and 1 are assigned to subjects with lowand high scores, respectively. We use the 

RI to evaluate the subject-level clustering result, measuring similarity between unsupervised 

clustering and the ground truth labels. We also compared with the clustering results using 

fiber count.

Based on the shape component, among the 45 connections, there are 3 (6.7%) connections 

having RI scores greater than 0.6, and 29 (64.4%) between 0.5 and 0.6. For the count, there 

is only 1 (2.2%) connection having RI score greater than 0.6, and 10 (22.2%) between 0.5 

and 0.6. In Figure 9(a) and (b), we show ROI pairs that obtained the highest RI scores with 

the count feature and the shape feature and their heat maps of clustering results. While the 

best RI score is 0.62 on the connection (11,47) for the count feature, the best RI score is 0.64 

on the connection (24,58) for the shape feature. From the heat maps, we can see that the 

clustering with shape on (24,58) is clearer and closer to the “ground truth” than the count on 

(11,47). We also display the result with the shape feature on (11,47) in Figure 9(c). Although 

its RI score is lower than the count, we observe a more interesting result: there is a big 

cluster of subjects with high reading scores; the clusters for subjects with low reading scores 

are very small; subjects with high and low scores are barely clustered together (they have 

distinct fiber geometry).

Based on the RI score in the last experiment, we selected three connections {(24,58), (7,58), 

(27,51)} to conduct a more comprehensive experiment. In this experiment, instead of 

unsupervised clustering, we slightly modify our NDP model to generate a supervised 

classifier to classify subjects based on their fiber shape distributions. More specifically, for 

N subjects from two groups (with good and poor reading abilities) with m of them as testing 

data and N − m as training data, we fit NDP models separately on the training data for each 

group. The NDP model clusters subjects and pools fiber curves within each cluster to 

estimate a mixture distribution. Therefore, for each group, we will have a set of mixture 
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distributions to describe the distribution of shapes of fibers in that group. We allocate each 

subject in the test data to the group that maximizes the likelihood of that subject’s data. With 

the subset of 20 subjects, we conducted leave one out cross-validation (m = 1), holding out a 

different subject each time and averaging the results. The mean classification rates are 0.65, 

0.75, and 0.65, respectively, for connections (24,58), (7, 58), (27,51) with the shape feature. 

As a comparison, the count feature achieves 0.35, 0.5, and 0.5. In another experiment, we 

identified N = 100 subjects with 50 having good reading scores and 50 having poor reading 

scores. We let m = 10 and repeated the classification experiment 10 times, the mean 

classification rates achieved by shape features are 0.60, 0.66, and 0.62, respectively, for the 

three connections.

These results indicate the geometry of fibers is different in subjects with high and low 

reading scores, and therefore, geometry can potentially be used to explain part of the 

cognitive variation in the brain. It is very interesting to find that the discriminative ability of 

fiber geometry is better than the count feature in distinguishing subjects with high and low 

reading scores. The count feature has been studied in the literature (Zhang, Allen et al. 2018) 

and is discovered to be strongly associated with many traits. To further examine our results, 

we visually checked the 20 subjects’ T1 brain images and observed that: in general, people 

with very low reading scores tend to have smaller brains with less complex gyrus and sulcus 

folding patterns than people with high reading scores. Some examples of their T1 images 

and reading scores are shown in Figure 13 in the supplementary materials. This observation 

is consistent with existing literature (Cachia et al. 2014; Rushton and Ankney 1996; Toro et 

al. 2008) and at least partially explains why geometry of fibers can distinguish people with 

different reading abilities.

6. Discussion

We have presented a novel framework to nonparametrically model the geometric 

information of fiber curves connecting two brain regions. Geometry is decomposed into 

three com ponents: shape, rotation, and translation. Our decomposition not only encourages 

a low-dimensional representation of the shape component but also overcomes the 

misalignment issue across multiple brain scans. Relying on a flexible hierarchical mixture 

model, we obtain an accurate and efficient approach to characterize variation in fiber curves, 

leading to clustering of fibers within and across individuals according to fiber geometry. 

These clustering results provide new insights about how to better use the tractography 

dataset for brain connectome analysis. The shape component is the most discriminative 

feature to distinguish different subjects and can be reliably reproduced in repeated scans. 

Using the shape component, we can distinguish people with low/high reading abilities better 

than the count feature, indicating that fiber geometry can be a candidate feature to explain 

the cognitive variation in the brain.

As a first step toward incorporating geometric information in brain structural connectome 

analysis, our results suggest many interesting future directions. One thread is to more 

intensively investigate the reproducibility of the tractography dataset from a geometric 

object perspective. Most previous analyses focus on analyzing arbitrarily thresholded binary 

networks or count weighted networks. As we have illustrated, these features discard shape 
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information and are highly sensitive to errors in tractography processing pipelines. Fiber 

shapes appear to be significantly more robust and informative. A comprehensive study of the 

reproducibility of all brain connections using their geometric information can let us know 

which fiber bundles can be reliably reproduced. We can assign reliability scores to every 

connection according to their reproducibility and give more weights to the connections with 

high reproducibility scores in future network analysis. This step will be fundamental in 

improving the reproducibility of findings in structural brain network analysis. In addition, as 

the future work, some steps of the proposed method maybe improved. For example, due to 

the different complexity of different connections, we can adaptively choose the model 

parameters (e.g., the number of coefficients for the shape component) to more efficiently 

model each connection. To link geometry to traits, instead of dichotomizing trait scores and 

perform classification analysis, a better usage of the continuous traits is to develop a 

regression type analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of fiber curves connecting two different pairs of regions in four subjects.
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Figure 2. 
(a) One example of the whole tractography dataset for a brain. (b) The Desikan–Killiany 

parcellation of the cortical region. (c) Fiber curves connecting a pair of regions.
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Figure 3. 
Shape components after removing different shape-preserving transformations. (a) Simulated 

raw three-dimensional curves. (b) Shape after removing translations and scalings. (c) Shape 

after removing translations, rotations, and scalings. (d) Shape after removing translations, 

rotations, scalings, and reparameterizations.
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Figure 4. 
Example of two connections we used in this paper: (a) between r_pl and l_pg and (b) 

between r_pl and l_pcc.
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Figure 5. 
Decomposed components and the recovered fiber curves. (a–c) The shape, translation, and 

rotation components, respectively. (d) The recovered fiber curves using these components. 

Colors indicate the difference (in unit of mm) between the recovered and original fibers. 

Most recovery errors (89% in the first row and 99% in the second row) are less than 2 

voxels.
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Figure 6. 
Comparison of the proposed nonparametric Bayesian model with the parametric model for 

functional data in Yang et al. (2017). (a) Simulated 70 fiber curves with two classes (each 

color represents a class). (b) Posterior samples from the proposed model. (c) Posterior 

samples from Yang et al. (2017).
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Figure 7. 
Joint model result for the connection (r_pl, l_pg).

Zhang et al. Page 27

J Am Stat Assoc. Author manuscript; available in PMC 2020 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Fiber curves connecting r_pl and l_pg in 9 scans of 3 subjects in the test-retest dataset. The 

number in the bottom left bracket shows the number of fibers.
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Figure 9. 
Pairwise probability of clustering 20 HCP subjects with high and low reading scores. (a, b) 

Connections and pairwise probabilitymatrices with the best RI scores under the shape and 

count feature. (c) Connection (11, 47) and pairwise probability matrix with the shape 

feature.
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