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A B S T R A C T

Researchers are taking great interest in the synthesis and characterization of MnZn ferrites due to their wide
range of applications in many areas. MnZn ferrites are a class of soft magnetic materials that have very good
electrical, magnetic and optical properties. The properties of MnZn ferrites include high value of resistivity,
permeability, permittivity, saturation magnetization, low power losses and coercivity. The above mentioned
advantageous features of MnZn ferrites make them suitable for the use in various applications. In biomedical
field these ferrites are used for cancer treatment and MRI. MnZn ferrites are also used in electronic applications
for making transformers, transducers and inductors. These ferrites are also used in magnetic fluids, sensors and
biosensors. MnZn ferrite is highly useful material for several electrical and electronic applications. It finds ap-
plications in almost every household appliances like mobile charger, LED bulb, TV, refrigerator, juicer mixer,
washing machine, iron, microwave oven, mobile, laptop, desktop, printer and so on. Therefore, the present
review focuses on different techniques for synthesis of MnZn ferrites in literature, their characterization tools,
effect of doping on the properties of MnZn ferrite and finally we will discuss about their applications.

1. Introduction

A ferrite [1–6] is a ceramic material that is made up of iron oxide
(Fe2O4) in large proportion mixed with metallic element such asbarium
(Ba), manganese (Mn), nickel (Ni), zinc (Zn) in small proportions. The
nature of both the iron oxide and the metal is electrically non-con-
ducting and ferrimagnetic. Ferrimagnetic material is one that possesses
unequal opposing magnetic moments which allow such materials to
retain spontaneous magnetization. Ferrites are generally classified into
two types: hard ferrites [7,8] and soft ferrites [9–17]. Hard ferrites have
high coercivity and such materials are difficult to magnetize. Therefore
these materials are used in making permanent magnets which are used
for applications in refrigerator, loudspeaker, washing machine, TV,
communication systems, switch mode power supplies, dc-dc converters,
microwave absorbing systems, high frequency applications, re-
frigerator, loudspeaker etc. [18–25]. On the other hand, soft ferrites
have low coercivity as a result of which their magnetization can easily
be altered. Soft ferries are good conductors of magnetic field which has
led to its wide range of applications in electronic industry such as de-
veloping transformer cores, high frequency inductors and as microwave
components [26–42], see Fig. 1 for more details. Furthermore,

advantages of soft ferrites include high resistivity, low cost, time and
temperature stability, low loss and high permeability [43–46]. Most
common soft ferrites are MnZn ferrites [47–55] and NiZn ferrites
[56–73]. MnZn ferrites are more preferred as they have high perme-
ability [74] and saturation magnetization [75]as compared to NiZn
ferrites. Because of low value of resistivity of MnZn ferrites as compared
to NiZn ferrites, these ferrites are used for low frequency applications
[76–78]. The properties of MnZn ferrites are essentially dependent on
the synthesis methods [55,79–85] and the doping concentrations inside
nanoferrites [86,87].

In the past decade MnZn have attracted a large amount of attention
in academia due to its advantageous features that make MnZn ferrites
suitable to be used in many applications of daily life. The data of the
publications of the MnZn ferrites by web of science in the last decade is
shown in Fig. 2. The record of the data shows that there is a regular
increase in the publications of the MnZn ferrite documents in the last
ten years and much more progress in citations may be seen in years
2018 and 2019.

Fig. 3 shows various applications of MnZn ferrites. The change in
the concentration of cations [88–92] and sintering conditions [93,94]
changes the magnetic, electrical properties and structural properties of
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nanoferrites which lead to its wide range of applications. In addition,
the shape, morphology, electrical, magnetic properties are affected by
the cation distribution in the MnZn ferrite [95]. Cationic distribution
for Mn1-xZnxFe2O4 is described in Table 2. Considering the importance
of Mn–Zn ferrites for various applications, a comprehensive review
based on 261 references is summarized.

2. Purpose of the review

The main purpose of the review is to focus on the synthesis, mor-
phology, properties and characterization methods of MnZn ferrites.
While the subject of magnetic nanostructures is enormously wide and a
large number of good review articles are published on magnetic na-
noparticles, MnZn ferrites in particular constitute a special niche of
nanoparticles because of immense interest of the scientific community
in soft ferrites. In addition, this review critically analyze methods and
discusses on the choice of synthesis method for use of MnZn ferrites in a
given application. In brief methods such as sol-gel method [96–101],
co-precipitation method [85,102–109], conventional ceramic technique
[110,111], hydrothermal method [112–114], citrate precursor method
[115–117], solid state reaction method [118], auto-combustion method
[119] and microemulsion method [120] for the synthesis of MnZn
ferrites are discussed. Various advantages and disadvantages of the
synthesis methods are shown in Table 1.

3. Morphology of MnZn ferrites

MnZn ferrites have spinel structure [121]. The spinel structure has
one major unit cell composed of 8 sub-unit cells having face centered
cubic (FCC) structure with two types of sites in each unit cell i.e. tet-
rahedral (A) site and octahedral (B) site in the complete structure of
MnZn ferrite. There are 64 tetrahedral interstitial sites and 32 octahe-
dral interstitial sites. Spinel structure has closed packed oxygen atoms
arrangement in which 32 oxygen atoms form a unit cell. Tetrahedral
(A) sites are surrounded by four nearest neighbor oxygen atoms and
octahedral (B) sites have six nearest oxygen atoms around it as shown
in Fig. 4. In MnZn spinel ferrite lattice, Zn ions are on the tetrahedral
sites while Fe and Mn ions occupy both tetrahedral and octahedral sites.
Due to this spinel structure, different metallic ions can be introduced

that causes change in the electric and magnetic properties of ferrites.
The metal ions introduced may enter the spinel crystal lattice by re-
placing Fe3+ ions and leading to aggregation of these ions on the grain
boundary. These morphological features suggest that the properties of
MnZn ferrite nanoparticles can be tuned as long as the nanoparticle
designer is specifically for a given application choose appropriate
synthesis and characterization techniques. In order to know the best
advantages of MnZn ferrites for various applications, one has to be
aware of different synthesis and characterization techniques.

4. Why do we prefer MnZn ferrites?

MnZn ferrites are preferred over other ferrites due to their low cost
and wide range of applications. These ferrites are very important for
stress insensitivity and low noise and are generally used for applications
where frequency requirements are below 2 MHz. MnZn ferrites are also
advantageous due to their almost zero magnetocrystalline anisotropy.

In the class of soft ferrites, MnZn ferrites are preferred due to high
permeability [122–127], saturation induction [128–130], low power
losses [34,131–138] and high magnetic induction [139,140]. MnZn
ferrites are of great interest due to their wide range of applications such
as hyperthermia applications [141], power applications
[109–111,142–144], magnetic fluid [145], high frequency power
supply [142], memory storage devices, TV sets, biomedicines [146],
magnetic resonance, catalysis etc. There is a continuous progress in the
size and shape control of MnZn ferrites and also on the morphological
and magnetic properties of MnZn ferrites by using different methods
[147] of synthesis like sol-gel method [96–98], co-precipitation method
[85,102–109,143], conventional ceramic technique [110,111], hydro-
thermal method [112–114,148–150], citrate precursor method [115],
solid state reaction method [118], auto-combustion method [119,151],
microemulsion method [120]. The effect of doping on the structural
and magnetic properties of pure MnZn ferrites is also taken into ac-
count.

5. Synthesis methods to prepare MnZn ferrites

There are two approaches to synthesize nanoparticles: top–down
and bottom–up. Both these approaches are shown in Fig. 5(a). In
top–down, a bulk material is broken down to get nanosized particles.
This method has many limitations like generally metal oxides are used,
requirement of very high temperature for the reaction, products are
inhomogeneous, presence of impurities, crystal defects, broad size
distribution and imperfection in surface structure. In bottom–up ap-
proach, small atomic building blocks fit together to produce nano-
particles. This is most favorable method for nanoparticles synthesis as
the products in this method are homogeneous, highly pure and have
narrow size distribution.

Various synthesis techniques are used to prepare MnZn ferrite na-
noparticles [152–160]such as sol-gel mthod [161–164], polyol process
[165],co-precipitation method [104,166,167], hydrothermal method
[113], citrate precursor method [122], solid state reaction method
[118], auto-combustion method, ceramic processing method [139].
Some of the techniques to synthesize MnZn ferrites are shown in Fig. 6.
By doping other elements or oxides [168–171] the structural, electrical
and magnetic properties of MnZn ferrite can be enhanced. For instance,
Zaspalis et al. [172]observed that there was 17% improvement in the
total power loss per volume when doping was done of Nb2O5 in pure
MnZn ferrite. After doping there was reduction in the losses related to
magnetostriction and stress related hysteresis losses. Also, the eddy
current losses related to electrical resistivity were also reduced. Xiang
et al. [173] prepared MnZn ferrite particles with Ce3+ doping and
observed that no impurity phase was detected in the XRD pattern. It
confirmed that Ce ions entirely got dissolved in spinel structure. This
also led to an increase in the saturation magnetization and decrease in
the coercivity of MnZn ferrites, leading to an overall improvement in

Fig. 1. Applications of soft ferrites
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the soft magnetic properties of the material. Some methods of synthesis
are described below.

5.1. Microwave hydrothermal process

Microwave is a form of electromagnetic energy associated with
electromagnetic field. It can be defined as an electromagnetic wave
having frequency and wavelength between 300 MHz and 300 GHz in
1 m to 1 mm range respectively. While the study of microwaves started

during 1930s, the first work on microwave hydrothermal synthesis of
nanoparticles was demonstrated by Dr. Komarneni while distinguishing
the traditional hydrothermal synthesis methods [174] from microwave
hydrothermal synthesis [175–177]. In microwave hydrothermal
method, heat required in the synthesis process is generated by micro-
waves which have the advantage of high penetrating power. Micro-
waves can penetrate and heat the sample to a certain depth. Microwave
hydrothermal method is beneficial as it has very fast heating rates to
allow generation of uniform nanomaterials with fine particle size

Fig. 2. Documents on MnZn ferrites in web of science in last 10 years a) number of articles and b) number of citations
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distribution. Hence, this is faster, cleaner and economical method as
compared to traditional hydrothermal method [178]. Praveena et al.
[179] synthesized MnZn ferrites by using microwave hydrothermal
process. Pure manganese nitrate [Mn(NO3)2.6H2O], zinc nitrate [Zn
(NO3)2.6H2O] and ferric nitrate [Fe(NO3)2.9H2O] were dissolved in
50 ml de-ionized water. In this process pH was maintained at about
9.4.Thereafter the mixture was sealed in tetrafluorometoxil (TFM) and
was put in microwave oven for 30 min at 160°C followed by washing of
the solids with de-ionized water and ethanol several times. The re-
sulting wet mixture was dried and then polyvinyl alcohol (PVA) was
added that acted as a binder. The powder was then pressed into pellets
followed by sintering at 900°C for 30 min. Single phase spinel structure
was confirmed by the XRD spectra.

5.2. Hydrothermal method

The hydrothermal method is used for the preparation of ferrite
nanoparticles on a large scale. Essentially, in this method the yield of
nanoparticles is very high. If the parameters such as temperature,
pressure and reaction time are properly selected, good quality

Fig. 3. Applications of MnZn ferrites.

Table 1
Summary of advantages and disadvantages of major synthesis techniques.

Methods Temperature (°C) Advantages Limitations

Co-precipitation 30–140 Simple process
Aqueous media
Controlled size and morphology
Easily functionalized

Poor crystallinity
Very long reaction time required
Broad size distribution

Hydrothermal 100–200 Scalable
Controlled size
Aqueous media
High yield

Requirement of special reactor
High pressure required (> 2000PSI)
High temperature
Long reaction time

Sol-gel method 20–200 Controlled size and shape
Low cost

Takes longer time
Yield is medium

Microwave hydrothermal method 160 Fast heating speed
Faster and economical
Very fine nanoparticles produced
Uniform morphology

–

Combustion method 480 Less time and energy required
Simple and effective method
Versatile and fast
Nanoparticles produced are pure and homogeneous

Very high temperature is required

Solid state reaction method 25 No toxic and expensive solvent used
Facile and economic

–

Oxidation process 30 Narrow size distribution
Uniform size

Irregular and elongated morphology of the product

Table 2
Cation distribution of Mn1-xZnxFe2O4.

X Cation distribution

0.2 (Zn0.2Mn0.4Fe0.4)[Mn0.4Fe1.6]O4

0.4 (Zn0.4Mn0.2Fe0.4)[Mn0.4Fe1.6]O4

0.6 (Zn0.4Mn0.2Fe0.4)[Zn0.2Mn0.2Fe1.6]O4

0.8 (Zn0.6Fe0.4)[Zn0.2Mn0.2Fe1.6]O4

Fig. 4. Spinel structure(Reproduced by permission from Ref. [241],License
Number: 4646900916646, Copyright 2016, Elsevier).
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nanoparticles can be synthesized. Phong et al. [112] studied magnetic
properties and specific absorption of Mn0.3Zn0.7Fe2O4 nanoparticles. In
this work the MnZn ferrites were prepared by a hydrothermal process in
a Teflon-lined stainless steel autoclave. The starting materials FeCl3,
MnCl2, ZnCl2 were dissolved in HCl solution and NaOH was slowly
added to the solution and stirred for 30 min. The solution was trans-
ferred to Teflon-lined stainless steel autoclave till it was 80% full. The
autoclave was heated at 180°C for 12h and then left for cooling to room
temperature. After that the products were washed many times with hot

de-ionized water and acetone and finally dried in an oven at 80°C for
5h. By this method, large quantity of ferrite nanoparticles can be syn-
thesized. The Mn-Zn ferrite nanomaterials prepared by this method
have controlled size and this method requires aqueous media for the
synthesis. But this method has some limitations that include require-
ment of special reactor, need of high pressure and high temperature.

5.3. Co-precipitation method

Co-precipitation [180] is an easy and conventional method to syn-
thesize nanomaterials. The ferrites prepared using this method are of
controlled size, highly pure and have homogeneous structure. Typical
co-precipitation method for synthesis of nanoparticles is shown in
Fig. 7. Normally inorganic salts (nitrate, chloride, sulphate, etc.) are
used in this method as the starting materials that are dissolved in water
or any other medium which is suitable to form a homogeneous solution.
The pH of the solution is adjusted to 7–9 and the solvent is evaporated
to get nanoparticle precipitates. It should be noted that the con-
centration of salt, temperature, pH and the rate of pH change are det-
rimental to crystal growth and aggregation of the particles. After pre-
cipitation, the solid mass is collected and washed. This is followed by
heating of the residue up to the boiling point of the medium to dry the
resultant product and form hydroxides. The hydroxides are then cal-
cined to transform the hydroxide into crystalline oxides. Thakur et al.
[181] used co–precipitation method to synthesize MnZn ferrite. In this
method, manganese chloride, zinc chloride, iron(III) chloride and so-
dium hydroxide were used as raw materials. A 3 M solution was pre-
pared in 60 ml of distilled water. This solution was then poured into
boiling NaOH solution while stirring for 60 min at temperature
353–358K with a magnetic stirrer, maintaining the pH between 11 and
12. Stirring allowed precipitates of the nanoparticles to settled down
and then sample was washed many times with distilled water. After
washing, the sample was dried in hot air oven followed by crushing the
resultant into powder using mortar pestle. Anwar et al. [9] also syn-
thesized MnZn ferrites by the chemical co–precipitation method by
taking solution of Mn(NO3)2.4H2O, Zn(NO3)2H2O and Fe2(NO3)3.9H2O
as the starting materials. These were mixed to form homogeneous

Fig. 5. (a) Top–down and Bottom–up approach to synthesize nanoparticles and (b) flow chart for preparation of MnZn ferrite by novel combustion method using
subsequent heat treatments (Reproduced by permission from Ref. no. [259], Licence No. 4763520487833, Copyright 2011, Elsevier).

Fig. 6. Various synthesis techniques to synthesize MnZn ferrites.
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solution at 358K. Then, ammonia solution was added dropwise with
constant stirring maintaining the pH between 10 and 11. The mixture
was heated at 353K for 1h. Then after the washing and drying process
the ferrite powder was heated at 673 K, 773K and 923K separately and
pressed in the form of circular pellets. The chemical reaction during the
process was:

0.5Mn(NO3)2.4H2O+0.5ZnNO3.H2O+2Fe2(NO3)3.9H2O+8NaOH→
0.5Mn(OH)2.0.5Zn(OH)2.2Fe(OH)3+2NaCl+6NaNO3 →Mn0.5Zn0.5
Fe2O4.nH2O+ (4-n)H2O

Yadav et al. [182] studied the properties of ferrite nanoparticles by
co–precipitation method with samarium doping. The ferrites with Sm
doping were very pure and had single crystalline spinel phase. Kumar
et al. [183] studied the conduction phenomena in indium substituted
Mn–Zn nano-ferrites. Mn0.4Zn0.6InyFe2-yO4 (y = 0. 0.035, 0.070, 0.100)
were synthesized by oxalate co-precipitation method followed by mi-
crowave heating. The raw materials used were manganese sulphate
monohydrate (MnSO4.H2O), iron sulphate heptahydrate (FeSO4.7H2O),
zinc sulphate heptahydrate (ZnSO4.7H2O), anhydrous indium sulphate
(In2(SO4)3) and Diammoniumoxalate monohydrate [(NH4)2C2O4.H2O].
These all starting materials were mixed by rapidly adding Di-ammo-
nium oxalate under continuous stirring at 45 °C for 30 min until pre-
cipitates were formed. Precipitates were washed many times and then
dried in an oven at 100 °C for 8h. Dried yellow precipitates were used to
prepare ferrites by using in-house built microwave heating set up.
Aluminium metal powder was used as microwave susceptor. This set up
was then put on a commercial microwave oven operated at a frequency
2.45 GHz. The oven was set to raise the temperature to 450 °C. Then,
brick was taken out and allowed to cool. Co–precipitation method has
several advantages as it uses aqueous medium for synthesis and also the
synthesis is very simple. There is a good control on the size and mor-
phology of the nano particles formed. But this method takes long time
to synthesize nanoferrites. This method is disadvantageous due to poor
crystalline nature of the resultant ferrite powder.

5.4. Sol–gel method

Sol–gel method [184,185] is a promising method used for the pre-
paration of ferrite nano materials. It is a chemical solution process used

Fig. 7. Typical Co–precipitation method for Mn-Zn ferrite nanoparticles
synthesis.

Fig. 8. Flow chart for the preparation of samples using sol-gel auto combustion method (Reproduced by permission from Ref. [240], Licence No. 4763510638098,
Copyright 2016, Elsevier).
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to synthesize nanoparticles. A sol is a colloidal or molecular suspension
of solid particles of ions in a solvent and gel is a semi–rigid mass that
forms when the solvent from the sol starts evaporating where the par-
ticles left behind start to join together in a continuous network. The
resultant product which comes out is in the form of colloidal powder or
films. This method is advantageous because of controlled micro-
structure of the final product. The resultant particles formed are of
uniform and small size. Also, this technique of nanoparticles synthesis is
economical and it involves use of low temperature. Duan et al. [161]
synthesized MnZn ferrite nanoparticles taking pure Fe(NO3)3.9H2O, Zn
(NO3)2.8H2O and Mn(NO3)2as starting materials. These materials were
dissolved in de-ionized water at 60°C. Also, C6H8O7.H2O was dissolved
in above solution to chelate the metal ions with the citrate ions and
concentration was adjusted to 0.1–0.4 by adding de-ionized water. PVP
was added as a binder to reduce film cracks. The spin coating was done
at 3000 rpm for 30s. The samples were heated at 350°C for 30min,
followed by crystallization at 550°C for 60min after each coating. The
flow chart of the sol-gel auto combustion method is shown in Fig. 8. The
sol-gel method is also used for depositing structurally and magnetically
uniform films for spin thermoelectric generator. Gabal et al. [186]
studied Mn–Zn nano-crystalline ferrites synthesized from spent Zn–C
batteries using novel gelatin method. The Zn–C batteries were used to
synthesize the ferrites by using sol-gel method using gelatin. Jalaiah

et al. [187] synthesized nickel doped MnZn ferrites by sol–gel auto
combustion method and observed non-collinear magnetic structure.
The room temperature conductivity was observed to be higher than
pure MnZn ferrite. There was a decrease in dielectric constant and di-
electric loss tangent with increase in nickel concentration.This method
is advantageous because of better size and shape control but it takes a
longer time to complete the synthesis. Sol-gel method is a simple pro-
cess, require low processing temperature and low cost. The prepared
ferrite consists of a pure cubic spinel structure.

5.5. Combustion method

Combustion process is the effective and low cost method to syn-
thesize nano materials. This process is simple, versatile and fast for
nano material preparation. This method is advantageous as less time
and energy is spent during the synthesis process. The nanoparticles
produced are pure and homogeneous. Many researchers synthesized
MnZn ferrites by using this method [188,189]. Manganese nitrate [Mn
(NO3)2.6H2O], zinc nitrate [Zn(NO3)2.6H2O], iron nitrate [Fe
(NO3)3.9H2O] were taken in proper proportions and urea [CO(NH2)2]
was used as a reducing agent in this process. Typically a solution is
formedby adding these all materials in de–ionized water and heated on
a hot plate at 480°C in air. Then, it is ignited within 5 s with flame

Fig. 9. Different methods of synthesis for preparation of MnZn ferrite.
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temperature ~1600°C. Combustion technique methodology is de-
scribed in Fig. 5. While doping with other elements, a decrease in the
lattice parameter was observed which could be attributed to the fact
that ions of doped elements get trapped at the grain boundaries. Hence
they hinder the grain growth and may cause an increase in strain on the
grains that leads to decrease in lattice parameter. Doping of rare–earth
metals can be done using combustion method [189] in a single step.
The fuel chosen in the combustion methodalso has very important effect
on the MnZn ferrites prepared. The fuels that are generally preferred in
this method are urea and glycine. By using these fuels uniform nano-
ferrites with controlled stoichiometry are obtained.

5.6. Solid state reaction method

The solid-state reaction method to synthesize nanoparticles has
several advantages. In this method, toxic and expensive organic sol-
vents are not used in the reaction and all the materials used to syn-
thesize MnZn ferrite nanoparticles are easily available and cost effec-
tive. The synthesis process is performed at room temperature under
atmospheric pressure which is facile and economic. Many researchers
synthesized MnZn ferrites by using this method [30,132,134,190]. The
raw materials MnCO3, ZnO and Fe2O3 in the proper weight were
powdered and the powdered samples were calcined at 1100°C for 5h in
air atmosphere using muffle furnace with heating rate of 10°C/min and
a cooling rate of 5°C/min. Then, PVA was used as a binder and powder
was pettelized into small disks and torroids. Then sintering was done to
get the required nano ferrites. Kogias et al. [191] studied MnZn ferrite
with low losses at 500 kHz over a broad temperature range by pre-
paring MnZn ferrite using conventional ceramic technique of solid state
reaction.Tsakaloudi et al. [192] studied process and material para-
meters towards the design of fast firing cycles for high permeability
MnZn ferrites. In this paper, high permeability of MnZn ferrites was
reduced by increasingthe energy consumption in the synthesis reaction
due to prolonged sintering process for the production of nanoferrites.
Zapata et al. [30] studied effect of zinc concentration on the micro-
structure and relaxation frequency of Mn–Zn ferrites synthesized by
solid state reaction. Rahaman et al. [193] studied synthesis, structural,
and electromagnetic properties of Mg doped ferrites. Fig. 9 shows the
flow chart of various synthesis techniques.

5.7. Oxidation method

Oxidation method is a chemical method to prepare ferrite nano-
particles. The ferrite particles synthesized are irregular, have elongated
morphology. The advantage of this method is that the particles have
narrow size distribution and uniform size but by using this method
ferrite colloids of small size are formed. Joseyphus et al. [41] prepared
MnZn ferrite by using oxidation method. The synthesis procedure of
nanoparticles by oxidation method is shown in Fig. 10. Proper amounts
of FeSO4.7H2O, MnCl2.4H2O, ZnSO4.H2O and Fe2(SO4)3 were used as
starting materials to synthesize Mn0.67Zn0.33Fe2O4. The weighed
amounts of FeSO4.7H2O, MnCl2.4H2O, ZnSO4.H2O and Fe2(SO4)3 were
dissolved in 250 mL water and then the mixture was allowed to react
with NaOH dissolved in 250 mL of water. Constant stirring was done for
2h to oxidize the metal hydroxide precipitates by adding KNO3. The pH
was maintained between 12 and 13. Washing of the precipitates was
done many times and then these were allowed to dry in an oven at 333K
for 2 days.

5.8. Nitrilotriacetate precursor method

By using this method we can synthesize MnZn ferrite at a very lower
temperature. Tangsali et al. [194] synthesized MnxZn1-xFe2O4 (x = 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7) by using this method. All the
metal salts were mixed in proper amounts in aqueous solution of di-
hydrazinium nitrilotriacetate. Dry precursors of nitrilotriacetate

hydrazinate of metal ions were obtained from the solution and ignited.
Then the autocombustion of the dry precursors resulted in the forma-
tion of metal oxides. Tangsali et al. [195] also studied the effect of
sintering conditions on the resistivity of MnZn ferrite nanoparticles
prepared by using this method. The resultant products in this technique
showed high saturation magnetization and high values of Curie tem-
perature that was between 750K and 380K.

5.9. Stearic acid gel method

Stearic acid or octadecanoic acid (CH3(CH2)16COOH) is a common
fatty acid that exists as glycerol ester in animal and plant fat. Many
researchers used stearic acid gel to synthesize nanomaterials.
Jafarnejad et al. [196] used this method to synthesize MgCr2O4 and
Enhessari et al. [197] synthesized CoTiO3 by using stearic acid gel
method. Ma et al. [198] synthesized MnZn ferrite with chemical for-
mula MnxZn1-xFe2O4 by using stearic acid gel method. Proper amounts
of MnCO3, Zn(NO3)2.6H2O and Fe(NO3)2.9H2O were powdered and
mixed with Stearic acid in molten form. Stirring was done for 3–4h after
heating the mixture in oil bath at 120°C. This resulted in formation of a
brown gel. The gel was cooled in air and then powdered by grinding it.
This was followed by washing of the grinded mixture with water three
times followed by drying of this mixture at 100°C. MnZn ferrites were
obtained by heating at 450°C for 1 h.

6. Characterization

The characterizations of MnZn ferrites are done with various in-
struments such that X-ray diffractometer, scanning electron microscopy
[199–201], transmission electron microscopy and atomic force micro-
scope (AFM). The magnetic properties of the ferrites are studied by
vibrating sample magnetometer (VSM), magnetization hysteresis
(M − H) loops [202] and electron spin resonance (ESR) hysteresis loop
measurements. The X-ray investigation is done using X-ray dif-
fractometer with CuKα radiation (λ = 1.5405 Å). Various formulas for
the determination of lattice constant, X-ray density and crystallite size
are listed below.
Measurement of lattice constant (a): From the analysis of XRD

data, the lattice constant can be calculated using the formula:

= + +a d h k l( )hkl
2 2 2 1

2 (1)

where a is the lattice constant, d is the interplanar spacing, and h, k,
and l are the miller indices.
Measurement of X-ray density (dx-ray): Theoretical density can be

calculated using the relation:

=d M
Na

8
xrd 3 (2)

where M is the molecular mass of each component, N is the Avogadro's
number (6.023 × 1023 particles/mol).
Measurement of Experimental density (dexp): Experimental

density can be measured using the formula:

=d mass
volumeexp (3)

Measurement of crystallite size (D): Crystallite size is calculated
by using the Scherrer's formula:

=D 0.9
cos (4)

where D is the crystallite size, λ = 1.54056 Å is the wavelength of X-
ray, is Bragg's angle and β is the FWHM value.

6.1. Size and shape

Many techniques are used to determine the shape, size and mor-
phology of magnetic nanoparticles such as XRD, SEM, TEM, HRTEM
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(High resolution transmission electron microscopy) and FESEM (Field-
emission scanning electron microscopy). By using HRTEM we can get
information about shape, size, crystallinity and lattice spacing. XRD is
used to determine the size by using Scherrer equation. However, SEM is
better than XRD as XRD cannot determine the size of very small mag-
netic nanoparticles.

6.1.1. XRD analysis
Ramiza et al. [102] studied the effect of UV radiations to control

particle size of Mn–Zn spinel ferrite nano-particles. From the XRD
analysis it was observed that with the UV radiations minimum particle
size was obtained i.e. 6.198 nm. The size of the sample that was not UV
treated was found to reduce from 90 nm to 50nm and the crystallite size
of the pure MnZn ferrites was found to be in the range 25 nm–35 nm in
almost all cases as described in Table 3. The lattice parameter was
found to be in the range 8.30Å–8.570 Å. Praveena et al. [179] observed
that the lattice constant lie between 8.302 Å and 8.311 Å according to
composition. The bulk density and the X-ray density increased from
4.98 gm/cm3 to 4.90 gm/cm3 and 5.12 gm/cm3 to 4.98 gm/cm3.
Thakur et al. [203] studied effect of sintering temperature and observed
that the average crystallite size was found to increase with an increase
in sintering temperature i.e. from 11.38 nm to 67.42 nm. Also, the
lattice constant was found to increase from 8.409 Å to 8.483 Å with
increasing sintering temperature. At 1373K, a well crystallized single
MnZn ferrite phase was formed. Mirshekari et al. [204] observed from
the XRD that the average crystallite size was in the range
43.25 nm–66.7 nm. Small amount of lattice strains were also observed
improving its magnetic properties. Anwar et al. [9]studied the effect of
sintering temperature and observed that the pure MnZn ferrite had pure
spinel structure and at 673K sample had cubic spinel structure. At
923 K, the XRD pattern contained additional reflections which were due
to Fe3O4. The crystallite size increased from 7 to 13 nm. The lattice
constant decreased from 8.439 Å to 8.431 Å with an increase in sin-
tering temperature from 673K to 923K. The XRD density was found in
between 5.21g/cm3and 5.23 g/cm3 as described in Table 3. Gabal et al.
[186] observed from the XRD analysis that MnZn ferrites had a single
phase cubic spinel structure with characteristic (311) reflection on
2Ө = 34.58 and no diffraction peak due to impurity was observed. The
broad diffraction peaks were observed showing ultrafine nature and
small crystallite size. The lattice parameter showed a decreasing value
from 8.4466 Å to 8.4164 Å with increasing Zn content and the density
increased from 5.13 g/cm3 to 5.32 g/cm3. Phong et al. [112] observed
that the XRD pattern showed single phase spinel cubic structure with
Fd3m space group. The lattice parameter was calculated 8.432 Å and x-

ray density was 5.27 g/cm3. The average crystallite size was 14 nm.
Further from the XRD patterns [30], it was observed that the cubic
spinel phase was formed and slight contraction was observed in lattice
parameter from 8.4749 Å to 8.4353 Å as Zn concentration increased
because Zn2+ ions (0.082 nm ionic radii) replaced Mn2+ ions (ionic
radii = 0.091 nm). The value of sintered density increased from 4.93 g/
cm3 to 4.96 g/cm3 with increase in Zn content. Jalaiah et al. [187]
observed that the lattice parameter found to vary from 8.4555 Å to
8.5758 Å. The average crystallite size was calculated by the Scherrer's
formula and was found to be in the range 10 nm. In the XRD pattern as
studied by Angadi et al. [189] observed the Braggs reflections that in-
dicate the crystalline nature of the samples with cubic spinel structure
corresponding to Fd3m space group. When Sc3+ concentration was
increased, the peak shifted towards the lower 2 angle because of the
relative difference between the ionic radii of Sc3+ (0.745 Å) with that
of Fe3+ (0.55 Å). A decrease in the lattice parameterwas observed from
8.434 Å to 8.431 Å on Sc3+ doping which could be due to presence of
Sc3+ ions at the grain boundaries. In the XRD patterns, peaks showed
the cubic spinel structure [190]. The lattice parameter of pure MnZn
ferrite increased with increase in sintering temperature from 8.3383 Å
to 8.3496 Å and decreased in Mg doped MnZn ferrite from 8.3542 Å to
8.3225 Å with increasing sintering temperature. Bulk density decreased
with an increase in sintering temperature from 4.87 g/cm3 to 4.45 g/
cm3 in pure MnZn ferrite and from 4.61 g/cm3 to 4.57g/cm3in Mg
doped MnZn ferrite due to discontinuous grain growth. Islam et al.
[128] studied structural, magnetic and electrical properties of Gd-sub-
stituted Mn–Zn mixed ferrites. From the XRD patterns it was concluded
that for the sample without Gd doping, the ferrite was perfectly single
phase spinel and as there was an increase in the Gd concentration, some
un-indexed peak as secondary phase appeared. With the increase in Gd
content, the lattice parameter also increased from 8.4645 Å to
8.4750 Å. In the XRD patterns of Al doped MnZn ferrite observed by
Haralkar [184], the formation of cubic spinel ferrite structure was ob-
served. It was observed that the lattice parameter decreased from
8.445 Å to 8.385 Å with increasing value of x due to the replacement of
Fe3+(0.67 Å) ions by Al3+(0.51 Å). The value of X-ray density also
decreased from 5.202 g/cm3 to 4.989 g/cm3 with increase in Al con-
tent. The crystallite size decreased from 19 nm to 11 nm with increase
in Al content. From the study of Yadav et al. [182], the XRD pattern
showed spinel structure without any impurity. Also, the graphs had
very broad peaks indicating the ultrafine nature and small crystallite
size of ferrites. The lattice parameter increased from 8.4052 Å to
8.4219 Å with increase in Sm3+ concentration. The crystallite size
decreased from 12.9 nm to 8.7 nm. X-ray density also increased from
5.172 g/cm3 to 6.295 g/cm3. These all variations were because of the

Fig. 10. Synthesis techniques of oxidation method.
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substitution of heavier atomic weight samarium with lower atomic
weight iron. The XRD peaks of Indium doped Mn-Zn ferrite as studied
by Kumar and group [183] showed the pure spinel phase of space group
Fd3m. With the increase in Indium concentration, the XRD peaks
shifted towards higher angle. This showed some lattice distortion in the
cubic structure. The crystallite size increased from 14.6 nm to 15.9 nm
with increasing doping concentration. The lattice constant increased
from 8.391 Å to 8.418 Å. Also, the x-ray density increased from
5.315 g/cm3 to 5.445 g/cm3. XRD graphs of MnZn ferrite for various
compositions and with Indium doping are shown in Fig. 11. The char-
acteristics peaks match with the ferrite particles and show the phase
group Fd3m and spinel structure having single phase. Hence, it is
concluded that the MnZn ferrites have single phase spinel cubic struc-
ture with Fd3m phase group; however some distortion in the structure
can be observed because of doping.

6.1.2. Morphological structure
Various techniques such as AFM, TEM, and SEM etc. are used to

investigate the morphological structure of the ferrite nanoparticles.
SEM is widely used for it but TEM is better than SEM because of poor
resolution of SEM. AFM is a technique that can be used in different
conditions like air, vacuum, liquid and moist conditions. Winiarska
et al. [205] observed that the TEM gave core shell type structure for-
mation. Mirsekari et al. [204] found from the SEM micrographs that the
morphology of MnZn ferrite was porous, sponge like and agglomerated
with an average particle size of 2 μm. Anwar et al. [9] observed from
the SEM micrographs that the particles were spherical in shape. Gabal
et al. [206] studies showed that TEM morphology showed very strong
agglomeration of the cubic particles, having some particles in one line.
From the SEM micrographs [192], mean grain diameter was observed
7.88±0.4 μm. In Phong's observation [112] of the TEM images showed
that the ferrites had homogeneous structure and spherical in shape.
Particles showed agglomeration due to slow particle growth. In the SEM
analysis of the Ni doped ferrite done by Jalaiah [187], the presence of
aggregates of small grains at the surface of the higher nickel containing
samples was observed. In the TEM analysis done by Angadi et al. [189]
the particles were lightly agglomerated due to the slow growth of
particles during the preparation. The particle size of pure
Mn0.5Zn0.5Fe2O4 was about 20 nm. The TEM images showed that the
electron diffraction pattern consisted of concentric rings with spots over
the rings showing that the samples were crystalline in nature. The
particle size lies between 20 and 23 nm. From the SEM images [190], it
was concluded that polyhedral morphology with nonuniform grains
were displayed for both pure and doped MnZn ferrites. Pure MnZn
ferrites sintered at 1150°C had average grain size of 2.10 μm having
well defined grain boundaries and the sample sintered at 1200°C and
1250°C had grain size of 2.84 µm and 3.13 μm. In case of Mg doped
ferrites, grain size increased with sintering temperature from 2.00 to
3.10 μm. From the TEM images [84], it was concluded that the mole-
cules were spherical in shape and particles were aggregated. From the
SEM analysis by Yadav et al. [182], it was observed that particle size
increased with Sm content but bigger particles were formed by the
agglomeration of ultra fine particles. The TEM images showed that all
the particles were nearly spherical in shape and average particle size
was 10–20 nm. SEM analysis [183] showed the uniform, spherical
shaped and loosely agglomerated particles. The shape of the MnZn
ferrites is usually spherical and having particle size in the 9–23 nm
range. The SEM images of the pure MnZn ferrites are shown in Fig. 12
that shows spherical structure of the ferrite nanoparticles and in Fig. 13
SEM images shows elongated nature of the ferrite nanoparticles. Also,
the TEM images of pure MnZn ferrite nanoparticles are shown in
Fig. 14.

6.1.3. FT-IR analysis
FT-IR stands for Fourier transform Infrared, the method that is used

for infrared spectroscopy. In infrared spectroscopy, IR radiation isTa
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passed through a sample. Some of the infrared radiation is absorbed by
the sample and some is passed through or transmitted. The resulting
spectrum represents the molecular absorption and transmission,
creating a molecular fingerprint of the sample. Islam et al. [128] re-
corded the FTIR spectra of MnZn ferrite nanoparticles in the range from
250 cm−1 to 4000 cm−1. In the FTIR spectra [184], the value of the
absorption band ⱱ1 around 600 cm−1 remained almost constant
whereas the value of absorption spectra ⱱ2 around 400 cm−1 decreased
from 548 cm−1 to 528 cm−1. This is because of the difference in Fe3+-
O2- distance for tetrahedral and octahedral sites. The absorption bands
in the region 1200 cm−1-1500 cm−1 correspond to NO3

− ions, ab-
sorption band at 1700 cm−1 showed carboxyl group COO− and at
2300 cm−1 correspond to hydrogen bonded O–H groups. In the FTIR
spectra [189], two prominent absorption bands nearly at 540 cm−1(ⱱ1)
and 360 cm−1(ⱱ2) observed were attributed to the tetrahedral and the
octahedral complexes. The difference between these two values was
due to the relative changes in bond length (Fe–O) at tetrahedral (A)
sites and octahedral (B) sites.The FTIR spectra recorded by Gabal [206]
in the range 600 cm−1-200cm−1 showed high frequency band (ⱱ1)
increased with increasing Zn content due to vibrational spectra of metal
ion-oxygen complex in the tetrahedral sites, while value of lower

frequency band (ⱱ2) due to vibration in the octahedral site, slightly
changed. FTIR of all compounds showed the formation of spinel phase.
Ciocarlan et al. [103] synthesized Mn ferrite along with Ni ferrite, Zn
ferrite and Co ferrite and studied their various properties. Formation of
spinel phase is observed from FT-IR spectra of all the compounds as
shown in Fig. 17(b).

6.2. Power loss

MnZn ferrites are the magnetic materials with very low power loss
so that they can be used in many electronic applications. Aiping et al.
[123] synthesized MnZn ferrites using conventional ceramic processing
technique and studied the effect of SnO2 addition on the magnetic
properties of the prepared ferrite. It was observed that there is an
overall decrease in the loss factor with increase in SnO2 concentration.
Also, power loss and minimum power loss decreased with increase in
the doping of SnO2 as shown in Fig. 16 (c). Jalaiah et al. [187] studied
structural, magnetic and electrical properties of nickel doped Mn–Zn
spinel ferrite. The nickel substituted Mn–Zn ferrite
Mn0.85Zn0.15NixFe2O4 (x = 0.03, 0.06, 0.09, 0.12 and 0.15) were pre-
pared using sol gel auto combustion method. The position of the

Fig. 11. (a) XRD powders pattern of synthesized Mn–Zn ferrite powders with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. The XRD pattern shows characteristic peaks of spinel
structure and quality of pure phase (Reproduced by permission from Refs. [259], Licence No. 4646020803426, Copyright 2011, Elsevier), (b) X-ray diffraction
pattern of MnZn ferrite with Indium substitution (Reproduced by permission from Refs. [183], Licence No. 4763520958822, Copyright 2016, Elsevier).
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dielectric loss maxima shifted towards the lower frequency with in-
crease in Ni concentration as dipole-dipole interaction becomes
stronger at lower frequency causing hindrance to the rotation of the
dipoles. The ac conductivity increased with increasing frequency. The
room temperature conductivity of Mn0.85Zn0.15NixFe2O4

(x = 0.03,0.06,0.09,0.12 and 0.15) ferrites was higher than pure spinel
ferrite. Sun et al. [125] studied cation distribution and magnetic
properties of Ti/Sn-substituted MnZn ferrites. Solid state reaction
method was used to prepare Manganese–Zinc ferrites with composition
Mn0.782-xZn0.128Mx

4+Fe2+2-2xO4 (x = 0; M = Ti, x = 0.04; M = Sn,
x = 0.04). The core losses measured at 100 kHz and 200 mT showed
that the core losses for all samples decreased firstly and then increased
with increasing temperature further. The power loss for unsubstituted
and Ti4+ sample was higher at room temperature. Also, temperature of
minimum in PL ~ T curve shifts to lower temperature for Ti4+ and Sn4+

substituted samples. At low frequencies the there was power losses only
due to eddy current loss Pe and hysteresis loss Ph. The Ph decreased with
increasing temperature firstly up to 80 °C and then increased with
further increase in temperature and it was minimum for Sn4+ doping.
The Pe of all samples were relatively low and there was a slight change
at low temperature but there was a sharp increase at high temperature
as shown in Fig. 16 (a), (b). Wei et al. [129] studied effect of TiO2 and
Nb2O5 additives on the magnetic properties of cobalt-modified MnZn
ferrites. Traditional ceramic process was used to prepare MnZn samples
with composition (Mn0.673Zn0.246Fe2.073Co0.006O4) by using Fe2O3,
Mn3O4, ZnO and Co2O3 as the starting materials. The power loss vs.
temperature plot showed that the power loss decreased firstly and then
increased with an increase in temperature showing lowest loss point
between 60 °C and 100 °C. Power loss reduced as the concentration of
additives was increased. Also, both the hysteresis loss and the eddy
current loss decreased with increase in concentration of additives and

after reaching minima for concentration of TiO2 and Nb2O5, 0.03 wt%
and 0.02 wt% increased further. This is because as small amount of
Ti4+ and Nb5+ ions were entered into the grains, it causes an increase
in Fe2+ ions, which lead to positive K1 values and decrease the hys-
teresis loss. Further increasing the dopant concentration cause excessive
increase in Fe2+ ions, which make K1 value more positive and increase
the hysteresis loss. When the concentration of TiO2 and Nb2O5 was less
than 0.03 wt% and 0.02 wt%, the grain and grain boundary resistivity
both increased and hence, the eddy current loss decreased as eddy
current loss is inversely proportional to resistivity. Further increase in
additives concentration decreased the resistivity, causing the eddy
current loss to increase. Anwar et al. [9] studied the effect of sintering
temperature on various structural, electrical and dielectric parameters
of MnZn ferrites using the co-precipitation method for the synthesis of
Mn0.5Zn0.5Fe2O4. The dielectric constant decreased very sharply in low
frequency region and slowed down in high frequency region almost
approaching to frequency independent nature. It exhibit dielectric
dispersion. From the plot of loss tangent vs. frequency it was observed
that the loss tangent decreased initially with increase in frequency and
then showed a relaxation peak. It is observed from all this data that
MnZn nanoferrites have very low power loss to be used suitably in
making various electronic appliances.

6.3. Magnetic properties

Most common techniques for determining the magnetic properties
of ferrite nanoparticles are VSM (vibrating sample magnetometer),
magnetization hysteresis (M − H) loops and electron spin resonance
(ESR) hysteresis loop measurements. We can calculate saturation
magnetization, remenant magnetization and coercivity by using these
characterization techniques.

Fig. 12. (a) SEM images of Ti/Sn substituted MnZn
ferrite, (Reproduced by permission from Ref. [125],
Licence No. 4763511309362, Copyright 2015, Else-
vier), (b) microstructure of MnZn ferrites with Gd
concentration 0.0, 0.01, 0.03, 0.05 and 0.08 (Re-
produced by permission from Refs. [128], Licence
No. 4763520066588, Copyright 2013, Elsevier).
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6.3.1. Saturation magnetization
Saturation magnetization is the saturation value of magnetization of

a ferromagnetic body. The inside of the magnetic body is normally
divided into many number of domains, but as the external magnetic
field increases, domain walls may move and magnetization may rotate
within domains, so the magnetic body comes in single-domain state.
The magnetization saturation is reached if the easy magnetization axis
and the external magnetic field direction match and the value of the
magnetization at this time is called the saturation magnetization. The
value of this saturation magnetization of MnZn ferrites is high
[141,162]in comparison to other ferrites. Syue et al. [188] observed the
value of saturation magnetization increased from 11 to 62emu/g with
increasing Mn2+ content and saturates further.The value of saturation

magnetization remained in the range 11.090 emu/g to 60.868 emu/g
[188] when combustion method is used without subsequent heat
treatments. Praveena et al. [179] observed that the value of saturation
magnetization (Ms) increased from 53.33 Am2/Kg to 78.26 Am2/Kg
with increase in zinc content and then decreased to 10.74Am2/kg if zinc
content is further increased. From the hysteresis curves Mirsekari et al.
[204] observed that the saturation magnetization decreased from 69 to
34 emu/g. Gabal et al. [186]observed the value of saturation magne-
tization Ms increased from 32.9emu/g to 37.6emu/g, then decreased to
25.9emu/g and again increased to 43.7emu/g.The value of saturation
magnetization was found to be 27.7emu/g in Phong's [112] experiment
showed the properties of super spin glass and supermagnetism beha-
vior. The study by Zapata [30] showed that the Ms value decreased

Fig. 13. (a)SEM micrographs show the as-synthesized MnxZn1-xFe2O4 powders: (a) x = 0.0, (b) x = 0.2, (c) x = 0.4, (d) x = 0.6, (e) x = 0.8, (f) x = 1.0 (Reproduced
by permission from Ref. [259], Licence No. 4646020803426, Copyright 2011, Elsevier), (b) SEM images of MnZn ferrites doped with Sm and Gd (Reproduced by
permission from Refs. [240], Licence No. 4763520638098, Copyright 2016, Elsevier).
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from 36.22emu/g to 30.78emu/g with increase in Zn concentration.
This was due to the fact that increased Zn content decreased the ferric
ions on the A sites and this reduced the A–B interaction. The saturation
magnetization (Ms) [187] decreased firstly from 120.896emu/gm to
114.888emu/gm with increase in Ni concentration and then increased
to 137.246emu/gm with further increase in Ni concentration as shown
in Fig. 13. This decrease was due to the occupation of Ni2+ ions in
octahedral B sites. Angadi et al. [171] observed from the M − H loops
recorded by VSM that the variation of saturation magnetization(Ms)
increased with increasing Sc3+ doping from 24.6emu/g to 31.48emu/g
and then decreased further to 23.45emu/g. Hence, the Sc3+ doped
Mn–Zn ferrites are useful for modern technological applications as well
as low and high frequency applications. Islam et al. [128] observed that
the value of saturation magnetization decreased from 51.2emu/gm to
40.3emu/gm with an increase in Gd content. By doping Al in pure
MnZn ferrite [184] the saturation magnetization decreased with in-
crease in Al content. Hysteresis loops measurements by Yadav et al.
[182] showed that the value of saturation magnetization increased from
23.95emu/gm to 42.10emu/gm. Due to this, high value of magnetiza-
tion MnZn ferrites are used in the field of power applications.

6.3.2. Remenant magnetization
Remanent magnetization is the value of magnetization that remains

in the absence of an induced magnetic field. Mirshekari et al. [204]
studied structural and magnetic properties of Mn–Zn ferrite. From the
hysteresis curves, it was observed that remenant magnetization de-
creased from 21.25emu/g to 8 emu/g. Syue et al. [188] studied mag-
netic properties of MnZn ferrites and found that the value of remenant
magnetization remained in the range 0.769 emu/g to 8.451emu/g and
it was observed that it was lowest for pure zinc ferrite and highest for
pure manganese ferrite. Praveena [179] studied magnetic properties of
MnZn ferrite and found that remenant magnetization showed increase
in value from 21.70Am2/kg to 29.58Am2/kg and then decreased to
4.36Am2/kg with increasing x value as described in Table 3. Gabal et al.
[186] showed that the remenant magnetization also increased from
5.5emu/g to 6.7emu/g firstly and then decreased to 3.6emu/g and
again increased to 7.3emu/g. After doping Al [84,184] the remanence
magnetization Mr varied from 0.5emu/g to 1.32emu/g with Al content.
Yadav et al. [182]observed that remanence magnetization increased
from 0emu/g to 8.50emu/gm with increasing value of Sm content from
0.0 to 0.5. Fig. 15 shows the results of VSM characterization of MnZn
ferrite having high value of saturation magnetization and low coer-
civity.

6.3.3. Coercivity
The coercivity is also called as coercive field and coercive force. It is

Fig. 14. TEM image of Mn1-xZnxFe2O4 system prepared using gelatin method (Reproduced by permission from Refs. [186], Licence No: 4646030657048, Copyright
2012, Elsevier), (b)TEM micrographs of Mn–Zn ferrites annealed at 300 °C and 500 °C (Reproduced by permission from Ref. [165], Licence No: 4646030272206,
Copyright 2011, Elsevier), (c) TEM and HRTEM images of Mn–Zn ferrite with Sc doping (Reproduced by permission from Ref. [189], Licence No: 4644680497245,
Copyright 2017, Elsevier).
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defined as the ability of a ferromagnetic material to withstand an ex-
ternal magnetic field without demagnetizing it. In case of a ferromag-
netic material, it is defined as the intensity of applied magnetic field
that is required to reduce the magnetization to zero after the saturation
state of the magnetization. The materials which have high coercivity
are called hard materials and the materials with low value of coercivity
are soft materials. The hard materials are used to make the permanent
magnets and soft materials are used for making transformers, inductor
cores and microwave devices. Praveena et al. [179] found the coercivity
value varying in the range 0.0149Oe-0.0172Oe for Mn1-xZnxFe2O4

(x = 0.0–1.0). From the hysteresis curves Mirsekari et al. [204] ob-
served that the coercivity decreased from 60Oe to 45Oe with increasing
x from 0.2 to 0.8. The coercivity as calculated by Gabal [186] showed
decreasing trend. It decreased from 94.2Oe to 67.1Oe for x = 0.2–0.6
and then increased to 80.7Oe for x = 0.8. Phong et al. [112] studied the
properties of MnZn ferrites and found that the coercivity was 130 Oe at
10K. Jalaiah et al. [187] observed from his experiment that the coer-
civity values of the Mn0.85Zn0.15NixFe2O4 (x = 0.03, 0.06, 0.09, 0.12
and 0.15) samples increased with nickel concentration from 0.123Oe to
0.24Oe because of the decrease in the porosity with increasing dopant
concentration. Also, the coercivity decreased from 87Oe to 11Oe with
increasing Al3+ concentration [184]. The low value of coercivity of
MnZn ferrite put these ferrites in the class of soft ferrites and these are
used in applications like making transformer cores, microwave devices
and inductors.

7. Applications of MnZn ferrites

Due to useful magnetic, electrical and optical properties of ferrite
nanoparticles, researchers are taking interest in the synthesis of ferrite
nanoparticles and making their use in a lot of applications that include
medical field, information technology, antenna, microwave absorbing
materials, biosensors and many electronic applications [207–216].
Many reviews are there about the synthesis, properties and applications
of ferrites in biomedical [217–219], catalyst [220,221] and wastewater
treatment [200,222–225]. MnZn ferrites have a broad area of applica-
tions due to high saturation magnetization [226], high initial perme-
ability [50,227], low power loss [228]. The application area of MnZn
ferrites include power applications [229–235], microwave devices
[236], magnetic fluid [145,237], radar absorbing system, high fre-
quency applications [238,239], bio-medical [240], water purification
[241,242]etc. Use of MnZn ferrites in the field of power application
attracted great attention in the research areas. From last many years the
MnZn ferrites are synthesized to be used in power applications for
making current convertors [227], power inductors with magnetic cores
[130], electronic transformer cores [243], high frequency applications
[143], electronics and communication [244].

7.1. Microwave devices

Ferrite nanoparticles have low electrical conductivity and low di-
electric losses [245], so they can be used in microwave devices. MnZn
ferrites are most suitable for their use in the microwave devices because
of high permittivity, high resistivity, high stability, high value of sa-
turation magnetization, high curie temperature with low eddy current
and low magnetic losses [246,247]. Due to the use of ferrite nanoma-
terials, electronic devices can be mechanically hard, chemically stable
and permit the materials to operate properly at a wide frequency range
[248]. There are a lot of advantages of the use of MnZn ferrites in the
microwave devices. There is a decrease in the emission of unwanted EM
waves from the device and also it absorbs the incoming EM waves that
may harm the microwave device. MnZn ferrites are used in microwave
systems because of their low loss and high saturation magnetization.
Wang et al. [249] synthesized MnZn ferrite nanoparticles and the result
showed that because of high reflection loss and broad absorbing band in
low frequency (10 MHz to 1 GHz) these ferrites can be used in

electromagnetic microwave absorbing field.

7.2. Radar absorbing devices

The radiations emitting from radar results in the increase in elec-
tromagnetic radiation pollution in the environment. These radiations
reduce the efficiency and performance of electronic instruments and
thus decrease their lifetime and safety. As MnZn ferrite belongs to the
class of soft ferrites having high electrochemical stability, high per-
meability, high saturation magnetization and low power losses, it is
used in many electronic applications [65,79,128,167,199,209,210].
Ferrite nanoparticles can be used in the radar absorbing devices due to
their high value of Curie temperature and temperature stability
[250,251]. Also the ferrite nanoparticles are environmentally safe that
make their use easier in the radar absorbing devices. The application of
MnZn ferrites in radar absorbing system is also attracting the re-
searchers. Praveena et al. [252] synthesized Ni0.4Zn0.2Mn0.4Fe2O4nano
ferrites for radar absorbing. The high value of Curie temperature in-
dicated homogeneity and temperature stability. The EPR spectra
showed reduction in the peak width and increase in relaxation with
increase in sintering temperature. These all results showed that the
ferrite nanoparticles can be used for radar absorbing from few MHz to
2 GHz and also these materials are environmentally safe.

7.3. Image based diagnostics

A one-pot thermal decomposition method was used to synthesize a
series of Zn2+ doped nanoparticles of (ZnxMn1-x)Fe2O4 and (ZnxFe1-x)
Fe2O4 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.8). By carefully controlling Zn2+

doping level, nanoparticles of size 15 nm with single crystallinity and
size monodispersity (s< 5%) and having high magnetization value
(175 emu/g) were obtained. The nanoparticles provided the large MRI
contrast effects (r2 = 860 mm−1s−1) with an eight to fourteen fold
increase in MRI contrast and a fourfold enhancement in hyperthermic
effects compared to conventional iron oxide nanoparticles. This en-
hancement was significant for clinical purposes as the nanoparticle
probe dosage level can be progressively lowered when using probes that
have improved contrast enhancement effects. For (ZnxMn1-x)Fe2O4 na-
noparticles, Zn2+ ions mainly occupy tetrahedral sites of the spinel
matrix which was confirmed by using extended X-ray absorption fine
structure (EXAFS) analysis to examine the Zn and Fe K-edges. To detect
small sized pathogenic targets precisely at an early stage, MRI contrast
agents are often used to highlight those specific areas of interest. Due to
high imaging contrast effects, magnetic nanoparticles can increase the
difference between pathogenic targets and normal tissues via MRI. One
of the most appropriate ways to increase the MR contrast effects is the
optimization of saturation magnetization (Ms) that is directly related to
the relaxivity coefficient (r2). The relaxivity coefficient (r2) is de-
termined by a slope of R2 against nanoparticle concentration and often
used as an indicator for contrast effects. The relaxivity coefficient (r2)
of contrast agents can be tuned and further enhanced by engineering
magnetic parameters [253].

7.4. Electronic devices

MnZn ferrite nanoparticles are used in making many electronic
devices due to their enhanced electrical properties such as high value of
resistivity, low ac conductivity, low power losses etc. Dobak et al. [105]
studied miniaturization of components due to low loss MnZn ferrites.
Also, Sun et al. [138] studied effect of ZrO2 addition on the micro-
structure and various properties of MnZn ferrites and found that the
optimal values of initial permeability (2322), saturation magnetization
(522 mT) and power loss (386 kW/m3) make it suitable for switch mode
power supply applications. Due to suitable electrical and magnetic
properties of the Sc3+ doped Mn–Zn ferrites, these were useful for
modern technological application as well as for low and high frequency
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application. MnZn ferrites are also used to construct power inductors
[254,255], wireless power transfer applications [256] and for making
inductive components [39].

7.5. Telecommunication and others

One of the major use of MnZn ferrites is in telecommunication and
high frequency applications [180]. MnZn ferrites have applications in
the field of bio–medical and hyperthermia [112]. Hurtado et al. [257]
synthesized MnZn ferrite along with activated carbon composite for use
in bio–medical applications. MnZn ferrites can be used to make

ferrofluid [182]due to high value of saturation magnetization. Ar-
ulmurugan et al. [76] synthesized Co–Zn and Mn–Zn ferrite nano-
particles and found that because of low Curie temperature and high
value of thermomagnetic coefficient, these ferrites can be used for
preparing temperature sensitive ferrofluid. Praveena et al. [258] syn-
thesized Mn–Zn ferrite nanoparticles for high frequency applications.
The ferrites had low power loss in frequency range 10Hz-1MHz. The
constructed transformer with the ferrite material showed high effi-
ciency and low surface temperature rise at frequency 1 MHz making it
suitable for operating at high frequencies.

Fig. 15. (a) Magnetic hysteresis loops for Mn0.85Zn0.15NixFe2O4 (x = 0.03, 0.06, 0.09, 0.12 and 0.15) (Reproduced by permission from Ref. [187], Licence No:
4656371369727, Copyright 2017, Elsevier), (b) Hysteresis loop of MnZn ferrite with Samarium doping where x is Sm concentration having (a) x = 0.0, (b) x = 0.1,
(c) x = 0.3 and (d) x = 0.5 (Reproduced by permission from Refs. [182], Licence No. 4763520720419, Copyright 2015, Elsevier).
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Fig. 16. (a-b) Temperature dependence of hysteresis
loss and eddy current loss of MnZn ferrite
(Reproduced by permission from Ref. [125], Licence
No: 4763511309362, Copyright 2015, Elsevier), (c)
Temperature dependance of power loss with SnO2

addition (Reproduced by permission from Refs.
[123], Licence No: 4763501423793, Copyright
2006, Elsevier).

Fig. 17. (a) FT-IR spectra of MnZn ferrites with Sm and Gd doping (Reproduced by permission from Ref. [240], Licence No. 4763520638098, Copyright 2016,
Elsevier), (b) FT-IR spectra of prepared nanoparticles (Reproduced by permission from Ref. [259], Licence No. 4763520231621, Copyright 2011, Elsevier), (c) FTIR
spectra of MnZn ferrites with Gd doping (Reproduced by permission from Refs. [128], Licence No: 4763520066588, Copyright 2013, Elsevier).
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7.6. MnZn ferrites for onging COVID-19 pandemics

As nanomaterials are making a global impact on healthcare and
socioeconomic development so are the viruses during pandemics.
Nanoparticles of MnZn have unique physical and chemical properties
that have associated benefits in development of potential therapeutic
drugs, nanomaterial based environment friendly antiviral sprays, drug
delivery and to develop anti-viral surface coatings in home appliances.
This is attributed to the fact that the choice of synthesis method pro-
vides size and charge tunability properties to the MnZn ferrites. The size
tunablity ensures that large amount of drug can be delivered into
anatomically privileged sites of the virus while charge tunability would
facilitate entry of drug in to charged parts of the virus [260]. In addi-
tion, biosensors for the early detection of viral strains such the COVID
19 can also be developed with MnZn ferrites. For instance MnZn ferrites
can readily be used to develop Giant magnetoresistance based sensors
which have previously been used for virus detection [261].

8. Outlook

The synthesis of MnZn particles has increased in the last ten years
and most progress can be seen in the year 2016. Due to the fascinating
properties of MnZn ferrites among the class of soft ferrites like high
value of saturation magnetization, low value of coercivity, high initial
permeability, narrow size distribution of the ferrite particles, low re-
menant magnetization, the researchers are taking interest in the
synthesis of these ferrites.The co-precipitation and sol-gel method are
the best for getting the fine crystallite size among all synthesis techni-
ques. The XRD pattern of the MnZn ferrites has characteristic peaks
showing the cubic spinel phase having Fd3m phase group. The shape of
the prepared ferrite is nearly spherical but some distortion may be
observed after doping. FTIR spectra confirmed the spinel phase of the
ferrite nanoparticles having tetrahedral and octahedral sites.The value
of saturation magnetization is highest when we synthesize the MnZn
ferrites with proper amount of nickel doping by using sol–gel auto
combustion method. Also, for getting the low value of coercivity sol–gel
method is preferred. Generally, MnZn ferrites have a lot of applications
including biomedical field, electronic devices, for making radar ab-
sorbing materials, for making ferrofluids etc. For enhancing the appli-
cations and advantageous properties of MnZn ferrite nanoparticles,
further studies are required.The electrical and magnetic properties of
MnZn ferrites can be enhanced by doping other metals such as cobalt,
zinc, magnesium to make them suitable for use in agricultural and
electrical applications. In the context of use of nanoparticles in the
pandemic outbreak, such as in the recent COVID-19, MnZn soft ferrites
can play a significant role in the development of high contrast imaging
dyes for viral strains in body fluids. Perhaps MnZn can also serve as a
candidate nanomaterial for developing nanomaterial based medicines
and therapeutics.
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