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Small-animal imaging is an essential tool that provides noninvasive, longitudinal insight into novel cancer
therapies. However, considerable variability in image analysis techniques can lead to inconsistent results.
We have developed quantitative imaging for application in the preclinical arm of a coclinical trial by using
a genetically engineered mouse model of soft tissue sarcoma. Magnetic resonance imaging (MRI) images
were acquired 1 day before and 1 week after radiation therapy. After the second MRI, the primary tumor
was surgically removed by amputating the tumor-bearing hind limb, and mice were followed for up to
6months. An automatic analysis pipeline was used for multicontrast MRI data using a convolutional neural
network for tumor segmentation followed by radiomics analysis. We then calculated radiomics features for
the tumor, the peritumoral area, and the 2 combined. The first radiomics analysis focused on features most in-
dicative of radiation therapy effects; the second radiomics analysis looked for features that might predict pri-
mary tumor recurrence. The segmentation results indicated that Dice scores were similar when using
multicontrast versus single T2-weighted data (0.863 vs 0.861). One week post RT, larger tumor volumes
were measured, and radiomics analysis showed greater heterogeneity. In the tumor and peritumoral area,
radiomics features were predictive of primary tumor recurrence (AUC: 0.79). We have created an image
processing pipeline for high-throughput, reduced-bias segmentation of multiparametric tumor MRI data and
radiomics analysis, to better our understanding of preclinical imaging and the insights it provides when study-
ing new cancer therapies.

INTRODUCTION
Because imaging is a standard means for assessing disease state
and therapeutic response in clinical oncology, small-animal
imaging for coclinical cancer trials enhances the simulation of
clinical practice in animals. High-resolution images can nonin-
vasively describe tumor morphology and composition, as well as
how tumors change over time or with treatment.

Magnetic resonance imaging (MRI) is the clinically preferred
method for imaging soft tissue sarcomas owing to its excellent
soft tissue contrast (1). Assessing treatment response requires tu-
mor measurements that are both accurate and precise. Manual
segmentations suffer from variability that is in part due to individ-
ual human rater biases. In the clinic, tumor regions are often iden-
tified with input provided by radiologists or radiation oncologists.
However, advances in computer vision have made automated seg-
mentation processes possible. Specifically, segmentation algo-
rithms based on convolutional neural networks (CNNs) have

shown comparable efficacy in identifying tumors as other auto-
mated methods (2). Several CNN-based methods have been pro-
posed for tumor segmentation from multicontrast MRI, based on
both 2D slices (3) or 3D volumes (4). Many current architectures
for tumor segmentation use a patch-based approach, in which a
2D or 3D patch is processed by convolutional and fully connected
layers to classify the center pixel of the patch (3, 5). Other net-
works operate semantic-wise by classifying each pixel in an input
image or a patch using fully convolutional networks or U-nets (2,
6). Deep learning solutions are particularly attractive for process-
ing multichannel, volumetric image data, where conventional
processing methods are often computationally expensive (7).

The extraction of high-dimensional biomarkers using radio-
mics can identify tumor signatures that may be able to monitor
disease progression or response to therapy or predict treatment
outcomes (8, 9). Radiomics analysis generates complex high-
dimensional data, and trends are often difficult to extract. The
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utility of radiomics benefits greatly from the use of machine
learning algorithms (10). In this way, radiomics provides an
exciting approach for identifying and developing imaging bio-
markers in the context of precision medicine.

Our group has established quantitative imaging techniques
for the preclinical arm of a coclinical sarcoma trial studying the
treatment synergy between immune checkpoint blockade with
an antibody against programmed cell death protein 1 (PD-1) and
radiation therapy (RT) in a genetically engineered mouse model
of soft tissue sarcoma (11). Our first objective was to develop and
evaluate a deep learning method based on CNNs to perform auto-
matic tumor segmentation of preclinical MRI data acquired in
these sarcomas. The high-throughput capacity of a fully auto-
mated segmentation pipeline offers a significant time advantage
in a large-scale study, as is often the case when studying cancer
therapeutics. Even more importantly, a CNN-based segmentation
protocol has the advantage of removing observer bias, which can
have a significant effect on defining tumor tissue in magnetic
resonance (MR) images (12).

The second objective was to perform radiomics analyses on
the acquired MRI data sets. Recently, radiomics analysis has been
successfully applied to clinical sarcoma data (13). There is evi-
dence that radiomics features extracted from MRI may serve as
biomarkers for predicting overall survival in patients with soft
tissue sarcomas (14). To the best of our knowledge, no radiomics
studies exist on mouse models of sarcomas. This study describes
and evaluates our small-animal MRI-based image analysis pipe-
line on sarcomas treated with RT, including automated tumor
segmentation and radiomics analysis.

METHODS
SarcomaModel and Experimental Protocol
The preclinical arm of our coclinical trial uses a genetically engi-
neered model of soft tissue sarcoma developed in p53fl/fl mice.
Primary sarcoma lesions were generated in the hind limb by intra-
muscular delivery of Adeno-Cre followed by injection of the car-
cinogen 3-methylcholanthrene (p53/MCA model) (15). Tumors
resembling human undifferentiated pleomorphic sarcoma devel-
oped �8–12weeks after injection. Imaging studies were initiated
when tumors were palpable (>100mg), continuing through sub-
sequent stages of disease progression. Mice were killed at the end
of the study either once the tumor burden became excessive or
6months after surgery. Excessive burden was defined as recurrent
tumors>1.5 cm in length or presence of large lung metastasis.

Three MRI images, 1 T2-weighted, and 2 T1-weighted (before
and after contrast injection), were obtained 1 day before delivering
RT (20Gy) on a small-animal irradiator (Precision X-ray X-RAD
320) with 100kV. One week later, the mice were reimaged with
MRI using the same imaging protocol. After the second MRI, the
primary tumor was surgically removed by amputating the tumor-
bearing hind limb, and mice were followed for up to 6months.
Some mice developed local recurrence of the primary tumors near
the site of amputation or developed distant metastases.

Multicontrast MRI
All MR studies were performed on a 7.0 T Bruker Biospec small-
animal MRI scanner (Bruker Inc., Billerica, MA), with a 20-cm

bore, equipped with an AVANCE III console, using Paravision
6.0.1, and a 12-cm-inner-diameter gradient set capable of deliv-
ering 440mT/m. Tumor images were acquired using the 4-ele-
ment surface coil array (receive), coupled with the 72-mm linear
volume (transmit) coil. All animal handling and imaging proce-
dures were performed according to protocols approved by the
Duke Institutional Animal Care and Use Committee (IACUC).
Acquisition parameters have previously been described in detail
(11) and are as follows:

1. T1-weighted: A 2D T1 FLASH sequence was performed
with echo time of 4.5milliseconds and repetition time of
�0.9 seconds. A fixed field of view of 28� 28mm (read
and phase) was selected to ensure full coverage of the tu-
mor volume with reasonable margins. In-plane resolution
was 100mm over 60, 300-mm thick axial slices (slice direc-
tion typically along the tibia). Three images were acquired
and averaged to reduce the effects of motion (which are
limited in the hind limb). The flip angle was 30°.

2. T2-weighted: A 2D T2 TurboRARE sequence was per-
formed with an effective echo time of 45milliseconds and
repetition time of �8.6 seconds. The echo spacing for the
T2TurboRARE sequence was 15milliseconds. Scans were
performed with identical slice geometry and field of view
to the preceding T1 sequence. As with the T1 images, 3
averages were acquired, with a RARE factor of 8.

Following the acquisition of nonenhanced scans, T1 con-
trast enhancement was achieved via injection of Gd-DTPA at
0.5mmol/kg via the tail vein catheter, which was placed under
anesthesia before imaging. Contrast was injected at 2.5mL/min
and allowed to circulate for 3 minutes before a second T1-
weighted scan to allow peak enhancement. The MR images
were bias-corrected in a 3D Slicer using the N4 algorithm (16).
The sarcoma tumors were next segmented using the T2-
weighted images in 2 steps: first, semiautomatic segmentation
was performed via the 3D Slicer with the GrowCut tool (17),
and second, an observer refined the segmentations by hand.
Two researchers acted as observers to create binary seg-
mentation labels with initial guidance from a radiation
oncologist experienced with mouse models. In total, 70
manual segmentations were created to serve as the ground
truth to train the CNN, including both pre- and post-RT
images. Examples of each multicontrast MR image together
with the tumor segmentation used as labels for training are
shown in Figure 1A. An overview of the data used for this
study is given in Table 1. Although we have used 79 mice
with tumors, only 62 mice had 2 MRI scans and 42 mice
qualified for radiomics analysis.

CNN-Based Segmentation
We have implemented a 3D fully convolutional U-net network
similar to Ronneberger et al. (18) using Tensorflow (19) to
segment soft tissue sarcomas in mice1. To assess the utility of
collecting multiple scans with different contrasts, we have com-
pared the segmentation performance of networks trained on

1Our open source code for segmentation and radiomics analysis can be found at:
https://github.com/mdholbrook/MRI_Segmentation_Radiomics
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2 sets of images. The network is presented with inputs of either
only T2-weighted images or the MRI images with 3 different con-
trasts (see Figure 1A). In the case of multicontrast segmentation,
the 3 images are concatenated together as channels of a single
image, i.e., the network takes a single, 4-dimensional (read,
phase, slice, channel) input. Image intensities are normalized on
each image volume to map voxel values to within a standard,
zero-centered reference scale. This mapping serves to address dif-
ferences in bias between images of similar contrast and optimize
image values for consistent CNN processing. Our network oper-
ates on 3D image patches (dimensions, in voxels: 142, 142, 18)
selected out of larger image volumes (280, 280, 60). The output
of the network is a single 3D segmentation map, showing the
probability that a given pixel belongs to the background or fore-
ground (tumor). Thresholding this map yields a binary segmenta-
tion from which the tumor volume and radiomics features are
determined.

The network comprises 2 halves: an encoder with convolu-
tional layers and max pooling and a decoder layer with deconvo-
lutional layers and up-sampling operations. The structure of the
network is shown in Figure 2. The use of multiple max pooling
operations (size: 2� 2� 2) allows for detection of multiscale fea-
tures using small, 3� 3� 3, convolution kernels, greatly increas-
ing the computational efficiency of the network. The number of
convolution filters and, by extension, feature maps, are increased
after pooling to preserve information found at finer resolutions.
Activation layers after each convolution operation were set as rec-
tilinear activation units. The final activation is a sigmoid function,
setting the network’s output to be within the range of 0 to 1.

To increase the amount of information available to the de-
coder portion of the network, skip connections are present. Skip
connections take a set of feature maps from the encoder and con-
catenate them with features maps in the decoder. These connec-
tions reintroduce higher frequency data directly into the decoder

Figure 1. Multi-contrast magnetic
resonance imaging (MRI) images
of soft tissue sarcomas. Sarcomas
imaged with 3 magnetic resonance
(MR) protocols show differences in
image contrast (A). Examples of
the regions used to calculate radio-
mics features for each tumor (B).
Features were calculated for the tu-
mor, peritumoral area, and the
union of those regions. The tumor
segmentation was performed using
semiautomatic methods and
cleaned by hand. Air was
excluded from the dilated masks
via thresholding.

Table 1. Overview of Study Mice and Scan Segmentations Used for Training and Radiomics E

Mice Scans for Segmentation

Total
Mice

Mice with
2 scans

Mice for
radiomicsa

MR
Sets

Manual
Segmentations

Unique Manually
Segmented Scansb

Overlap with
radiomics scans

K-Folds
Validation Size

K-Folds
Test Size

79 62 42 141 70 49 39 6 12
a These mice were not excluded for surgical complications or other health reasons.
b 21 of these scans were segmented twice, once by each reader for a total of 70 segmentations.
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and have been shown to increase accuracy for segmentation
tasks (18). We have tested the performance of this network both
with and without skip connections.

Care was taken to prevent the network from overfitting. To
this end, spatial dropout was applied before max pooling and
upsampling layers. Spatial dropout is a variation of classical neural
network dropout that is more applicable to CNNs. Spatial dropout
will randomly zero out feature maps, forcing the network to learn
redundancy in identifying important image features rather than
overfitting to the peculiarities native to the training data (20, 21).

The selection of an appropriate loss function is critical for
designing an effective CNNmodel. We chose to train and compare
models using 2 loss metrics: Dice loss (22), which is a measure of
similarity between the prediction and label, and cross entropy
(23) which is based on the distributions of the prediction and label
images. Both are popular cost functions for segmentation tasks (3,
4, 6, 18). The Dice score for predictions P [ {0, 1} and the expert’s
consensus ground truth T [ {0, 1} are defined as:

D ¼ 2jP \ T j
Pj þ T jjj

where Pjj and T jj represent the cardinality of the prediction and
ground truth sets, respectively. Predictions that perfectly match
the ground truth will have a Dice coefficient of 1, whereas pre-
dictions with little intersection with the ground truth will have a
score near 0. Dice loss requires the use of binary inputs, so net-
work outputs were thresholded by 0.5 before loss is computed.

For use as a loss function, we used the Dice score minus one.
Cross entropy loss is computed as the measure of similarity
between estimated probabilities and ground truth.

We have trained and tested our network using a single MR
image contrast (T2-weighted) and all 3 contrasts (T1-weighted,
T1-weighted with contrast, and T2-weighted). Visually, the T2-
weighted images show the highest contrast for tumor detection
(Figure 1A); however, we aimed to determine the utility of
including the T1-weighted images for tumor segmentation, as
they are typically included in clinical MRI acquisition protocols.

In total, 8 networks were trained and evaluated. These net-
works iterated combinations of 3 parameters: Dice versus cross
entropy loss functions, networks with skip connections versus
those without, and multicontrast versus T2-only MR images as
inputs. Training data comprised a random selection of 70% train-
ing data, 20% validation data, and 10% test data. All networks
were trained for 600 epochs, requiring between 6 to 9 hours each.
Networks were trained with a batch size of 20 and a learning rate
of 1e-4. Early stopping was used by saving network weights at
validation loss minimums. Training was performed on a stand-
alone workstation equipped with an NVidia Titan RTX GPU
(NVidia, Santa Clara, CA).

The output of each segmentation CNN is a set of probabil-
ities, one for each input voxel. Once the CNN was trained, a deci-
sion threshold was found to convert floating point probability
maps to binary segmentations. The decision threshold is selected
to maximize the fit of the predicted segmentation, and in this

Figure 2. Convolutional Neural Network (CNN) architecture used for segmentation. Volumetric patches are taken from
either single or multicontrast MR images. The patches are normalized and passed through a successive 3D convolutional
encoder (gold) and deconvolutional decoder (blue). Skip connections (green) take feature maps from the encoder and
concatenate them with decoder feature maps before deconvolution operations. All convolution/deconvolution operations
are performed with 3� 3� 3 kernels with a stride of 1� 1� 1.
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case, to maximize the Dice coefficient between the predicted
results and the label. The threshold is calculated by running the
training data through the trained network and generating preci-
sion/recall curves. The threshold at the intersection of precision
and recall gives the highest agreement between the predicted
segmentation and label images. This threshold gives the highest
true-positive and lowest false-positive performance, maximizing
the quality of the segmentation.

The images in our data set contain a single primary soft tis-
sue sarcoma located in the hind leg, and the segmentation
ground truth of these tumors is continuous. Because the CNN
processes the image volume in patches without spatial references,
the resulting segmentations are not guaranteed to have these
properties, and the small structures outside the tumor are occa-
sionally misclassified. To address this, after recomposing the
image volume from processed patches, a postprocessing step was
implemented, which rejected all but the largest continuous
region in the predicted segmentation.

To provide uniform treatment of mice for subsequent radio-
mics analysis, the top-performing segmentation network was
selected and trained again, this time using 5-fold cross validation
with 10% validation and 20% testing splits (Table 1). This was
necessary owing to the overlap in training data and valid radio-
mics sets. Each trained network would be responsible for process-
ing only its test set, allowing these networks to cover the entirety
of the radiomics data. Data that did not contribute to radiomics
analysis were used for only training. Scans that contributed to
radiomics analysis but did not have an associated hand segmen-
tation were processed via an ensemble of the 5 networks via ma-
jority voting.

Segmentation Quality Metrics. We have evaluated the per-
formance of our CNN segmentations using several metrics,
the simplest of which is binary accuracy. Binary accuracy is
given as the percent of voxels correctly classified by the net-
work. The predicted probabilities are thresholded by 0.5
before calculating this metric.

We also included the Dice score, which is a standard evalua-
tion metric in the medical imaging and computer vision com-
munities. In addition to being used as an image quality metric,
Dice was used as a loss function for half of our networks. We

have also calculated the volume overlap error (VOE), also called
the Jaccard similarity score, given by the intersection over the
union of the ground truth (T) and prediction (P):

VOE ¼ jP \ T j
P [ T jj

Radiomics
Using the CNN-produced segmentation maps, we performed
radiomics analysis for multiple regions (Figure 1B): (A) tumor;
(B) peritumoral area obtained by morphological dilation that
spans 3mm outside of the tumor; and (C) tumor combined
with the peritumoral area. Each of these regions serve as
masks in which to compute radiomics features. Dilation was
performed using the scikit-image Python package (24). Before
computing radiomics features, the MR images were normalized
to account for variations in intensities, which can substantially
impact feature extraction and classification. Normalization was
performed by zero-centering image data and scaling values to
have unit standard deviation s . Intensity outliers (values out-
side 63s ) were excluded from calculations as described in a
study (25). Radiomics features were calculated using the
PyRadiomics package (26). From each MR contrast image, 107
radiomics features were calculated, creating a high-dimen-
sional feature space. The multicontrast data were appended to
create a single feature vector for each data set (321 features).
All analysis was performed using multicontrast data. The
extracted features were computed from normalized images
only and did not include those calculated from derivative or
filtered images (e.g., Laplacian of Gaussian, wavelet, etc.).

Our first analysis focused on determining which radiomics
features are the most affected by RT. Radiomics features calcu-
lated from pre- and post-RT sets were compared to find the fea-
tures that changed in a statistically significant manner, as
determined by paired t tests with multiple t test corrections.

Our second analysis aimed to determine if differences in
radiomics features showed promise for predicting which indi-
viduals on study would develop a recurrence of the primary
tumor following surgical resection. Features selection using
minimum redundancy–maximum relevance (mRMR) (27) was
performed on the radiomics features to rank features in an
effort to reduce redundancy and increase relevance based on

Table 2. Comparison of the Networks Trained for Sarcoma Segmentation E

Cost Data Network Threshold Precision Recall AUC Dice VOE

Dice

Multi-contrast
No skip 0.900 0.833 0.820 0.957 0.827 0.994

Skip 0.995 0.891 0.826 0.979 0.857 0.995

T2 only
No skip 0.900 0.849 0.787 0.950 0.817 0.994

Skip 0.998 0.906 0.776 0.977 0.836 0.994

Cross Entropy
Multi-contrast

No skip 0.656 0.814 0.858 0.996 0.835 0.994

Skip 0.540 0.869 0.856 0.998 0.863 0.995

T2 only
No skip 0.636 0.833 0.803 0.992 0.818 0.993

Skip 0.516 0.873 0.849 0.997 0.861 0.995

Values have been calculated from the test set which contains 10% (ie, 7) image sets. In this data set, the network trained with cross entropy loss, skip
connections, and on multicontrast images performed best according to 4 of the 5 metrics used in the current study.
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recurrence. To visualize differences between groups of mice
with and without local recurrence, correlation maps were
computed using the 200 most relevant radiomics features
selected via mRMR. For prediction of primary tumor recur-
rence, the top 10 features were used. The optimal number of
features for prediction was found via a search that used from 2
to 200 features to maximize the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve. Two types of
classifiers, based on simple neural networks (NNs) and support
vector machines (SVMs), were used to create models predicting
primary tumor recurrence. The models were trained using strati-
fied K-fold validation. Because the quantity of data was not
large by machine learning standards (data from 42 mice), each
model was trained 5 times de novo. The data were split into
training (75%) and validation (25%) sets, which were cycled for
each training and selected to contain similar numbers of recur-
rences and nonrecurrences. The performance of the prediction
models based on NNs or SVMs was assessed using the AUC of
the ROC curves. Training and validation were performed
using radiomics vectors from each of the 3 regions, that is, tu-
mor, peritumoral area, and both combined, as illustrated by
Figure 1B.

RESULTS
CNN Segmentation
The measure of agreement between the label and predicted seg-
mentation for each network trained is given with metrics of pre-
cision, recall, Dice, and VOE. These values were calculated on the
test set using all 8 networks trained (Table 2). Ideal metrics would
have precision and recall be close to 1 and about equal. The
closeness of these 2 values represents the quality of the decision
threshold that was used for these data sets. Dice and VOE scores
are shown to be significantly higher for the network with skip
connections. In addition, the networks trained using multicon-
trast data performed better than those trained using only T2-
weighted images. Differences in loss function between networks
was shown to be small, with cross entropy being slightly favored.
The results in the table were calculated after postprocessing
image volumes to remove all but the largest continuous segmen-
tation region. This step improved segmentation performance,
increasing average AUC for ROC by 0.7%, Dice by 2.2%, and
VOE by 0.8%.

The best performing network, multicontrast with skip con-
nections trained with cross-entropy loss, was retrained using 5-
fold cross validation. The results are given in Table 3. CNN

Table 3. Performance of 5-Fold Cross Validation for the Network with Skip Connections Trained on Multi-Contrast
Images with Cross Entropy Loss

Threshold Precision Recall AUC Dice VOE

0.4220 6 0.0680 0.8365 6 0.0414 0.8497 6 0.0260 0.9972 6 0.0014 0.8422 6 0.0187 0.9933 6 0.0009

Figure 3. Results of CNN segmentation com-
paring the ground truth (label, red) with the
model predictions (green) for the k-fold networks
trained on cross entropy loss with skip connec-
tions and multicontrast data. Each row shows a
single slice taken from separate tumor in the test
set. The T2-weighted image is given for refer-
ence. The difference column shows errors in the
CNN segmentation relative to the label: red for
false negatives and green for false positives.
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segmentations from 4 test volumes as computed with the k-
fold networks are shown in Figure 3. The ground truth and
predicted segmentations largely agree, with the greatest dis-
agreement occurring on tumor edges and small extrusions.
Visually, the CNN output and the original segmentation labels
are generally well-matching, with only minor discrepancies.
The average time required to process a single scan was
0.53 seconds.

Radiomics
Our first radiomics analysis sought to identify tumor fea-
tures that change significantly when comparing images
acquired before and 1 week post RT. Figure 4A displays the
most statistically significant radiomics features (both shape
and texture related) between pre- and post-RT sets. The
gray-level features show that after RT, tumor images often
acquire a more heterogeneous texture (eg, T2 gray-level run

Figure 4. Change in radiomic features after radiation therapy (RT). Statistically significant differences in radiomics fea-
tures before and after RT as calculated from the segmented tumors (A). Spatial maps of one of the intensity-based radio-
mics features, the gray-level dependence non-uniformity (GLDM) (B). Differences in feature intensity are clearly visible
between the 2 time points. This image also shows changes in tumor size and shape 1 week after RT.

Figure 5. Comparison of radiomic features from groups which did and did not experience primary tumor recurrence.
Correlation maps of the 200 most significant of radiomics features for tumor non-recurrence (A) and recurrence (B). These
data were calculated from the peritumoral area in pre-RT images. The 2 correlation maps show clear differences between
features based on tumors which will and will not recur.
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length matrix [GLRLM]) and that the total tumor volume (ie,
shape voxel volume) typically increases 1 week post RT. A
spatial map of the gray-level dependence matrix (GLDM) for
dependence nonuniformity is shown in Figure 4B and illus-
trates both the changes in gray values and shape of a tumor.
In total, 76 radiomics features were found to be significantly

different with RT, including 11 shape features, 23 T1-
weighted texture features, 19 T1-weighted postcontrast tex-
ture features, and 23 T2-weighted texture features. This
suggests that changes induced by radiation may not be lim-
ited to tumor size and shape, but also tissue properties pro-
vided in images with multiple MRI contrasts.

Figure 6. A comparison of some
of the most relevant radiomic fea-
tures for predicting tumor recur-
rence as determined by minimum-
redundancy-maximum-relevance
(mRMR). Features are shown for
data collected pre-RT and one-
week post-RT. These features were
calculated from the peritumoral
area.

Figure 7. Recurrence classification from features calculated from pre-RT images receiver operating curve (ROC) curves
for prediction accuracy using neural networks and support vector machines (SVMs) for 3 regions examined. The best pre-
dictive power is found from features in the peritumoral area (neural network [NN] AUC: 0.78), followed by the tumor
and tumor combined with the peritumoral area (NN AUC: 0.68 vs 0.96). The NN outperforms the SVM for all regions.
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The second radiomics analysis we performed examined if
radiomics features can be used to predict primary tumor recur-
rence in animals on study. It is important to note that all imaging
was performed on the primary lesion before resection, and local
recurrence would not be detectable until weeks after the second
MRI date. The correlation maps of the 200 most significant radio-
mics features (peritumoral area, before RT) for tumors that would
and would not recur are shown in Figure 5. Several regions
within these maps demonstrated clear differences between
features in the MRI data corresponding to animals that would
eventually experience local recurrence after primary lesion
excision, compared to animals in whom no recurrence was
observed. A sample of radiomics features used for comparing
animals in whom recurrence is observed and those who
achieved successful local control is given in the plots of
Figure 6. These features were calculated from the peritumoral
area for both before and after RT and suggest that there may
be measurable differences in radiomics features before and
after RT that correlate with the potential for local recurrence
(eg, T2 GLDM dependence entropy). A similar analysis was
performed for the other 2 regions (tumor and tumor plus peri-
tumoral area); however, the most visually stunning results
came from the peritumoral area.

The features found most relevant for differentiating tumors
that would eventually recur and tumors that were locally con-
trolled came from all MR contrasts. Of the 10 radiomics features
used for this purpose, 7 came gray-level features. The remaining 3
features were derived from the shape of the tumor segmentation.

The prediction model performance is illustrated in Figures 7
(pre-RT data) and 8 (post-RT data) using plots of ROC curves for

NN and SVM classifiers. The best predictive power is found from
features in the peritumoral area identified using an NN and based
on post-RT data (AUC: 0.79, Figure 8). These were followed closely
by the performance of a NN classifier trained on the same area in
the pre-RT data (AUC: 0.78). In all cases, the NN classifier outper-
formed the SVM.

DISCUSSION AND CONCLUSIONS
Our results show that CNN-based segmentations with supervised
learning using either T2-weighted or multicontrast MRI images
are viable methods for automatic tumor volumetric measure-
ments. Our segmentation performance (Table 2) was better in the
configuration using skip connections (ie, a U-net configuration)
similar to what has been reported in other studies (28). The best
overall segmentation performance was achieved using a cross
entropy loss, with Dice scores of 0.861 for T2-weighted images
versus 0.863 for multicontrast data. When trained in K-fold cross
validation, the performance drops slightly from the initial train-
ing (Table 3, mean Dice: 0.8422). This may be attributed to varia-
tion in test sets between trainings.

Automated tumor segmentation of the images before and af-
ter RT showed that tumor volumes increase in the week between
the 2 imaging time points. Because a single dose of RT alone is
unlikely to inhibit growth of a palpable primary lesion, these
trends were expected. Gray-level intensity radiomics features
indicated that tumor images acquire a more heterogeneous tex-
ture 1 week post RT. Although the administered RT was not
expected to inhibit tumor growth, high-dose exposure is likely
to damage tumors, causing tissue-level changes such as

Figure 8. Recurrence classification from features calculated from post-RT images for 3 image regions. Here the best pre-
dictive power is found in the peritumoral area (NN AUC: 0.79), which is the strongest performing predictor overall. The
peritumoral area shows the next strongest performance (NN AUC: 0.70 and SVM AUC: 0.67).
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inflammation, edema, and necrosis. These changes alter tu-
mor signal patterns in each of the MR contrasts, contribut-
ing to heterogeneity of the tumor radiomics features that
differentiate the pre- and post-RT MRI data. This suggests
that radiomics with multicontrast MRI may be useful in
detecting and monitoring the effects of high-dose radiation
in solid tumors.

In addition, our data suggest that radiomics features could
aid in determining the likelihood of primary tumor recurrence.
In our study, pre-RT data that include tumor and surrounding
tissues were the most effective at identifying individuals likely
to recur locally (Figure 7). Recently, peritumoral radiomics
was also used to predict distant metastases in locally advanced
non–small cell lung cancer (14). Although T2-weighted data
alone are sufficient for tumor volume segmentation, only lag-
ging slightly behind multimodal segmentation in perform-
ance, there are advantages in using multicontrast MRI data in
radiomics analysis. This is particularly true when considering
that both T1-weighted and T2-weighted scans are frequently
included as standard protocols in clinical cancer imaging. In
our study, the most relevant features for assessing changes
over time with RT, as well as the prediction of local recurrence,
were identified when including multiple MRI contrasts
(Figures 4-7).

One limitation of this study is its dependence on success-
ful and complete surgical resection of the primary tumor. A

major advantage of the described mouse model is that the
tumors grow and spread much like human soft tissue sarco-
mas, with little control by the investigators aside from site of
initiation. Surgical resection of the primary lesion, just as is
the case in human patients, is not always complete. It is possi-
ble that some recurrences were secondary to microscopic posi-
tive margins or regional nodal disease. Thus, surgical margins
remain an important consideration when discussing local re-
currence of the primary lesion. Although encouraged by our
radiomics findings, we acknowledge that there are additional
factors potentially confounding that cannot be evaluated by
MRI data alone.

In future work, we aim to improve our prediction models by
adding other biomarkers related to immune response, and we
will also attempt to predict distant metastases to the lungs. More
importantly, our imaging analysis pipeline will also be applied in
studies adding immunotherapy to RT as part of our coclinical
trial of sarcoma (11).

In conclusion, we have created and tested an image proc-
essing pipeline for high-throughput, reduced-bias segmenta-
tion of multiparametric tumor MRI data that serves the
preclinical arm of our coclinical trial. Furthermore, we have
implemented the architecture for radiomics analysis of tumor
images, to better our understanding of preclinical imaging
and the insights it provides when studying new therapeutic
strategies for cancer.
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