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As evidence emerges that higher diet quality predicts lower
mortality (1) and incidence of type 2 diabetes (2), possible
biologic mechanisms for this relation have been hypothesized.
Besides the positive influence of diet quality on body weight,
body fat distribution, and inflammatory status, food compo-
nents and dietary patterns have been linked to the composition
of gut microbiota (3). In addition, evidence has accumulated
for a relation between gut microbial characteristics and type 2
diabetes (4). The cross-sectional investigation among Swedish
adults in the current issue of the Journal of Nutrition adds
new evidence to the triangular relation of dietary patterns,
the presence of prediabetes as an indicator of risk to develop
diabetes, and gut microbiota composition (5).

After applying principal component analysis to data from
4-d food records, the authors identified 2 dietary patterns:
a Health-conscious and a Sugar and High-Fat Dairy pattern.
Both explained relatively low proportions of dietary variation
(6.8% and 5.2%, respectively). Positive contributors to the
Health-conscious pattern included fruits/berries, nuts/seeds,
vegetables/legumes, yogurt/cheese, and high-fiber grains, while
sugar-sweetened beverages and red/processed meat had negative
factor loadings. The Sugar and High-Fat Dairy pattern was
characterized by high intakes of pastry/desserts, high-fat
milk/cream, low-fiber bread, potatoes, and processed/red meat.
The fact that tea, coffee, and butter loaded in the same direction
for the 2 patterns illustrates 1 of the limitations of the a
posteriori data-driven approach to assess diet quality.

Sequencing of the 16S ribosomal RNA gene (V1–V3 region)
identified 64 genera and 8 phyla (5). Significant associations
with the microbiota were primarily detected in relation to
the Health-conscious pattern and not the Sugar and High-
Fat Dairy pattern. This is in contrast to other cross-sectional
studies that have linked long-term Westernized diet patterns
to features in the microbial community composition (6, 7).
The findings can be summarized as follows: 1) participants
with high scores on the Health-conscious patterns were ∼50%
less likely to present with prediabetes, an association that
lost significance after adjustment for BMI, likely indicating
an indirect action of diet quality on the microbiota through
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modifications of body weight; 2) higher scores of the Health-
conscious pattern were related to the abundance of 6 bacteria of
the phylum Firmicutes: positively with Roseburia, Lachnospira,
and unclassified in order RF39, and negatively to Blautia,
Eubacterium, and Anaerotruncus; 3) of the 6 bacteria associated
with the dietary pattern, only Roseburia was related to a lower
prevalence of prediabetes. Roseburia attenuated the association
of the Health-conscious pattern with prediabetes, suggesting
that a possible mediation effect may be present.

How do these findings compare to previous reports? As
to the first side of the triangle, the existing evidence about
an association between diet patterns and incidence of type
2 diabetes is extensive and strong, both for a priori and a
posteriori dietary patterns (2). A meta-analysis showed that
data-derived patterns characterized by red/processed meat,
refined grains, high-fat dairy, and fried products were associated
with a 44% higher diabetes risk, whereas a diet rich in
vegetables, legumes, fruits, poultry, and fish predicted a 16%
lower risk (2). The results for a priori patterns were similar;
the Mediterranean diet, the most commonly studied pattern,
predicted a 30% lower diabetes risk (2).

In terms of the second side of the triangle, not so many inves-
tigations have examined diet quality in relation to the gut micro-
biome. Nevertheless, the evidence is strong that dietary compo-
nents bioavailable to microbiota, such as carbohydrates, dietary
fats, proteins, and polyphenols, influence the gut microbiome
(3). Beneficial effects of the Mediterranean diet on diversity and
composition of gut microbiota have been detected in several in-
vestigations (8, 9). The authors of this commentary recently re-
ported associations of several a priori dietary indices, including
the Healthy Eating Index (HEI-2010) and the alternate Mediter-
ranean Diet (aMED), with measures of fecal microbial commu-
nity structure in the Multiethnic Cohort (MEC) (9). Among par-
ticipants who had completed a validated quantitative FFQ 20 y
before stool collection, dietary indices were positively associated
with α diversity, lower abundance of the phyla Actinobacteria,
and with 21 of the 103 genera tested. Of these, 12 genera within
Firmicutes were positively associated and 9 (5 Firmicutes,
1 Actinobacteria, 3 Proteobacteria) were inversely associated
with diet quality. The significant genera from the phyla
Firmicutes included 7 members of the Lachnospiraceae family,
although not Roseburia. Lower HEI-2005 scores were also
associated with a lower relative abundance of Roseburia in a
recent report (10).
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A plausible biologic mechanism linking diet to the gut
microbiome is that Roseburia and Lachnospira both metabolize
fermentable carbohydrates, i.e., dietary fiber, and produce
butyrate and other short-chain fatty acids that influence
glucose metabolism and diabetes risk as reviewed recently (11).
Lachnospira uses pectin found in fruits and vegetables for
acetate production. Fiber intake may lead to the presence of
Roseburia, a butyrogenic bacteria that condenses 2 moles of
acetate to form 1 mole of butyrate (12). Interestingly, the MEC
report also detected an inverse association of the HEI-2010 with
Anaerotruncus, which has been associated with a Westernized
diet pattern among older men (7).

As to the third side of the triangle, a role for Roseburia
in type 2 diabetes has been previously indicated by a study
showing that Roseburia discriminated between normoglycemic
women and those with type 2 diabetes (13). However, only
nominal increases in Escherichia/Shigella related to diabetes
were identified despite many associations of bacteria with
obesity in another report (14).

The boon in molecular tools available to study the
microbiome has opened up a myriad of opportunities to
understand the complex impact of diet on the microbiome
and the microbiome on human health. Although tools to
measure bacterial taxa have been useful, the genetic plasticity of
bacteria can result in a very different functional capacity within
genera. To integrate the microbiome in human health requires
an understanding of the functional capacity (metagenomics)
and the activity of the microbiome (metatranscriptomics and
metaproteomics). Standardization of methodologies ranging
from sample collection to laboratory methods to bioin-
formatics approaches will allow valid comparisons across
large human population studies (15). High-quality bacterial
reference genomes associated with pure cultures will establish
the link from gene to functionality as this area advances
(16, 17). Shuttling between functional potential and activity us-
ing multiple ’omics methods and expanding reference databases
will help to uncover the functional link between the microbiome
and human health (17).

The current study confirms that certain dietary patterns
are associated with specific bacteria (5) and provides novel
information linking the 3 corners of the triangle between
dietary patterns, type 2 diabetes, and the gut microbiome.
Yet, given the complexity of these associations, obesity and
other factors will have to be included in causal pathways and
long-term studies with repeated sampling will be required to
answer many of the open questions. Dietary patterns, both
data-derived and based on dietary recommendations, broadly
agree on components of a healthy diet: primarily high intakes
of fruits/vegetables, nuts, and whole grain products and low
intakes of red/processed meats and products high in sugar
and certain fats. The beneficial health outcomes are likely a
result, in part, of higher levels of short-chain fatty acids derived
from plant-based nutrients typical for a Mediterranean diet
(8). Whereas defining optimal dietary patterns will remain
challenging in light of the difficulties in long-term dietary
assessment, a focus on well-defined dietary patterns such as
the HEI or the aMED will improve the comparability of
future investigations. As these patterns are based on dietary
recommendations, they will be easier to translate into dietary
interventions than data-derived patterns.
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