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ABSTRACT
Background: Metabolomics has proven useful for detecting objective biomarkers of diet that may help to improve

dietary measurement. Studies to date, however, have focused on a relatively narrow set of lipid classes.

Objective: The aim of this study was to uncover candidate dietary biomarkers by identifying serum metabolites

correlated with self-reported diet, particularly metabolites in underinvestigated lipid classes, e.g. triglycerides and

plasmalogens.

Methods: We assessed dietary questionnaire data and serum metabolite correlations from 491 male and female

participants aged 55–75 y in an exploratory cross-sectional study within the Prostate, Lung, Colorectal, and

Ovarian Cancer Screening Trial (PLCO). Self-reported intake was categorized into 50 foods, food groups, beverages,

and supplements. We examined 522 identified metabolites using 2 metabolomics platforms (Broad Institute and

Massachusetts General Hospital). Correlations were identified using partial Pearson’s correlations adjusted for age, sex,

BMI, smoking status, study site, and total energy intake [Bonferroni-corrected level of 0.05/(50 × 522) = 1.9 × 10−6].

We assessed prediction of dietary intake by multiple-metabolite linear models with the use of 10-fold crossvalidation

least absolute shrinkage and selection operator (LASSO) regression.

Results: Eighteen foods, beverages, and supplements were correlated with ≥1 serum metabolite at the Bonferroni-

corrected significance threshold, for a total of 102 correlations. Of these, only 5 have been reported previously, to our

knowledge. Our strongest correlations were between citrus and proline betaine (r = 0.55), supplements and pantothenic

acid (r = 0.46), and fish and C40:9 phosphatidylcholine (PC) (r = 0.35). The multivariate analysis similarly found reasonably

large correlations between metabolite profiles and citrus (r = 0.59), supplements (r = 0.57), and fish (r = 0.44).

Conclusions: Our study of PLCO participants identified many novel food-metabolite associations and replicated

5 previous associations. These candidate biomarkers of diet may help to complement measures of self-reported diet in

nutritional epidemiology studies, though further validation work is still needed. J Nutr 2020;150:694–703.
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Introduction

Many epidemiological studies rely on self-reported diet to
assess habitual food and nutrient intake. Unfortunately, self-
reported diet is subject to random and systematic errors
(1–3) that can cause observed associations between diet and
disease to be attenuated or even biased (4). In addition,
studies of self-reported diet rarely examine how diet affects
endogenous metabolism, yet such effects may be important
for understanding the mechanisms underlying diet-disease
relations.

Nutritional metabolomics is a developing field that has
proven useful for detecting objective biomarkers of dietary
exposure. Over the past several years, nutritional metabolomics
studies have identified hundreds of correlations between self-
reported diet and serum metabolite concentrations (5–9), with
findings catalogued in nutritional biomarker databases (10–12).
These candidate dietary biomarkers include both exogenous
metabolites that act as specific indicators of consumption of
certain foods (e.g. proline betaine as a marker for citrus intake)
and endogenous metabolites that reflect food effects upon host
metabolism (e.g. sex steroid hormones affected by alcohol
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intake), in addition to biomarkers of nutritional status. Such
biomarkers can be exploited in nutritional epidemiology studies
to improve dietary measurement (9).

A limitation of the current studies assessing metabolites in
comparison to self-reported diet is the restricted coverage of
some lipid classes. Previous studies have had strong represen-
tation of acylcarnitines and lysophospholipids (13). Analyses
evaluating additional lipid classes, such as triacylglycerols and
plasmalogens, could uncover new relations and help to identify
new candidate biomarkers.

In the present study, we evaluated cross-sectional corre-
lations between diet and concentrations of metabolites from
2 metabolomics platforms. Previous studies using these plat-
forms have evaluated specific dietary interventions in relation
to metabolite concentrations (14, 15) but not associations
for individual foods, beverages, and vitamin supplements. In
addition, the 2 platforms used in the present study contain
a higher proportion of lipids (69%) than analyzed in prior
studies (13), and they particularly emphasize a broad range of
diacylglycerols and triacylglycerols of varying carbon lengths
and saturation (16). Our objective was to expand upon existing
dietary biomarker studies by identifying novel candidate
nutritional metabolites of habitual diet.

Methods
Study design and population

We analyzed FFQ and serum metabolite data collected from the
Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO).
The PLCO was a multicenter trial that randomly assigned >150,000
US men and women to a screening or control arm between 1993 and
2001. Eligible participants included those aged 55–74 y at baseline
with no previous history of prostate, lung, colorectal, or ovarian cancer.
All participants provided consent and completed a self-administered
questionnaire on demographic and lifestyle characteristics. In the
screening arm, participants completed a dietary questionnaire (DQx)
and provided nonfasting blood samples at defined times during the
study. The PLCO was approved by the Institutional Review Boards of
the US National Cancer Institute and the 10 screening centers.

We used serum metabolomics data from a nested case-control study
of kidney cancer among 534 individuals. We excluded participants
missing quantitative responses to ≥8 food-frequency questions or who
were in the highest or lowest 1% of caloric intake (n = 43) so that we
could adjust for caloric intake, resulting in a final sample size of 491
individuals. The study included 246 participants who were diagnosed
with kidney cancer and 245 controls with no history of cancer who were
matched to cases by age, sex, recruitment site, menopausal status (for
women), and season and year of blood draw. Cases were followed for a
median of 7.4 y (IQR: 4.3–9.7) from the time of blood collection to the
date of diagnosis. All participants were cancer-free at the time of blood
collection.

Dietary assessment
The DQx measured the typical frequency of intake during the 12 mo
before baseline for 137 foods, including alcohol, and typical portion
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sizes for 77 items. The frequency of intake and serving size of each food
item were converted into grams per day of the food and categorized into
50 food groups based on the USDA My Plate classifications adapted
to prior nutritional metabolomics analyses (9). The DQx ascertained
vitamin C, D, and E and calcium supplement intakes (pills per day) at
baseline as well as recent multivitamin use (yes/no).

Metabolite assessment
Nonfasting serum samples were collected at the baseline visit. Blood
samples were stored at −70◦C and analyzed in 2014–2015. Metabolites
were assessed using the metabolomics platforms of the Broad Institute
and Massachusetts General Hospital. Methodologies for both platforms
have been described previously (17, 18), and details of the methodolo-
gies can be found in the Supplemental Methods. The workflows for these
2 labs include; chromatography and positive ion mode MS detection
(C8)-pos, hydrophilic interaction liquid chromatography (HILIC)-pos,
and triple quadrupole with multiple reaction monitoring (MRM). A
flowchart to describe these workflows can be found in Supplemental
Figure 1.

In the present study, we measured 531 identified, named metabolites.
Duplicate metabolites between the 2 platforms were deleted (n = 9),
leaving 522 identified metabolites for analysis. We have provided
a complete list of these metabolites, compounds, methods, and
representative identification used to detect each in Supplemental
Table 1. Metabolites were log-transformed (natural log), values below
the detection threshold were set to the lowest observed value,
and the distribution was centered. Across the 522 metabolites, the
median intraclass correlation coefficient (ICC) was 0.95 (IQR: 0.91–
0.99), indicating a high level of technical reliability (calculated by
using 80 replicates from 10 study participants and 10 pooled
samples).

Statistical analysis
We estimated correlations between 522 identified, named metabolites
and 50 foods, beverages, and vitamin supplements by assessing partial
Pearson’s correlations adjusted for age, sex, BMI, smoking status
(never, former, current), study site, and total energy intake (kcal/d).
The threshold for statistical significance was Bonferroni-adjusted
[a = 0.05/(50 × 522) = 1.9 × 10−6]. Demographic and lifestyle
characteristics and dietary intakes for cases and controls were compared
using 2-sided statistical tests (the chi-square test for categorical variables
and Wilcoxon rank-sum test for continuous variables). In sensitivity
analyses, we examined diet-metabolite correlations among controls
and cases separately and evaluated whether correlations differed
using the Wald test for homogeneity. Analyses were conducted in
SAS 9.4 (SAS Institute).

Some of the metabolites associated with diet were intercorrelated as
part of a metabolic pathway. To account for—and to help illustrate—
these interdependencies, we used Gaussian graphical modeling (GGM)
to assess the conditional correlations of diet-related metabolites and to
display their relation as a metabolic network. Conditional correlations
between metabolites (r ≥0.40) were visualized by linking them together
by a line to represent direct relations. Prior tests of GGMs against
known metabolic pathways have found that GGMs perform well at
recapitulating these pathways and that they outperform alternative
approaches (e.g. heat maps) at identifying metabolic interrelations (19).
GGM was conducted in RStudio version 1.1.453 (RStudio Inc.) with
visualization using Cytoscape 3.7.1 (The Cytoscape Consortium) (20).

We assessed the prediction of dietary intake by multiple-metabolite
linear models with the use of 10-fold crossvalidation least absolute
shrinkage and selection operator (LASSO) regression. The LASSO
model imposed a penalty on the β-coefficients to reduce any potential
overfitting that may occur. Ten iterations of predictive models were
generated with the use of 80% data and tested in the remaining 20%.
Final estimates averaged correlations between observed and predicted
dietary intake levels. Crossvalidation LASSO was done in RStudio
version 1.1.453 (RStudio Inc.) (cv.glmnet from the glmnet package). To
adjust for age, sex, BMI, smoking status, study site, and daily caloric
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TABLE 1 Participant characteristics in the Prostate,
Lung, Colorectal, and Ovarian Cancer Screening
Trial1,2

Characteristic Value

Sex, n(%)
Men 326 (66)
Women 165 (34)

Age, y 63 ± 5
Race, n(%)

White 448 (91)
Smoking status, n(%)

Current 47 (9)
Former 209 (43)
Never 235 (48)

Total energy intake, kcal/d 2171 ± 806
BMI, kg/m2 28 ± 5

1n = 491.
2Values are mean ± SDs or n(%).

intake, we residually adjusted metabolites for these factors before
including them in the LASSO analysis.

Results
Baseline demographic characteristics are shown in Table 1.
Of the 491 participants, 66% were male. The mean age
was 63 y and the sample was predominately white. Most
participants were never (48%) or former (43%) smokers. For
most characteristics, kidney cancer cases and controls did not
have statistically significant differences. However, there was
a significant difference in BMI (P = 0.0004), with a mean
± SD BMI (of 28 ± 5 kg/m2 for cases as compared with
27 ± 4 in controls). Self-reported dietary intake, estimated
from the DQx, is shown in Table 2. There were no statistically
significant differences in self-reported dietary intake between
cases and controls; we therefore present results for diet-
metabolite correlations only for the overall sample.

Eighteen foods, beverages, and supplements were correlated
with ≥1 serum metabolite at the Bonferroni-corrected threshold
for significance and, in total, 102 different correlations met the
threshold of significance (Table 3). The strongest correlation
overall was between citrus fruit intake and concentrations
of proline betaine (r = 0.55). Intake of yellow vegetables
and high-fiber grains were inversely associated with cotinine
(r = −0.23 and r = −0.25, respectively). The consumption
of sweets was correlated with C36:1 phosphatidylcholine
(PC) plasmalogen (r = 0.25) and ice-cream intake was
associated with concentrations of many different lipids, with
the strongest association for C36:1 phosphatidylethanolamine
(PE) plasmalogen (r = 0.28). French fry intake was associated
with concentrations of 1,2,4-trimethylbenzene (r = 0.24),
and eggs and gravy consumption were both correlated with
concentrations of C38:4 PC plasmalogen (r = 0.23 and 0.25,
respectively). Oil consumption was correlated with C14:0
cholesterol ester (CE) (r = −0.26). Meat and fish consumption
were correlated with many lipids, with the strongest relations
as follows: red meat with C34:5 PC plasmalogen (r = 0.34),
processed meat with C36:2 PE plasmalogen (r = 0.25), chicken
with C36:5 PE plasmalogen (r = 0.26), and fish with C40:9 PC
(r = 0.35). Tea intake was correlated with N-acetylornithine-
2 (putative) (r = 0.39), beer with C24:0 sphingomyelin (SM)

(r = 0.22), and total alcohol with C36:1 phosphatidylserine (PS)
plasmalogen (r = 0.21). Supplement use was highly correlated
with pantothenic acid (r = 0.46).

The association networks for pairs of diet-related metabo-
lites with conditional correlations represented by connected
lines are shown in Figure 1A and B (r ≥0.40). Most diet-related
metabolites did not constitute a part of any metabolite cluster
of appreciable size (>2 metabolites). However, there were
2 clusters, of 12 and 8 metabolites, consisting predominately of
lipids that tracked with intake of oil, ice cream, fish, red meat,
chicken, and processed meat.

Figure 2 displays the correlations and 95% CIs between self-
reported dietary intake and predicted intake based on 10-fold
crossvalidated LASSO regression. These correlations, which
broadly reflect the strength of multiple-metabolite prediction
of diet based on statistical modeling (i.e. prediction based on
a training data set and testing with the use of a testing data
set), appear to reiterate the findings of the univariate analysis.
Like in the analysis of individual metabolites, citrus intake
(r = 0.59), multivitamin use (r = 0.57), and juice consumption
(r = 0.53) had the strongest associations. Correlations were
generally higher in the LASSO than in the univariate analysis,
reflecting the ability of the LASSO to integrate information from
multiple metabolites. However, the differences were generally
modest, i.e. 0.01–0.11 larger than the correlation from the
univariate model. A full list of the metabolites contributing to
the multi-metabolite LASSO models and their β-coefficients can
be found in Supplemental Table 2.

In sensitivity analyses, we identified 39 correlations (out
of 26,100 diet-metabolite correlations examined) that differed
by future case status (P < 1.9 × 10−6). Virtually all
involved qualitative heterogeneity, meaning the correlations
were in opposite directions for cases versus controls. The most
heterogeneous of these associations was between total alcohol
consumption and xanthine, where the correlation was −0.17 in
cases and 0.23 in controls.

One metabolite associated (inversely) with citrus intake
was carnosine, a metabolite that has previously been linked
with beef intake (21). To determine whether this association
was driven by a tendency for meat consumers to eat less
citrus, we evaluated whether the self-reported intake of citrus
was inversely correlated with self-reported meat intake. We
found a weak, inverse correlation between citrus and meat
consumption (r = −0.06), though it was not statistically
significant (P = 0.18).

Discussion

In a large cross-sectional study, we were able to identify
18 foods, food groups, beverages, and supplements associated
with ≥1 metabolite, and identified a total of 102 diet-
metabolite correlations. Of these, only 5 to our knowledge
have been previously reported in population and feeding studies
(proline betaine and citrus, 1-methylhistidine and chicken,
and pantothenic acid, thiamin, 5-methyltetrahydrofolate, and
supplements) (6, 9, 12, 22). Our findings add to the growing list
of candidate dietary biomarkers to be validated and potentially
used in nutritional epidemiology studies.

To date, these 2 metabolomics platforms have been used
in 2 prior dietary studies (14, 15), both of which focused on
specific investigator-assigned diets. In contrast to these studies,
the present study covers a broad span of different aspects of
diet, which likely explains the large number of novel findings.
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TABLE 2 Self-reported usual dietary consumption in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening
Trial1,2,3

Category and dietary group Value

Fruit, g/d
Citrus: oranges, orange juice, grapefruit 113 (35–228)
Berries: strawberries 5 (2–10)
Apples, pears 30 (13–65)
Watermelon 7 (2–14)
Juice 117 (27–220)
Other: plums, bananas, apricots, peaches, prunes, raisins, grapes, pineapples 76 (78–123)

Vegetables, g/d
Cruciferous: broccoli, cabbage, Brussels sprouts, cauliflower, turnip greens, mustard greens, collards, kale, Swiss chard 27 (15–49)
Leafy greens: lettuce, spinach 29 (14–48)
Corn 9 (4–17)
Tomatoes: canned, fresh, sauce, ketchup 55 (33–88)
Yellow/orange vegetables: carrots, squash 15 (8–29)
Sweet potatoes 2 (1–4)
White potatoes 63 (24–82)
Total potatoes: white, sweet, fried 75 (43–108)
Other: celery, green beans, beets, peppers, cucumbers 61 (37–95)

Meat/fish, g/d
Red meat 38 (21–67)
Processed meat: cold cuts, hot dogs, bacon, sausage 14 (6–28)
Chicken 16 (8–34)
Fish (excluding shellfish) 18 (8–33)
Shellfish 1 (0–2)

Snack foods, g/d
Sweets: candy, chocolate, cookies, donuts, pies 22 (11–45)
Ice cream 8 (2–19)
French fries 7 (2–16)
Chips 4 (1–14)

Dairy, g/d
Milk 195 (79–400)
Cheese 12 (5–23)
Yogurt 11 (2–44)
Condiments: sour cream, sweet cream 1 (0–2)

Grains, g/d
High fiber: dark bread, high-fiber cereal, good-fiber cereal, brown rice 33 (13–56)
Low fiber: biscuit, corn bread, white bread, hot cereal, fortified cereal, other cereal, crackers, pancakes, waffles, white rice, spaghetti, other
grains

129 (86–219)

Other foods, g/d
Tofu 0 (0–1)
Legumes: beans, peas 20 (9–37)
Eggs 11 (3–22)
Oil 13 (8–19)
Butter 3 (1–7)
Margarine 2 (0–5)
Salad dressing 3 (1–10)
Peanuts 3 (1–9)
Added sugars 4 (1–8)
Gravy 2 (0–7)

Beverages, g/d
Coffee 843 (150–1517)
Tea 22 (3–258)
Sugar-sweetened beverages: soda, fruit punch 23 (5–148)
Beer 4 (0–64)
Wine 1 (0–12)
Liquor 1 (0–4)
Total alcohol 12 (1–179)

Reported multivitamin use, n(%) 237 (44)

1n = 491.
2FFQ measurement of 12-mo intake.
3Values are medians (IQR).
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TABLE 3 Top metabolites associated with dietary intake of foods in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening
Trial1,2

Foods and metabolites Super class Correlation (r) P

Citrus: oranges, orange juice, grapefruit
Proline betaine Organic acids and derivatives 0.55 0
Histamine Organonitrogen compounds − 0.33 8.30 × 10− 4

Arginine Organic acids and derivatives − 0.32 9.92 × 10− 3

Acetylcholine Organonitrogen compounds 0.23 3.02 × 10− 7

Carnosine Organic acids and derivatives − 0.23 3.70 × 10− 7

Glyoxylic acid Lipids and lipid-like molecules 0.22 6.19 × 10− 7

Juice
Proline betaine Organic acids and derivatives 0.43 2.16 × 10− 3

Arginine Organic acids and derivatives − 0.26 9.68 × 10− 9

Acetylcholine Organonitrogen compounds 0.24 1.63 × 10− 7

Histamine Organonitrogen compounds − 0.22 1.34 × 10− 6

Yellow/orange vegetables: carrots, squash
Cotinine Organoheterocyclic compounds − 0.23 4.18 × 10− 7

Sweets: candy, chocolate, cookies, donuts, pies
C36:1 PC plasmalogen Lipids and lipid-like molecules 0.25 2.16 × 10− 8

Ice cream
C36:1 PE plasmalogen Lipids and lipid-like molecules 0.28 4.11 × 10− 10

C56:8 TAG Lipids and lipid-like molecules − 0.26 5.10 × 10− 9

C56:7 TAG Lipids and lipid-like molecules − 0.26 1.05 × 10− 8

C56:9 TAG Lipids and lipid-like molecules − 0.26 1.22 × 10− 8

C38:3 PE plasmalogen Lipids and lipid-like molecules 0.24 5.58 × 10− 8

C58:10 TAG Lipids and lipid-like molecules − 0.24 5.75 × 10− 8

C58:9 TAG + NH4 Lipids and lipid-like molecules − 0.24 8.11 × 10− 8

C58:10 TAG + NH4 Lipids and lipid-like molecules − 0.24 1.74 × 10− 7

C58:9 TAG Lipids and lipid-like molecules − 0.23 2.00 × 10− 7

C36:1 PC plasmalogen Lipids and lipid-like molecules 0.23 2.00 × 10− 7

C56:8 TAG + NH4 Lipids and lipid-like molecules − 0.23 3.60 × 10− 7

C36:0 PE Lipids and lipid-like molecules 0.22 6.54 × 10− 7

C56:9 TAG + NH4 Lipids and lipid-like molecules − 0.22 9.49 × 10− 7

C58:11 TAG Lipids and lipid-like molecules − 0.22 9.84 × 10− 7

C56:7 TAG + NH4 Lipids and lipid-like molecules − 0.22 1.01 × 10− 6

C54:7 TAG Lipids and lipid-like molecules − 0.22 1.02 × 10− 6

C9 carnitine Lipids and lipid-like molecules 0.22 1.28 × 10− 6

C18 carnitine Lipids and lipid-like molecules 0.22 1.60 × 10− 6

C38:4 PC plasmalogen Lipids and lipid-like molecules 0.22 1.67 × 10− 6

French fries
1,2,4-trimethylbenzene Benzenoids 0.24 9.20 × 10− 8

C34:1 PC plasmalogen-B Lipids and lipid-like molecules 0.22 1.17 × 10− 6

High-fiber grains: dark bread, high-fiber cereal, brown rice
Cotinine Organoheterocyclic compounds − 0.25 4.00 × 10− 8

Eggs
C38:4 PC plasmalogen Lipids and lipid-like molecules 0.23 2.09 × 10− 7

C26 carnitine Lipids and lipid-like molecules 0.22 5.90 × 10− 7

Oil
C14:0 CE Lipids and lipid-like molecules − 0.25 1.57 × 10− 8

C16:1 CE Lipids and lipid-like molecules − 0.24 6.87 × 10− 8

C14:0 CE + NH4 Lipids and lipid-like molecules − 0.23 3.83 × 10− 7

C16:1 CE + NH4 Lipids and lipid-like molecules − 0.22 1.22 × 10− 6

Gravy
C38:4 PC plasmalogen Lipids and lipid-like molecules 0.25 1.57 × 10− 8

C36:1 PE plasmalogen Lipids and lipid-like molecules 0.25 2.59 × 10− 8

C36:1 PC plasmalogen Lipids and lipid-like molecules 0.24 1.05 × 10− 7

C38:2 PE Lipids and lipid-like molecules 0.23 2.16 × 10− 7

C38:3 PE plasmalogen Lipids and lipid-like molecules 0.22 6.50 × 10− 7

C36:2 PC plasmalogen Lipids and lipid-like molecules 0.22 1.76 × 10− 6

C36:3 PE plasmalogen Lipids and lipid-like molecules 0.22 1.78 × 10− 6

(Continued)
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TABLE 3 (Continued)

Foods and metabolites Super class Correlation (r) P

Red meat
C34:5 PC plasmalogen Lipids and lipid-like molecules 0.34 2.13 × 10− 14

C38:3 PE plasmalogen Lipids and lipid-like molecules 0.32 1.04 × 10− 12

C36:2 PE plasmalogen Lipids and lipid-like molecules 0.30 1.17 × 10− 11

C36:3 PE plasmalogen Lipids and lipid-like molecules 0.27 1.61 × 10− 9

C34:2 PE plasmalogen Lipids and lipid-like molecules 0.27 2.55 × 10− 9

C38:5 PE plasmalogen Lipids and lipid-like molecules 0.26 3.74 × 10− 9

C36:1 PE plasmalogen Lipids and lipid-like molecules 0.26 4.90 × 10− 9

C38:4 PC plasmalogen Lipids and lipid-like molecules 0.25 4.03 × 10− 8

C36:4 PE plasmalogen Lipids and lipid-like molecules 0.22 6.27 × 10− 7

C36:5 PC plasmalogen Lipids and lipid-like molecules 0.22 9.63 × 10− 7

C34:3 PE plasmalogen Lipids and lipid-like molecules 0.22 1.02 × 10− 6

Processed meat: cold cuts, hot dogs, bacon, sausage Lipids and lipid-like molecules
C36:2 PE plasmalogen Lipids and lipid-like molecules 0.25 2.10 × 10− 8

C38:3 PE plasmalogen Lipids and lipid-like molecules 0.25 4.79 × 10− 8

C38:4 PC plasmalogen Lipids and lipid-like molecules 0.24 5.85 × 10− 8

C36:3 PE plasmalogen Lipids and lipid-like molecules 0.24 9.37 × 10− 8

C36:1 PC plasmalogen Lipids and lipid-like molecules 0.23 1.81 × 10− 7

C36:4 PE plasmalogen Lipids and lipid-like molecules 0.23 2.14 × 10− 7

C34:2 PE plasmalogen Lipids and lipid-like molecules 0.22 8.57 × 10− 7

Chicken
C36:5 PE plasmalogen Lipids and lipid-like molecules 0.26 4.12 × 10− 9

Ectoine 0.26 9.81 × 10− 9

1-methylhistidine Organic acids and derivatives 0.25 1.40 × 10− 8

C38:7 PC plasmalogen Lipids and lipid-like molecules 0.23 4.45 × 10− 7

3-methylhistamine Organonitrogen compounds 0.22 7.11 × 10− 7

Fish (excluding shellfish)
C40:9 PC Lipids and lipid-like molecules 0.35 1.57 × 10− 15

C38:7 PC plasmalogen Lipids and lipid-like molecules 0.33 4.58 × 10− 14

C38:7 PE plasmalogen Lipids and lipid-like molecules 0.32 2.36 × 10− 13

C22:6 CE + NH4 Lipids and lipid-like molecules 0.32 3.42 × 10− 13

C60:12 TAG Lipids and lipid-like molecules 0.32 3.97 × 10− 13

C40:6 PC Lipids and lipid-like molecules 0.31 6.21 × 10− 12

C58:9 TAG + NH4 Lipids and lipid-like molecules 0.30 1.61 × 10− 11

C58:8 TAG Lipids and lipid-like molecules 0.29 5.56 × 10− 11

C58:9 TAG Lipids and lipid-like molecules 0.29 5.71 × 10− 11

C22:6 LPC Lipids and lipid-like molecules 0.29 1.47 × 10− 10

C36:5 PC plasmalogen-A Lipids and lipid-like molecules 0.28 2.80 × 10− 10

C56:8 TAG Lipids and lipid-like molecules 0.28 3.80 × 10− 10

C40:7 PE plasmalogen Lipids and lipid-like molecules 0.28 4.57 × 10− 10

C22:6 LPE Lipids and lipid-like molecules 0.28 5.68 × 10− 10

C38:6 PE Lipids and lipid-like molecules 0.28 5.81 × 10− 10

C58:8 TAG + NH4 Lipids and lipid-like molecules 0.27 1.19 × 10− 9

C58:10 TAG Lipids and lipid-like molecules 0.26 4.75 × 10− 9

C42:11 PE plasmalogen Lipids and lipid-like molecules 0.26 6.48 × 10− 9

C56:9 TAG Lipids and lipid-like molecules 0.25 2.06 × 10− 8

C40:10 PC Lipids and lipid-like molecules 0.25 3.07 × 10− 8

C60:12 TAG + NH4 Lipids and lipid-like molecules 0.25 3.24 × 10− 8

C58:10 TAG + NH4 Lipids and lipid-like molecules 0.25 3.52 × 10− 8

C58:11 TAG Lipids and lipid-like molecules 0.25 4.17 × 10− 8

C56:8 TAG + NH4 Lipids and lipid-like molecules 0.24 9.00 × 10− 8

C56:9 TAG + NH4 Lipids and lipid-like molecules 0.24 1.19 × 10− 7

C56:7 TAG + NH4 Lipids and lipid-like molecules 0.23 4.89 × 10− 7

Tea
N-acetylornithine-2 (putative) 0.39 1.45 × 10− 18

Beer
C24:0 SM Lipids and lipid-like molecules 0.22 1.55 × 10− 6

(Continued)

102 correlations between metabolites and diet 699



TABLE 3 (Continued)

Foods and metabolites Super class Correlation (r) P

Total alcohol
C36:1 PS plasmalogen Lipids and lipid-like molecules 0.21 1.89 × 10− 6

Supplements
Pantothenic acid Amino acids, peptides, and analogs 0.46 3.1 × 10− 27

Thiamin Organoheterocyclic compounds 0.31 5.4 × 10− 12

5-methyltetrahydrofolate Organoheterocyclic compounds 0.27 1.83 × 10− 9

1n = 491.
2Abbreviations: CE, cholesterol ester; LPC, lysophosphatidylcholine; NH4, ammonium; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; SM,
sphingomyelin; TAG, triacylglycerol.

As compared with other platforms (13), these platforms
emphasize lipids, such as triacylglycerols and plasmalogens,
which provided us with a different set of metabolites.

Several lines of evidence support the plausibility of the
metabolites we identified as biomarkers of intake. Citrus fruits
and juice are known to contain proline betaine, otherwise
known as stachydrine, and the positive correlation we observed
was similar in magnitude to what has been previously
reported (6, 9). Citrus intake was also inversely associated
with carnosine, predominately found in animal tissue (21),
and arginine, which can be animal or plant derived (12);
possibly because individuals who ate more citrus tended to
consume less red meat, though this finding was not statistically
significant. The inverse associations between the intake of
yellow vegetables and high-fiber grains with cotinine are likely
due to imperfect adjustment for smoking status, as smokers
tend to consume fewer vegetables (23). The consumption
of sweets and ice cream were positively correlated with
phosphatidylethanolamines, whose acid moieties are derived
from animal fats and cocoa butter (12), ingredients typically
present in these foods. French fries were correlated with 1,2,4-
trimethylbenzene, an environmental toxin previously found in
fried beef liver, margarine, and butter (24). French fries are
predominately cooked in oil, which may be the source of this
metabolite. We observed an inverse relation between dietary oils
(primarily unsaturated oils) and cholesterol esters (components
of the cholesterol molecule), which may reflect the benefits

of unsaturated fats on plasma cholesterol (25). The intake of
eggs was positively associated with C38:4 PC plasmalogen, a
phosphatidylcholine, and eggs are known to be rich sources
of choline (26). Gravy consumption was positively associated
with lipids that have animal fat-derived acid moieties (12),
and gravy often contains animal products or is coconsumed
with meat. Red meat and processed meat were associated with
several phosphatidylethanolamines and phosphatidylcholines,
all of which contain ≥1 acid moiety derived from animal tissues
(12). Chicken was correlated with C36:5 PE plasmalogen and
C38:7 PC plasmalogen, both of which contain acid moieties
derived from animal fats (12). Chicken was also correlated
with 1-methylhistidine, a metabolite that has previously been
associated with meat intake (27), and chicken specifically (22).
Fish was strongly correlated with C40:9 PC and C38:7 PC
plasmalogen. Based on the bond content of these lipids, we
can infer that both contain a moiety of DHA, which is derived
from fish oils (12). Fish was also correlated with C38:7 PE
plasmalogen, which contains acid moieties found in animal
tissues and marine lipids (12). The metabolites we found to be
associated with supplements are components of vitamins, for
example, pantothenic acid is another name for vitamin B5, and
thiamin is synonymous for vitamin B1 (12).

We observed that food intake was more often associated
with ether lipids, rather than with ester lipids. Ether lipids are
typically less abundant than ester lipids. Though speculative, the
greater number of associations for ether lipids could occur if

FIGURE 1 A–B. Gaussian graphical models of 2 clusters of diet-related metabolites measured in the Prostate, Lung, Colorectal, and Ovarian
Cancer Screening Trial. Metabolites are depicted as hexagons, and pairs with an absolute value of conditional correlation >0.4 are connected by
a line. Black lines represent positive conditional correlations. Gray lines represent inverse conditional correlations. Clusters with <8 metabolites
not shown.

700 Mazzilli et al.



FIGURE 2 Correlations and 95% CIs between self-reported dietary intake and predicted intake based on metabolites and 10-fold crossvalidated
LASSO regression in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cruc. vegetables, cruciferous vegetables; LASSO, least
absolute shrinkage and selection operator; o/y vegetables, orange/yellow vegetables; SSB, sugar sweetened beverage.

they are more specific markers, which would also contribute to
their lower abundance.

In addition to identifying biomarkers of intake that, if
validated (28), could be used in future studies, some findings
suggest specific noteworthy effects of certain foods. For
example, researchers have hypothesized for at least a decade
that citrus fruits may increase circulating concentrations of

histamine, thereby exacerbating seasonal and other allergies,
and have therefore advocated to avoid their intake during
allergic episodes (29). We found, however, that citrus and
juice (primarily from citrus) were negatively correlated with
histamine, thus contradicting this hypothesis. Mechanistically,
this inverse association could be due to the ability of ascorbic
acid to accelerate histamine degradation (30). Furthermore,
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alcohol, meats, poultry, and fish were each associated with
several lipids, including phosphatidylethanolamines, cholesterol
esters, and triacylglycerols, which may explain their links to
cardiovascular disease (31, 32).

In our analysis, we did identify some diet-metabolite
correlations that appeared to vary by case status. However, since
every one of these instances involved qualitative rather than
quantitative heterogeneity, these findings do not appear to be
particularly biologically plausible and should be treated with
caution.

The strengths of our study include a large sample size, many
detected metabolites, and an extensive dietary questionnaire.
Our study also has several limitations. Our results were
based on a self-reported survey, which likely attenuated some
correlations. We believe our results would be stronger with
measures of dietary intake less susceptible to random errors.
Participants were also not required to fast, however, prior
studies did not show obvious differences by fasting status (8).
Metabolomics in general has its own limitations, including
missed peaks and integrated noise peaks (33), which we cannot
rule out as a limitation of our own data. The amount of
serum being analyzed limits which metabolites can be measured
and the platforms we used are not optimized for particular
metabolites. Since the level of certainty used to identify
lipids was less definitive, a representative Human Metabolome
Database (HMDB) identifier was used for some metabolites.
Though some literature is available on these metabolites, we are
limited in our ability to clarify whether many of our associations
are direct biomarkers of intake or rather reflect endogenous
effects of eating these foods. Future feeding studies could
disentangle these possibilities by measuring concentrations of
metabolites both before and after consumption to determine
whether the metabolite is present even if the food had not
been consumed. Lastly, our sample was largely white; thus,
generalizability to other groups is unknown.

In conclusion, our findings build upon previous nutritional
metabolomics studies by providing novel specific lipid-food
relations and replicating previous associations. These candidate
biomarkers, once validated, could potentially be used to
complement self-reported measures of diet in nutritional
epidemiology studies.
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