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ABSTRACT
Background: Glycolysis/gluconeogenesis and tricarboxylic acid
(TCA) cycle metabolites have been associated with type 2 diabetes
(T2D). However, the associations of these metabolites with T2D
incidence and the potential effect of dietary interventions remain
unclear.
Objectives: We aimed to evaluate the association of baseline and 1-
y changes in glycolysis/gluconeogenesis and TCA cycle metabolites
with insulin resistance and T2D incidence, and the potential
modifying effect of Mediterranean diet (MedDiet) interventions.
Methods: We included 251 incident T2D cases and 638 noncases
in a nested case-cohort study within the PREDIMED Study
during median follow-up of 3.8 y. Participants were allocated to
MedDiet + extra-virgin olive oil, MedDiet + nuts, or control diet.
Plasma metabolites were measured using a targeted approach by
LC–tandem MS. We tested the associations of baseline and 1-y
changes in glycolysis/gluconeogenesis and TCA cycle metabolites
with subsequent T2D risk using weighted Cox regression models
and adjusting for potential confounders. We designed a weighted
score combining all these metabolites and applying the leave-one-
out cross-validation approach.
Results: Baseline circulating concentrations of hexose monophos-
phate, pyruvate, lactate, alanine, glycerol-3 phosphate, and isocitrate
were significantly associated with higher T2D risk (17–44% higher
risk for each 1-SD increment). The weighted score including all

metabolites was associated with a 30% (95% CI: 1.12, 1.51)
higher relative risk of T2D for each 1-SD increment. Baseline
lactate and alanine were associated with baseline and 1-y changes
of homeostasis model assessment of insulin resistance. One-year
increases in most metabolites and in the weighted score were
associated with higher relative risk of T2D after 1 y of follow-up.
Lower risks were observed in the MedDiet groups than in the control
group although no significant interactions were found after adjusting
for multiple comparisons.
Conclusions: We identified a panel of glycolysis/gluconeogenesis-
related metabolites that was significantly associated with T2D
risk in a Mediterranean population at high cardiovascular disease
risk. A MedDiet could counteract the detrimental effects of these
metabolites. This trial was registered at controlled-trials.com as
ISRCTN35739639. Am J Clin Nutr 2020;111:835–844.

Keywords: glycolysis metabolites, tricarboxylic acid cycle metabo-
lites, metabolomics, type 2 diabetes, insulin resistance

Introduction
Metabolomics is a rapidly evolving discipline that offers a

new avenue for identifying novel biomarkers before the onset
of diabetes beyond classical risk factors (1). Metabolomic
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studies have revealed that several blood sugars, sugar-related
metabolites, components of the glycolysis/gluconeogenesis path-
way, and tricarboxylic acid (TCA) cycle intermediates have
been associated with insulin resistance, prediabetes, and dia-
betes in case-control, cross-sectional, and prospective studies
(2–8). Interestingly, several metabolites belonging to the gly-
colysis/gluconeogenesis pathway and TCA cycle show relevant
changes in plasma concentrations after oral glucose challenges
(9, 10). Among them, lactate (the end product of anaerobic
glycolysis) also showed differential changes in its circulating
concentrations during the oral-glucose-tolerance test (OGTT)
by insulin resistance status (9). Moreover, circulating lactate
is a relevant predictor of subsequent T2D incidence in several
epidemiologic studies (11–13). However, these studies only
assessed plasma lactate at baseline and did not perform a
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broader assessment of other lactate-related metabolites involved
in glucose homeostasis.

Although available literature has pointed to a link between
some glycolysis/gluconeogenesis or TCA cycle plasma metabo-
lites and prediabetes or T2D, to our knowledge no previous
longitudinal study has assessed the association of these metabo-
lites with future T2D incidence in initially nondiabetic subjects.
Importantly, existing studies have not integrated longitudinal
data with the potential effect of dietary interventions. This
integration is needed to evaluate the associations of interest in
a comprehensive manner and to provide support for public health
actions. In this context, no large, long-term study has assessed
whether dietary interventions can modify the relation between
metabolomic profiles composed of gluconeogenesis-pathway
metabolites and T2D risk. Therefore, the aim of the present study
was to evaluate the association of baseline and 1-y changes in
plasma glycolysis/gluconeogenesis-related metabolites and TCA
cycle intermediates with insulin resistance and T2D risk; and to
examine whether these associations might be mitigated by dietary
interventions based on the Mediterranean diet (MedDiet) among
participants at high cardiovascular disease (CVD) risk.

Methods

Study design and participants

The present study was a nested case-cohort study within the
PREDIMED trial (ISRCTN35739639). Briefly, the PREDIMED
trial (www.predimed.es) was conducted from 2003 through 2010
in Spain and aimed to evaluate the effects of the MedDiet for
the primary prevention of CVD. At baseline, 7447 participants
aged 55–80 y with high CVD risk, but initially free from
diagnosed CVD, were allocated to 1 of 3 dietary interventions:
1) MedDiet supplemented with extra-virgin olive oil (provided to
participants for free); 2) MedDiet supplemented with mixed tree
nuts (provided to participants for free); or 3) a control group that
received advice to follow a low-fat diet (and participants received
nonfood gifts). Detailed information about the PREDIMED trial
has been published elsewhere (14, 15).

In the present case-cohort study, we have included all the
available incident T2D cases diagnosed during a median follow-
up of 3.8 y and a random subsample of 20% of participants
free of T2D at baseline and who had available EDTA plasma
samples (16). Among all participants free of diabetes at baseline
(n = 3541), we selected for the present analysis 889 participants
(Supplemental Figure 1), including 251 incident T2D cases
with available plasma samples and a subcohort of 691 randomly
selected participants (638 noncases and 53 overlapping cases).
Among the total selected subset of 889 participants, 656 had
available blood samples after 1 y of follow-up (499 noncases and
157 cases that occurred after 1 y of follow-up) and they were
included in the 1-y change analyses. The protocol was approved
by the research ethics committees at all study locations, and all
participants provided written informed consent.

Ascertainment of T2D cases

The PREDIMED protocol included T2D as a prespecified
secondary endpoint of the trial among participants initially free
of diabetes. At baseline, prevalent T2D was identified by clinical
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diagnosis and/or use of antidiabetic medication. The diagnosis of
incident T2D during follow-up has been described elsewhere (17)
and followed the American Diabetes Association criteria (18),
namely 2 confirmations of fasting plasma glucose ≥7.0 mmol/L
or 2-h plasma glucose ≥11.1 mmol/L, after a standard 2-h 75-
g OGTT. Blinded study physicians collected information on the
outcomes. Blinded to the intervention assignment, the Clinical
End-Point Ascertainment Committee adjudicated the T2D events
according to standard criteria. Information on incident cases of
T2D was collected from continuous contact with participants and
primary health care physicians, annual follow-up visits, yearly
ad hoc reviews of medical charts, and annual consultation of the
National Death Index.

Covariate assessment

At baseline and at yearly follow-up visits, questionnaires
assessing medical conditions, family history of disease, and risk
factors were collected. Trained personnel measured participants’
body weight, height, waist circumference, and blood pressure (in
triplicate) according to the study protocol. BMI was calculated
as kg/m2. Physical activity was assessed using the validated
Spanish version of the Minnesota Leisure-Time Physical Ac-
tivity questionnaire (19). Participants were considered to have
hypercholesterolemia or hypertension if they had previously
been medically diagnosed, and/or they were being treated with
cholesterol-lowering or antihypertensive agents, respectively.

Study samples and metabolomics profiling

All analyses used fasting (≥8 h) plasma EDTA samples
collected at baseline and at year 1 of intervention. Samples
were processed at each recruiting center no later than 2 h
after collection and stored at −80◦C. Pairs of samples (baseline
and first-year visit) from cases and subcohort participants were
randomly distributed before being shipped to the Broad Institute
in Cambridge, MA, for metabolomics assays. Using a targeted
approach, LC–tandem MS was used to quantitatively profile polar
metabolites including organic acids, sugar phosphates, purines,
pyrimidines, bile acids, and anionic (carboxylate-containing)
metabolites. Internal standard peak areas were monitored for
quality control and to ensure system performance throughout
analyses. Pooled plasma reference samples were also inserted
every 20 samples as an additional quality control. The raw
data were processed using MultiQuant software (AB SCIEX)
to integrate chromatographic peaks and the data were visually
inspected to ensure the quality of signal integration. Details of
the LC–tandem MS platform can be found elsewhere (20).

For this analysis we used plasma concentrations of metabolites
involved in the pathways of glycolysis, gluconeogenesis, and
the TCA cycle, namely fructose 6-phosphate, fructose 1,6-bis
phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate,
lactate, alanine, glycerol-3-phosphate, citrate, aconitate, isoci-
trate, fumarate, malate, and succinate (for Human Metabolome
Database numbers see Supplemental Figure 2; http://ww
w.hmdb.ca/). These products were considered representative
metabolites because the method could not chromatographically
solve the isomers and therefore did not have unique multiple
reaction monitoring transitions in MS. For this reason, in this

article we have used the general names for these molecules,
i.e., hexose monophosphate for fructose-6-phosphate, hexose
diphosphate for fructose 1,6-bis phosphate, and fumarate/maleate
for fumarate. We observed 2 missing values in the measurement
of 3-phosphoglycerate, 4 missing values in phosphoenolpyruvate,
109 in pyruvate, and 319 in hexose diphosphate.

Participants’ triglyceride, total cholesterol, LDL cholesterol,
and HDL cholesterol were measured using fasting plasma
samples at baseline. Serum glucose, triglyceride, total choles-
terol, and HDL-cholesterol concentrations were measured using
standard enzymatic methods and LDL-cholesterol concentrations
were calculated with the Friedewald formula. Plasma glucose
was measured using an enzymatic method to convert glucose
to 6-phosphogluconate (ADVIA Chemistry Systems). The intra-
and interassay CVs were 1.2% and 1.6%, respectively. Insulin
concentrations were measured using an immunoenzymometric
assay (ADVIA Chemistry Systems) with intra- and interassay
CVs equal to 3.7 and 4.4, respectively. Insulin resistance was
calculated by using the HOMA-IR index [HOMA-IR = fasting
insulin (μU/mL) × fasting glucose (mmol/L)/22.5].

Statistics

Individual glycolysis/gluconeogenesis-related metabolite con-
centrations were normalized and scaled to multiples of 1 SD using
the rank-based inverse normal transformation. Weighted propor-
tional hazards Cox regression models using Barlow weights to
account for the overrepresentation of cases, as recommended for
case-cohort designs (21), were applied to estimate HRs and the
95% CIs of T2D, comparing participants in each quartile with
the lowest quartile as well as per 1-SD increment in individual
metabolites. Follow-up time was calculated from the date of
enrollment to the date of diagnosis of T2D for cases, and to
the date of the last visit or the end of the follow-up period for
noncases. Models were adjusted for age, sex, intervention group,
smoking, BMI, physical activity, hypertension, dyslipidemia,
and baseline plasma glucose (centered on the sample mean
and adding a quadratic term). All models were stratified by
recruitment center with the option “strata” from Stata, thus equal
coefficients are calculated across strata but with a baseline hazard
unique to each stratum. We adjusted P values of the multivariable-
adjusted associations between 1-SD increments in concentration
of individual metabolites and T2D risk using the false discovery
rate (FDR)-adjusted procedure to account for the multiple testing
(22). To quantify a linear trend, we assigned the median value of
each metabolite concentration within each quartile and modeled
this variable continuously.

We created a weighted metabolite score combining the
glycolysis/gluconeogenesis-related metabolites using the respec-
tive coefficients from the multivariable Cox regression model
fitted for each individual metabolite (23). We applied the leave-
one-out cross-validation approach to obtain unbiased estimates
of these models and to avoid overfitting when creating the
score (24). In each run, Cox regression models were applied
to the all-but-one sample (i.e., the training data set), and the
regression coefficient obtained was the weight applied to the
remaining 1 sample (i.e., the testing data set) to calculate the
score. For metabolites with missing values (hexose diphosphate,
3-phosphoglycerate, phosphoenolpyruvate, and pyruvate) we
imputed the values by using the minimum observed value

http://www.hmdb.ca/
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divided by 2. We also repeated this analysis using a new score
with all metabolites except pyruvate and hexose diphosphate
to assess the possible influence of the replacement of missing
values from these metabolites. We adjusted for the same
covariates as previously mentioned. In addition, we adjusted
for other metabolites related to glycolysis/gluconeogenesis or
the TCA cycle and previously associated with T2D (25–27).
Specifically, we adjusted for a branched-chain amino acid score
(leucine + isoleucine + valine), aromatic amino acid score
(phenylalanine + tyrosine), ratio of glutamine to glutamate, and
global arginine bioavailability ratio [arginine/(ornithine + cit-
rulline)].

Some departures from the individual random assignment
protocol in a small subset of participants have been reported in
the PREDIMED trial (15). As ancillary analyses, we repeated
the analyses using robust variance estimators to account for
intracluster correlation and we also adjusted for propensity scores
predicting randomization to account for small between-group
imbalances at baseline.

Using the aforementioned models but with further adjustments
for baseline metabolite concentrations of the corresponding
metabolite, we also examined the associations between 1-y
changes in individual glycolysis/gluconeogenesis- or TCA cycle–
related metabolites and T2D risk (using as outcome only cases
of T2D occurring after 1 y follow-up). We first calculated the
difference between baseline and 1-y concentrations, then nor-
malized this difference using the inverse normal transformation.
We applied the same aforementioned procedure to obtain the
1-y weighted metabolite score using the coefficients from Cox
regressions for 1-y changes.

In addition, we stratified the analyses by intervention group
(control group compared with both MedDiet groups merged
together). The likelihood ratio test was used to assess the
significance of the 1-df interaction product-term (effect modifi-
cation in multiplicative scale) between the intervention (MedDiet
groups compared with control) and the individual metabolites
(continuous).

Finally, we applied multiple linear regression models to exam-
ine the associations of quartiles of glycolysis/gluconeogenesis-
related metabolites at baseline and 1-y changes with HOMA-IR
adjusting for age, sex, intervention group, smoking status, BMI,
leisure-time physical activity, hypertension, dyslipidemia, and
baseline plasma glucose. Only metabolites previously associated
with T2D incidence were included in the analyses.

All statistical analyses were performed using Stata version 15
(Stata Corp), at a 2-tailed α of 0.05.

Results
The CVs were 4.6% for fructose 6-phosphate, 4.5% for

fructose 1,6-bis phosphate, 4.0% for 3-phosphoglycerate, 6.3%
for phosphoenolpyruvate, 11.5% for pyruvate, 2.9% for lactate,
2.6% for alanine, 3.3% for glycerol-3-phosphate, 1.2% for citrate,
2.5% for aconitate, 1.9% for isocitrate, 2.2% for fumarate, 0.9%
for malate, and 2.7% for succinate.

Table 1 shows the baseline characteristics of the subset
of PREDIMED participants included in our analysis by T2D
incidence. Participants who developed T2D were more likely to
smoke, had a higher baseline waist circumference and BMI, as

well as higher concentrations of fasting glucose at baseline than
participants who did not develop T2D during follow-up.

Table 2 shows the HRs and 95% CIs for incident
T2D risk according to individual baseline glycolysis/
gluconeogenesis-related metabolites. In the multivariable-
adjusted models, plasma hexose monophosphate, pyruvate,
lactate, alanine, glycerol-3 phosphate, and isocitrate were
significantly associated with a higher risk of T2D (23–44%
relatively higher risk for each 1-SD increment).

Each 1-SD increment in the weighted score including all
metabolites was associated with a 30% (95% CI: 1.12, 1.51)
relatively higher risk of T2D (Table 2). Results remained
significant when we also adjusted for propensity scores predicting
randomization to account for small between-group imbalances at
baseline and when we used robust variance estimators to account
for intracluster correlations (29%; 95% CI: 3%, 61%). The
association became stronger (37%; 95% CI: 18%, 58% per 1-SD
increment) when we repeated the analyses with a metabolite score
without pyruvate and hexose diphosphate [P < 0.001 after FDR
correction]. T2D risk was slightly attenuated but still significant
when we also adjusted for other T2D-associated metabolites: we
calculated a 22% (95% CI: 4%, 44%) higher risk for each 1-SD
increment in the score when we also adjusted for branched-chain
and aromatic amino acids, ratio of glutamine to glutamate, and
the global arginine bioavailability ratio.

Supplemental Table 1 shows the stratified analysis by inter-
vention group for only those metabolites that were significantly
associated with T2D. We observed a positive association of
hexose monophosphate (as a continuous variable) with T2D in the
control group (HR: 1.46; 95% CI: 1.13, 1.87), but no significant
association was observed in the MedDiet intervention groups.
The P for interaction for the intervention (both MedDiet groups
merged compared with the control group) was 0.049 (1 df), but
it was nonsignificant after the FDR correction. A nonsignificant
trend for an interaction suggesting an increased risk of T2D for
higher baseline pyruvate in the MedDiet group but not in the
control group was observed, but it became nonsignificant after
the FDR correction (P-interaction after FDR correction = 0.076,
1 df).

Baseline HOMA-IR was positively associated with plasma
pyruvate, lactate, and alanine (P-trend for quartiles of these
metabolites: <0.001, <0.001, and 0.003, respectively). In
addition, plasma lactate and alanine were significantly and
positively associated as well with 1-y changes in HOMA-IR (P-
trend = 0.015 and 0.027, respectively) (Table 3).

Our results also indicated a significantly increased risk
of T2D associated with 1-y changes in hexose monophos-
phate, 3-phosphoglycerate, lactate, aconitate, isocitrate, fu-
marate/maleate, and malate (Supplemental Table 2). The
strongest associations were observed for lactate and aconitate.
Those participants in the upper quartile of 1-y changes in lactate
had 3.87-fold higher risk of T2D, and those in the upper quartile
of aconitate had 3.16-fold higher risk, than those in the first
quartile (HR: 3.87; 95% CI: 2.05, 7.30 and HR: 3.16; 95% CI:
1.76, 5.68, respectively).

A significant association was also found for the 1-y change
weighted score of all these metabolites (60% higher risk for each
1-SD increment, HR: 1.60; 95% CI: 1.31, 1.97) (Supplemental
Table 2). A consistent association was found when we also
adjusted for baseline and 1-y changes in other metabolites
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TABLE 1 Baseline participant characteristics according to diabetes status and baseline scores of metabolites1

By diabetes incidence during follow-up By extreme quartiles of the baseline metabolite score

Subcohort2 Incident cases Quartile 1 Quartile 4

n 691 251 204 252
Age, y 66.5 ± 5.7 66.4 ± 5.7 65.7 ± 5.4 66.8 ± 5.7
Women 62.8 55.0 59.8 60.3
Intervention group

MedDiet + EVOO 30.4 29.9 33.3 27.0
MedDiet + nuts 37.3 33.9 39.7 32.1
Control 32.3 36.3 27.0 40.9

Hypertension 90.9 96.0 90.2 94.4
Dyslipidemia 85.0 79.7 84.3 85.7
Smoking

Never 60.9 52.6 55.9 57.5
Former 22.6 22.3 20.6 18.3
Current 16.5 25.1 23.5 24.2

Waist circumference, cm 99.5 ± 10.7 103.4 ± 10.0 97.9 ± 11.0 103.3 ± 10.1
BMI, kg/m2 29.9 ± 3.6 30.8 ± 3.3 29.5 ± 3.8 30.8 ± 3.5
Physical activity, METs-min/d 239 ± 238 249 ± 232 257 ± 249 220 ± 231
Education

Elementary or lower 75.5 76.5 69.1 75.8
Secondary or higher 24.5 23.5 30.9 24.2

Total energy intake, kcal/d 2277 ± 564 2327 ± 622 2316 ± 593 2268 ± 581
MedDiet score3 8.6 ± 1.9 8.5 ± 1.8 8.8 ± 1.7 8.5 ± 2.2
Fasting glucose, mg/dL 99.6 ± 15.2 117.2 ± 17.6 100.2 ± 15.4 108.4 ± 19.2

1Values are means ± SDs or percentages unless indicated otherwise. EVOO, extra-virgin olive oil; MedDiet, Mediterranean diet; MET, metabolic
equivalent task.

2Thirty-seven cases are included in the randomly selected subcohort.
3This score is based on the 14-item PREDIMED screener of adherence to the MedDiet.

including branched-chain amino and aromatic amino acids, ratio
of glutamine to glutamate, and global arginine availability score
(HR: 1.61; 95% CI: 1.29, 2.01 per 1-SD increment) and when we
repeated the analyses with a metabolite score without pyruvate
and hexose diphosphate (HR: 1.63; 95% CI: 1.36, 1.96 per 1-SD
increment).

When these models were stratified by intervention group
(Table 4), 1-y changes in several metabolites including hexose
monophosphate, 3-phosphoglycerate, lactate, and aconitate were
also associated with higher T2D risk both in the control and in
the MedDiet groups. Citrate, isocitrate, and malate were only
associated with higher risk of T2D in the control group, not in
the MedDiet intervention groups. The test for interaction was
significant for isocitrate and malate, but no longer significant
after the FDR correction. One-year changes in the metabolite
score were associated with 3.57-fold relatively higher risk of
T2D in the control group (95% CI: 1.54, 4.27), whereas no
significant associations were observed in the MedDiet groups.
However, the interaction was not statistically significant (P-
interaction = 0.071).

Discussion
In this prospective nested case-cohort study, we observed

that baseline and 1-y changes in fasting plasma concentrations
of several glycolysis/gluconeogenesis- and TCA cycle–related
metabolites and a global score were associated with higher risk of
T2D among participants at high CVD risk. Moreover, 1-y change
of this score and some individual metabolites was associated with

T2D risk in the control group but not in the MedDiet group,
although interactions were not statistically significant after FDR
correction. In addition, baseline plasma concentrations of lactate
and alanine were associated with increases in HOMA-IR after
1 y.

Because T2D is itself defined by hyperglycemia (28–30), our
results may be partly explained by the fact that early dysglycemia
usually precedes changes in metabolite concentrations. Sugar-
related circulating metabolites were correlated with prediabetes
and/or T2D in observational studies (25). The Cooperative Health
Research in the Region of Augsburg (KORA) case-control
study reported that plasma glucose, mannose, desoxyhexose, and
dihexose were higher in T2D cases than in the control group
(7). In the Framingham Heart Study Offspring Cohort, glycolysis
products increased after a 75-g OGTT (9, 10). That study also
reported very modest reductions in circulating concentrations of
glucose 1-phosphate, glucose 6-phosphate, fructose 1-phosphate,
and fructose 6-phosphate after glucose loads (9).

In our study, both baseline and 1-y changes of plasma lactate
concentrations were strongly associated with T2D risk. Previous
studies have shown that fasting plasma lactate concentrations
are associated with surrogates of insulin resistance and T2D
risk (11, 12). Although pancreatic β-cell lines have shown
alterations in the glycolytic pathway and TCA metabolism (31),
it is unlikely that circulating lactate or pyruvate may have a
direct effect in insulin secretion given that the lactate/pyruvate
transporter monocarboxylate transporter 1 (MCT1) is specifically
disallowed in β-cells (32). However, fasting plasma lactate has
been reported as one of the circulating metabolites involved
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TABLE 3 Baseline and 1-y changes in HOMA-IR index (95% CIs) by quartiles of baseline
glycolysis/gluconeogenesis and TCA cycle metabolites in the PREDIMED trial, 2003–20101

Baseline HOMA-IR 1-y change of HOMA-IR

Adjusted mean difference
(95% CI) P-trend

Adjusted mean difference
(95% CI) P-trend

Hexose monophosphate
Quartile 1 0 (ref.) 0.431 0 (ref.) 0.575
Quartile 2 − 0.12 (−0.52, 0.28) − 0.40 (−0.91, 0.12)
Quartile 3 − 0.41 (−0.82, 0.01) − 0.26 (−0.80, 0.28)
Quartile 4 0.10 (−0.30, 0.49) − 0.16 (−0.68, 0.37)

Pyruvate
Quartile 1 0 (ref.) <0.001 0 (ref.) 0.502
Quartile 2 0.12 (−0.35, 0.58) 0.09 (−0.52, 0.69)
Quartile 3 0.37 (−0.09, 0.83) 0.27 (−0.32, 0.87)
Quartile 4 0.61 (0.15, 1.07) 0.36 (−0.25, 0.97)

Lactate
Quartile 1 0 (ref.) <0.001 0 (ref.) 0.015
Quartile 2 0.16 (−0.23, 0.56) 0.55 (0.02, 1.09)
Quartile 3 0.94 (0.55, 1.34) 0.68 (0.14, 1.22)
Quartile 4 1.03 (0.62, 1.43) 0.70 (0.17, 1.24)

Alanine
Quartile 1 0 (ref.) 0.003 0 (ref.) 0.027
Quartile 2 0.24 (−0.18, 0.66) 0.19 (−0.37, 0.75)
Quartile 3 0.61 (0.20, 1.02) 0.27 (−0.27, 0.80)
Quartile 4 0.57 (0.16, 0.98) 0.69 (0.15, 1.23)

Glycerol 3-phosphate
Quartile 1 0 (ref.) 0.075 0 (ref.) 0.075
Quartile 2 0.31 (−0.10, 0.72) 0.49 (−0.05, 1.04)
Quartile 3 0.11 (−0.29, 0.52) 0.74 (0.21, 1.28)
Quartile 4 0.27 (−0.14, 0.67) 0.58 (0.03, 1.12)

1Models adjusted for age (years), sex (male, female), intervention group (MedDiet + extra-virgin olive oil,
MedDiet + nuts), BMI (kg/m2), smoking (never, current, former), leisure-time physical activity (metabolic equivalent
tasks in minutes per day), dyslipidemia, hypertension, and baseline fasting glucose. Multivariable linear regression
models were used. TCA, tricarboxylic acid.

in insulin resistance and metabolic syndrome phenotypes (6).
Increased plasma lactate concentrations have also been reported
after the standard 75-g OGTT and hyperinsulinemic-euglycemic
clamps, showing differential postchallenge lactatemia in insulin-
resistant compared with insulin-sensitive subjects (8, 9, 33–35).
Moreover, the increased insulin sensitivity observed after weight
loss programs has also been accompanied by reductions in plasma
lactate concentrations (36). There is a well-known link between
circulating lactate and glucose homeostasis because lactate is
a precursor of hepatic gluconeogenesis, potentially enhancing
the endogenous glucose production. It has also been shown
that plasma lactate transported through MCT1 in the adipose
tissue (37) may interfere with insulin action in skeletal muscle
(38) and mediate inhibition of lipolysis through the activation
of hydroxycarboxylic acid receptor 1 (HCAR1/GPR81) in
adipocytes (39). The importance of plasma lactate in metabolism
has been reinforced after the observation that this metabolite is
the major carbon source to mitochondrial TCA in most of the
peripheral tissues (40, 41).

We found that both baseline selected TCA cycle–related
metabolites and their 1-y changes were associated with higher
T2D risk. Impaired TCA flux in insulin-resistant human skeletal
muscle has been suggested as one of the characteristics of the
diabetic phenotype (42, 43). Mitochondrial aconitase converts
citrate to isocitrate via aconitate, which is a highly sensitive

enzyme biomarker of age-related oxidative damage, a process
widely linked to hyperglycemia (44). Interestingly, the TCA cycle
metabolites isocitrate, aconitate, and malate have been reported
to be involved in the metabolomic signature of human aging
(45). Both malate and isocitrate are involved in the pyruvate–
citrate cycle through malic enzyme oxidizing malate to pyruvate
or through the cytosolic isocitrate dehydrogenase converting
isocitrate to α-ketoglutarate, and such reactions participate in
NAD(P)H production which is critical in the cellular antioxidant
defense system. In our study, we found that 1-y changes of
isocitrate and malate were only associated with a higher risk of
T2D in the control group but not in the MedDiet intervention
groups. This finding suggests that the MedDiet could counteract
the detrimental effects associated with an increase in these
metabolites. In fact, the MedDiet is an antioxidant-rich diet
that may prevent cellular aging through a reduced intracellular
oxidative stress (46).

Gluconeogenesis from amino acids (mainly via the glucose–
alanine cycle) contributes ≤40% of the non-glycogen-derived
hepatic glucose production (47–49). Alanine showed the
strongest association with HOMA-IR index among 285 candidate
metabolites in prepubertal children (50). Alanine is directly
connected to pyruvate through a reaction of amino transference
catalyzed by alanine aminotransferase (pyruvate is the 2-oxoacid
of alanine) and circulating alanine has been proposed as an
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TABLE 4 Incident T2D by 1-y changes in glycolysis/gluconeogenesis and TCA cycle metabolites stratified by intervention group in the PREDIMED trial,
2003–20101

Control group Mediterranean diet groups (2 groups)

n T2D cases
Adjusted HR per 1-SD
increment2 (95% CI) n T2D cases

Adjusted HR per 1-SD
increment2 (95% CI) P-interaction P-interaction3

Hexose monophosphate 210 58 1.62 (1.15, 2.28) 446 99 1.47 (1.13, 1.90) 0.821 0.945
3-Phosphoglycerate 210 58 2.01 (1.39, 2.91) 445 99 1.44 (1.03, 2.00) 0.876 0.945
Lactate 210 58 2.18 (1.31, 3.63) 446 99 1.63 (1.22, 2.17) 0.899 0.945
Citrate 210 58 1.53 (1.11, 2.11) 446 99 1.14 (0.90, 1.45) 0.118 0.314
Aconitate 210 58 2.14 (1.45, 3.17) 446 99 1.54 (1.15, 2.06) 0.945 0.945
Isocitrate 210 58 2.96 (1.87, 4.68) 446 99 1.13 (0.89, 1.44) 0.025 0.169
Fumarate 209 58 1.33 (0.94, 1.88) 446 99 1.35 (1.05, 1.73) 0.429 0.857
Malate 210 58 1.51 (1.06, 2.17) 446 99 1.03 (0.79, 1.33) 0.042 0.169
Metabolite score4 210 58 3.57 (1.54, 4.27) 446 99 1.10 (0.84, 1.44) 0.071

1Models adjusted for baseline metabolites (or metabolite score), age (years), sex (male, female), intervention group (MedDiet + extra-virgin olive oil,
MedDiet + nuts), BMI (kg/m2), smoking (never, current, former), leisure-time physical activity (metabolic equivalent tasks in minutes per day),
dyslipidemia, hypertension, and baseline fasting glucose (mean + quadratic term of centered mean) and stratified by recruitment center. TCA, tricarboxylic
acid; T2D, type 2 diabetes.

2An inverse normal transformation was applied to raw values.
3False discovery rate–corrected P values.
4Weighted sum of all metabolites (using regression coefficients as weights after applying the leave-one-out cross-validation approach). Weighted

proportional hazards Cox regression models were used.

indicator of pyruvate (the 2-oxoacid of alanine) production
(51). As it is well known, pyruvate is the precursor of lactate
through the lactate dehydrogenase reaction. Malate can also be
derived from pyruvate through the anaplerotic reaction canalized
via oxalacetate through the pyruvate–malate shuttle. One study
showed synchronous increments of circulating lactate, pyruvate,
alanine, and malate after glucose loads (10). Our results did not
show an association between baseline plasma malate and T2D
risk but we found an association between 1-y increase of malate
and T2D risk in the control group.

Glycerol-3-phosphate, involved in the gluconeogenesis from
glycerol, is part of the glycerol-3-phosphate shuttle and a critical
intermediate in the synthesis of glycerolipids. The importance of
glycerol-3-phosphate in glucose homeostasis is proposed given
the observation that overexpression of the glycerol-3 phosphate
acyltransferase 1 enzyme converting glycerol-3-phosphate to
lysophosphatidic acid causes hepatic insulin resistance (52).
In addition, inhibition of glycerol-3-phosphate dehydrogenase
by metformin may reduce gluconeogenesis from glycerol and
disrupt the cytosolic NAD(H):NAD+ ratio, blocking the use of
lactate as a gluconeogenic precursor (53).

Several strengths and limitations of the present study deserve
comment. First, we used an efficient case-cohort design nested
in a large long-term intervention trial to study a hard clinical
endpoint and its association with multiple plasma metabolites
quantified by a validated LC–tandem MS platform. Second,
the main novelty and uniqueness of the present study is the
use of repeated measurements of metabolites after 1 y and
the possibility to appraise the effect modification by a well-
defined dietary intervention. Third, this is a longitudinal analysis
with a relatively long follow-up, a well-characterized population,
and we used blinded assessment of incident T2D cases by a
clinical adjudication committee. Although the analyses were
adjusted for several potential confounders, the possibility of
residual or unmeasured confounding cannot be discounted and

reduces our ability to draw causal conclusions. Moreover,
departures from individual random assignment in a subset
of the trial participants could affect our results related with
differences between the intervention and control groups (15,
54). However, our results were very similar after using robust
estimates of the variance to correct for potential intracluster
correlations and adjusting for propensity scores to account for
small imbalances in baseline covariables. We acknowledge the
limitation derived from the reduced sample size used for pyruvate
and hexose diphosphate due to missing values. In addition,
a potential technical limitation might be related to possible
spurious elevations of lactate or pyruvate (and less likely for other
metabolites) because of recent physical activity, the procedure
for blood drawing, or preanalytical treatments (51). However,
there is no reason to think that these procedures may have
differentially affected participants who years later developed
T2D and when we repeated the analyses with a metabolite
score without pyruvate and hexose diphosphate, the association
between the metabolite score and T2D became even stronger. Our
findings may not be generalizable to other populations and T2D
was a defined secondary endpoint and not the primary endpoint
of the PREDIMED trial.

Our results provide a deeper understanding of specific
metabolic pathways related to circulating glycolysis/
gluconeogenesis and TCA cycle metabolites in relation with
insulin resistance and T2D, and how a MedDiet might modulate
the association of these metabolites with T2D risk. In addition,
it may shed light into the biological interconnections between
Mediterranean dietary interventions, changes in metabolomics
profiles, and the risk of T2D. Altogether, it may facilitate the
development of preventive and early diagnostic strategies for
curbing the T2D epidemic and the adverse consequences of
diabetes.

In conclusion, we have identified a panel of glycolysis/
gluconeogenesis- and TCA cycle–related metabolites that was
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significantly associated with T2D risk in a Mediterranean
population at high CVD risk
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