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ABSTRACT
Background: Although diet response prediction for cardiometabolic
risk factors (CRFs) has been demonstrated using single genetic
variants and main-effect genetic risk scores, little investigation
has gone into the development of genome-wide diet response
scores.
Objective: We sought to leverage the multistudy setup of the
Women’s Health Initiative cohort to generate and test genetic scores
for the response of 6 CRFs (BMI, systolic blood pressure, LDL
cholesterol, HDL cholesterol, triglycerides, and fasting glucose) to
dietary fat.
Methods: A genome-wide interaction study was undertaken for
each CRF in women (n ∼ 9000) not participating in the dietary
modification (DM) trial, which focused on the reduction of dietary
fat. Genetic scores based on these analyses were developed using a
pruning-and-thresholding approach and tested for the prediction of
1-y CRF changes as well as long-term chronic disease development
in DM trial participants (n ∼ 5000).
Results: Only 1 of these genetic scores, for LDL cholesterol,
predicted changes in the associated CRF. This 1760-variant score
explained 3.7% (95% CI: 0.09, 11.9) of the variance in 1-
y LDL cholesterol changes in the intervention arm but was
unassociated with changes in the control arm. In contrast, a
main-effect genetic risk score for LDL cholesterol was not
useful for predicting dietary fat response. Further investigation
of this score with respect to downstream disease outcomes re-
vealed suggestive differential associations across DM trial arms,
especially with respect to coronary heart disease and stroke
subtypes.
Conclusions: These results lay the foundation for the combination
of many genome-wide gene-diet interactions for diet response
prediction while highlighting the need for further research and larger
samples in order to achieve robust biomarkers for use in personalized
nutrition. Am J Clin Nutr 2020;111:893–902.
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Introduction
Nutrigenetics approaches, in which genetic information is used

to predict response to dietary inputs, are central to the emerging
promise of personalized nutrition for cardiometabolic risk reduc-
tion. Interindividual differences in food preferences, metabolism,
excretion, etc., affect our responses to diet, in a similar manner
to the well-studied field of pharmacogenomics (1). Ideally,
genotype-based nutrigenetic investigations would be conducted
in large-scale dietary interventions. Two notable examples are the
Prevención con Dieta Mediterránea (PREDIMED) and Prevent-
ing Overweight Using Novel Dietary Strategies (POUNDS Lost)
trials, with findings including the interaction of a TCF7L2 variant
with a Mediterranean diet pattern for glycemic traits (2) and
the interaction of a PCSK9 variant with dietary carbohydrate for
insulin resistance (3). However, such intervention-based studies
can examine only a single dietary change (whether food, nutrient,
or pattern) at a time, and are often limited to lower sample
sizes (4).

To allow for more flexibility and greater sample sizes, gene-
diet interactions (GDIs) are more commonly investigated in
observational datasets. There is a rich literature of GDI discovery
in the cardiometabolic realm. Typically, these focus on candidate
genes/variants and cardiometabolic risk factors (CRFs) (5, 6),
but some have looked at clinical outcomes [e.g., myocardial
infarction (7)]. Other approaches use main-effect genetic risk
scores, such as those for obesity interacting with sugar-sweetened
beverage intake to influence anthropometric traits (8, 9).

Characterization of individuals based on single or small groups
of single nucleotide polymorphisms (SNPs) likely neglects
important signals elsewhere in the genome, especially for highly
polygenic cardiometabolic traits. Thus, for effective personalized
nutrition approaches to be realized, it is necessary to integrate
many signals across the genome. A few investigations have
explored GDIs genome-wide, such as for dairy and BMI
(10) and for various dietary components and colorectal cancer
(11). However, genome-wide interaction studies (GWIS) can
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be problematic due to the lower statistical power inherent in
gene-environment interaction analyses (12). Furthermore, there
is potential for confounding and reverse causation (i.e., car-
diometabolic risk impacting dietary behavior) in statistical
interactions from observational data. Given these limitations,
it is not yet known whether collections of GDIs, discovered
in observational datasets, can predict the effect of a dietary
intervention on CRFs.

In order to provide proof-of-concept for the use of observa-
tional GDIs in developing comprehensive diet response genetic
scores, we sought to develop a genome-wide, GDI-based dietary
fat response score (FRS) for each of a series of CRFs. We
performed GWIS for 6 CRFs and used these intermediate results
to derive FRSs for each CRF. We tested the performance of these
scores in the fat reduction-focused Women’s Health Initiative
(WHI) Dietary Modification trial, finding that an FRS for LDL
cholesterol predicts 1-y LDL cholesterol changes and associates
with incident coronary heart disease (CHD) and stroke subtypes
over approximately 22 y of follow-up.
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Methods

WHI dataset

The WHI study consists of a series of substudies: 3 clinical
trials (related to cancer, cardiovascular disease, and osteoporosis)
and an observational study (13). Over 160,000 participants were
enrolled between 1993 and 1998, with the ability to enroll in
≤3 of the clinical trials simultaneously. For the purposes of this
analysis, participants were categorized based only on whether
or not they were enrolled in the dietary modification (DM)
trial, which randomly assigned almost 50,000 women (not all
of whom were genotyped) to a low-fat diet or a control diet
with no recommended dietary changes, with primary outcomes
being incidence of breast and colorectal cancers and heart disease
(14). The study of these participants conformed to the ethical
guidelines outlined in the Declaration of Helsinki, and this
research was approved by the Tufts Health Sciences Institutional
Review Board(protocol 12592).

Participants were comprehensively screened at baseline,
including physical measurements, blood sample collection, and
questionnaire administration, and only a subset of participants
provided blood samples or returned questionnaires during later
visits. The FFQ was designed specifically for the WHI study,
emphasizing specific foods and preparation methods to maximize
its sensitivity to changes in fat intake (15).

Phenotype data were accessed from the database of Genotypes
and Phenotypes (dbGaP; accession: phs000746.v2.p3). Values
shown in Table 1 only pertain to women whose genotypes were
measured in 1 of a series of follow-up studies. For GDI analyses,
systolic blood pressure (SBP), LDL cholesterol, and fasting
glucose (FG) were adjusted for medication use: LDL cholesterol
and FG values were divided by 0.75 for those on lipid-lowering
and antidiabetic medication, respectively, and SBP values were
increased by 15 mmHg for those on antihypertensive medication.
This type of adjustment for medication use has precedent in gene-
environment interaction analyses (16). CRFs were Winsorized at
5 SDs from the mean and those other than LDL cholesterol (BMI,
SBP, HDL cholesterol, triglycerides (TG), and FG) were log-
transformed prior to analysis. Longitudinal risk factor changes
were calculated in DM trial participants as the difference between
baseline and year 1. Adjudicated time-to-event data for chronic
disease outcomes (CHD, myocardial infarction, ischemic stroke,
hemorrhagic stroke, and noncardiovascular disease (CVD) death)
were collected, whereas diabetes incidence was defined as the
self-report of any: diabetes pills, insulin treatment, or general
treatment of diabetes. Follow-up data was available for ∼22 y
following enrollment. Phenotype data processing was performed
using R version 3.4.3 [R Foundation] (17) and Python version
3.6.0 [Python Software Foundation].

Genotype data and preprocessing

Imputed genotype data were retrieved from dbGaP (accession:
phs000746.v2.p3) as a harmonized set of imputation outputs
from a series of genotyping studies involving WHI participants.
Prior to imputation, study-specific quality control steps had
been undertaken on directly genotyped SNPs, with filters based
on sample and call rate, Hardy–Weinberg equilibrium, and
minor allele frequency (MAF). Phasing had been performed
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TABLE 1 Baseline characteristics of European-ancestry participants in the Women’s Health Initiative study with
available genetic data (n = 14,860 in total)

DM trial Non-DM trial P value

Sample size 2165 (intervention); 3281 (control) 9414
Age 66 (60–70) 68 (64–72) <0.001
Current smoking 366 (7%) 888 (9%) <0.001
Lipid-lowering medication 583 (11%) 1277 (14%) <0.001
Hypertension medication 23,058 (38%) 3416 (36%) 0.07
Diabetes medication 269 (5%) 498 (5%) 0.37
BMI, kg/m–2 28.9 (25.3–33.1) 27.2 (24.0–31.2) <0.001
SBP, mm Hg 128 (117–140) 144 (133–156) <0.001
LDL cholesterol, mg/dL 151 (128–175) 161 (135–192) <0.001
HDL cholesterol, mg/dL 49.8 (42–58) 51 (44–60) <0.001
TG, mg/dL 138 (100–195) 128 (92–179.6) < 0.001
FG, mg/dL 97 (90–108) 97.5 (90–113) 0.01

Continuous values shown as: median (IQR). P values are from Wilcoxon rank-sum test (continuous values) or
chi-square test (discrete values). DM: dietary modification trial; FG, fasting glucose; Non-DM: all women not
participating in the DM trial (enrolled in ≥1 of: Hormone Therapy Trial, Calcium and Vitamin D Trial, or
Observational Study); SBP, systolic blood pressure; TG, triglycerides.

for autosomes using BEAGLE, followed by imputation using
minimac [MaCH (Markov Chain Haplotyping algorithm) for
the SHARe (SNP Health Association Resource)study subset].
After download from dbGaP, variants were converted from
dose format using dose2plink (http://genepi.qimr.edu.au/staff/s
arahMe/dose2plink.html), filtered for imputation r2 >0.3 and
MAF >0.001, and annotated with reference SNP cluster IDs
(rsIDs), loci, and allelic information using the 1000 Genomes
Phase 3 download from dbSNP (download date: 13 April, 2018).
Only variants passing the imputation quality threshold in all
genotyping substudies were included in the final dosage dataset.
Postimputation genotype data processing and score calculation
were performed using PLINK 2.0, and clumping was performed
using PLINK 1.9 (18).

GWIS

A GWIS was performed for each of the 6 CRFs. The genome-
wide scan used an additive genotype model, adjusted for fixed
effects including dietary fat (binary: percentage of kcals above
or below the median), total kcals per day, age, 5 ancestry
principal components, and genotyping substudy. Genotyping was
performed in a series of ancillary studies in WHI, including Hip
Fracture, GARNET (Genetics and Randomized Trials Network),
WHIMS+ (Women’s Health Initiative Memory Study), GECCO
(Genetics and Epidemiology of Colorectal Cancer Consortium;
initial or CytoSNP), and AS264/MOPMAP (Genetic Modi-
fication of Particulate Matter-Mediated Arrhythmogenesis in
Populations). (Many participants were also genotyped as part of
the SHARe effort, but those women were of African-American
and Hispanic ancestry and thus were not included in the GWIS
portion of this study.) The primary estimand of interest was the
interaction term between dietary fat and minor allele count at
the SNP of interest. Interaction analyses were carried out using
PLINK 2.0 [www.cog-genomics.org/plink/2.0/] (18). Variants of
interest were annotated to genes using Annovar (19).

Gene-environment interaction power calculations for single
SNPs were performed using the Quanto tool (20). The following
assumptions were made: additive model, variance explained by
genotype alone = 0.5%, and binary environment with 50%

prevalence and explaining 10% of the variance. (Note: there is
no effect of MAF in this case given that variances explained are
directly specified.)

Genetic responder score construction and evaluation

Given the lower power of gene-environment interaction
detection, a subset of variants were prioritized for score
derivation having nominal (P <0.05) marginal effects in large-
scale meta-analyses. Summary statistics were retrieved from:
Genetic Investigation of Anthropometric Traits (GIANT) for
BMI (21); International Consortium for Blood Pressure for
SBP (22); Global Lipid Genetics Consortium (GLGC) for LDL
cholesterol, HDL cholesterol, and TG (23); and Meta-Analyses
of Glucose- and Insulin-Related Traits Consortium (MAGIC)
for fasting glucose (GLU) (24). After this main-effect filter,
each FRS was constructed using summary statistics for the diet-
SNP interaction terms from the associated GWIS. Interaction
summary statistics were used as input to a pruning-and-
thresholding (P&T) procedure (using the “—clump” function in
PLINK 1.9), with a seed threshold of P = 0.05 and a linkage
disequilibrium (LD) threshold of r2 = 0.5. The LD reference
for the procedure was calculated from hard-called genotypes
of the white DM trial participants. Genetic FRSs for each
individual were then calculated as the weighted sum of allelic
dosages for variants selected by the P&T procedure, with weights
corresponding to the GWIS interaction term estimates. This type
of diet interaction-based genetic score development has been
described previously, for example in a Korean cohort with respect
to body fat changes (25). A genetic risk score for LDL cholesterol
(main-effect) was created using the GLGC LDL cholesterol
meta-analysis summary statistics and the same P&T method and
parameters as were used for the interaction analyses, resulting
in a 26,467-SNP score. As an alternative to the P&T procedure,
the LDpred method (which uses all variants without any main-
effect filter) was used to calculate FRS weights for each CRF,
incorporating a minor change to the code to allow for the slight
genomic deflation observed for TG and GLU (26). LDpred was
run using an LD radius of 500 variants, HapMap 3 variants
only (962,057 variants in total), and causal variant fractions of
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FIGURE 1 Study workflow. First, a series of GWIS were conducted with dietary fat as the exposure for each of 6 cardiometabolic risk factors. Next,
dietary fat response scores were developed using GWIS summary statistics and tested for the prediction of 1-y cardiometabolic risk factor changes in the
dietary modification trial intervention (with sensitivity analyses including the control group). Finally, the LDL cholesterol score was tested for the prediction
of differential effects on chronic disease development in the intervention and control groups over approximately 22 y of follow-up. CRF, cardiometabolic risk
factor; GWAS, genome-wide association study; GWIS, genome-wide interaction study; SNP, single nucleotide polymorphism; HT, Hormone Therapy; CaD,
calcium and vitamin D.

0.001, 0.01, and 0.1, and the resulting weights were then used to
calculate dosage-based scores as done with the P&T method.

FRSs were used to test for discrimination of changes in CRFs
over the first year of the DM trial. Risk factor changes were
assessed using linear models in participants in the intervention
arm, with and without adjustment for baseline CRF levels. The
LDL cholesterol-specific FRS was then investigated further in
a series of sensitivity analyses. First, P values were calculated
for the interaction of the genetic score with trial arm (control
compared with dietary modification). Second, principal compo-
nents analysis was performed in DM intervention participants
using 4 baseline metabolic biomarkers (total cholesterol, HDL
cholesterol, TG, and FG) included in a prior clustering analysis
for use in personalized nutrition stratification (27). Equivalent
linear models to the original FRS assessment models were
fit, with additional adjustment for the 4 resulting principal
components.

The LDL cholesterol-fat response score (LDL-FRS) was
further tested for the prediction of chronic disease development
during follow-up across DM trial strata. Time-to-event for
each CHD, myocardial infarction, ischemic stroke, hemorrhagic
stroke, diabetes, and non-CVD death were used to fit age-adjusted
Cox proportional hazards models, including a random effect term
for genotyping substudy (cluster() term in the coxph function
call). This frailty/random effects model has been recommended
for optimizing power in multicenter time-to-event models (28).
Estimated log-HRs were extracted from regressions conducted
in the following strata: 1) DM trial intervention arm, 2) DM trial
control arm, 3) DM trial intervention arm filtered for participants
with 1-y fat reduction based on FFQ, and 4) DM trial control
arm filtered for participants with 1-y fat increase based on
FFQ.

Results

Dietary FRS development

The study workflow is outlined in Figure 1. A series of
GWIS were undertaken in cross-sectional data from the WHI.
These GWIS incorporated only women who did not participate
in the DM trial, using imputed genotypes along with baseline
self-reported dietary intakes (from FFQs) and fasting blood
biomarkers. Baseline characteristics of these women, along with
those participating in the DM trial, are shown in Table 1.
Although there were differences across groups in almost all
characteristics, they were modest in size.

Preliminary power calculations were undertaken based on
parameter assumptions including a modest SNP main effect
(0.5%) under an additive model and a binary environment with
50% prevalence explaining 10% of the outcome phenotypic
variance. The results showed that, at the sample sizes avail-
able for European ancestry non-DM participants (7050–9412
individuals for each CRF), this analysis was powered to detect
only moderately large interaction effects (interaction variance
explained greater than ∼0.5%) at genome-wide significance
(Supplementary Table 1).

Dietary FRSs were generated for each CRF using results
from the corresponding GWIS analysis (see Methods). Q–Q
plots of the GWIS results showed that genomic inflation was
fairly well-controlled (Supplementary Figure 1). For each CRF,
the associated summary statistics (corresponding to the fat-
genotype interaction term estimates) were filtered to include
only those with nominal main-effect associations in large-scale
published genome-wide association study (GWAS). This filter
was informed by the power analysis above and chosen as a
compromise between discovery and statistical power (alternative
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results using either a more stringent threshold or no filtering
are shown in Supplementary Table 2). A P&T method was
used to generate 6 FRS from these individual sets of summary
statistics along with genotypes from the WHI DM participants
as an LD reference. Using parameters of seed P value = 0.05
and LD r2 <0.5, 6 sets of score weights were generated, with
relevant SNP set sizes ranging from 1536 (SBP) to 6042 (BMI).
Scores were then calculated as the weighted sum of allele dosages
across SNPs, normalized by the number of nonmissing SNPs per
individual.

Dietary FRS assessment

As the scores were developed to predict a positive interaction
with dietary fat intake, the expected direction of the FRS effect
on risk factors in the present fat-reduction trial would be negative.
Of the FRSs examined, only the LDL-FRS was predictive at P
<0.05 of the associated CRF change in DM trial participants in
the fat-reduction arm (passing a Bonferroni correction for the 6
CRFs tested in baseline-adjusted sensitivity models; results for
all scores are shown in Table 2). For this score, the standardized
effect size was −0.19 (corresponding to a 5.44 mg/dL greater
decrease in LDL cholesterol per score SD; P = 0.020). We note
that the sample size of European-ancestry DM trial participants
with follow-up measurements was much smaller for biochemical
variables (n ∼150) compared with BMI and SBP (n ∼2000).
Using the score developed in European-ancestry individuals,
score performance was then tested in a combined-ancestry
group including black and Hispanic individuals, which almost
doubled the sample size (Supplementary Table 3). Although
some traits showed strong relations (e.g., SBP), the signs of
many were in a counterintuitive direction, including a flip
in sign for the previously strong LDL cholesterol relation,
suggesting that these results may reflect the known difficulties in
conducting transancestry polygenic prediction (due to differences
in LD among other factors) rather than the intended biological
differences. This observation was reinforced by the lack of
association of the score with CRF changes in either blacks or
Hispanics alone. Using the LDpred algorithm, which considers
the full genome-wide set of SNPs, no predictive FRS effects were
detected (Supplementary Table 4), possibly reflecting a lack of
power to overcome the multiple testing burden without a nominal
main-effect filter.

Based on its observed association in European-ancestry
participants, the LDL-FRS was investigated further. Linear
models showed that the LDL-FRS accounted for 3.7% (95%
CI: 0.09, 11.9) of the variance in 1-y LDL cholesterol changes
in the DM intervention arm. In baseline-adjusted models, this
figure rose slightly to 4.3%, based on the change in R2compared
with a baseline-only model. Further adjustment for 4 principal
components of baseline metabolic markers (see Methods) did not
materially affect this estimate (4.5%). For comparison, baseline
LDL cholesterol alone accounted for 21.7% of this variance,
although we note that this estimate is likely biased upward due
to regression to the mean effects (arising from measurement
error and stochastic biological fluctuations) (29). Additional
baseline-adjusted models confirmed an interaction between the
DM trial arm and the LDL-FRS (P = 0.002), supporting the
specificity of this score for the fat-reduction arm, though the
interaction directly with self-reported change in dietary fat was

weaker (P = 0.11). The LDL-FRS also showed specificity for
LDL cholesterol in that it did not predict changes in any other
CRF (Supplementary Table 5). The 1760-component SNPs
were annotated using Annovar (19), revealing a predominance
of intergenic and intronic variants and a set of genes with high
numbers of independent SNPs contributing to the score (Figure
2A–D). Top genes by number of contributing SNPs included
CSMD1, PTPRD, and RGS12. Annotated genes and SNP weights
for the LDL-FRS are available in Supplementary Table 6.

Differences in mean LDL cholesterol changes during the DM
trial across genetic score strata are shown in Figure 2E, F. As
suggested by the regression results, those in the control arm
trended towards less substantial LDL cholesterol reductions in
higher LDL-FRS strata, whereas those in the fat-reduction arm
showed the opposite trend. Furthermore, isolation of individuals
at the highest extreme of the score (top 10%) revealed an LDL
cholesterol reduction of almost double that of the rest of the
DM intervention group (−36.4 versus −20.3 mg/dL; 95% CI
for the difference: [−1.0, 33.2]). For comparison to the FRS,
a main-effect genetic risk score (GRS) for LDL cholesterol
was developed using summary statistics from the GLGC meta-
analysis (23) and an identical P&T procedure to that used for the
FRS. As expected, this score was strongly predictive of baseline
LDL cholesterol concentrations (P = 1.45 x 10-22 ). However,
unlike the FRS, the GRS did not predict LDL cholesterol changes
in the DM intervention group (P = 0.19; stratum-specific mean
changes in Figure 2F).

LDL-FRS association with chronic disease outcomes

Next, the LDL-FRS was tested for relations with incident dis-
ease outcomes over ∼22 y of follow-up using Cox proportional
hazards models (Figure 3). The mean time-to-event for incident
CHD cases was 8.7 y (SD = 5.2), with similar values for other
outcomes. In addition to intervention versus control arm, another
set of “per protocol-like” strata was produced by additionally
filtering for FFQ-based self-reported fat reduction (in the
intervention group) or fat increase (in the control group). CHD
qualitatively showed the expected interaction, i.e., a stronger
inverse association between LDL-FRS and disease risk in the fat
reduction group. Ischemic stroke showed a similar pattern, with
a risk reduction only in the fat reduction group (P = 0.029). In
contrast, hemorrhagic stroke, although having a low number of
events (44 in total), showed a positive association only in the fat
reduction group (P = 0.011). Results for diabetes qualitatively
mirrored those for CHD and ischemic stroke, whereas those for
non-CVD death did not vary across groups. These cross-arm
differences were generally strengthened when comparing the per
protocol-like strata, with a much stronger effect for CHD in the
confirmed fat reduction stratum (P = 0.005). In DM trial arm
interaction models (score × arm), none of the outcomes reached
nominal statistical significance (P <0.05).

Discussion
Diet response scores have shown some success in predicting

the response of CRFs to nutritional interventions, but they are
often based solely on main effects or single GDI SNPs. Here,
we developed what to our knowledge is the first example of
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TABLE 2 Responder score effects on 1-y CRF changes in DM trial participants

Unadjusted Baseline-adjusted1

Risk factor NGWIS
2 # SNPs in score NDM

3 Std. effect4 P value Std. effect4 P value

BMI 9358 6042 1988 0.03 0.189 0.03 0.218
SBP 9412 1536 2004 0.03 0.125 0.04 0.041
LDL-C 7050 1760 145 − 0.19 0.020 − 0.21 0.005
HDL-C 7157 1731 150 − 0.08 0.320 − 0.08 0.351
TG 7158 1774 150 − 0.15 0.055 − 0.14 0.053
FG 7200 1924 281 0.01 0.853 0.02 0.689

1Baseline-adjusted models are adjusted for the baseline value of the CRF being tested.
2NGWIS = sample size available for the associated GWIS (non-DM participants).
3NDM = sample size available for DM participants with 1-y follow-up measurements for the CRF in question.
4Standard effect size represents the regression coefficient estimate in terms of CRF SD per responder score SD.
CRF, cardiometabolic risk factor; DM, dietary modification trial; FG, fasting glucose; GWIS, genome-wide interaction study; SBP, systolic blood

pressure; SNP, single nucleotide polymorphism; TG, triglycerides.

a diet response score based on a hypothesis-free genome scan
for each of 6 risk factors, and showed preliminary evidence for
the viability of an LDL cholesterol fat response score. The set
of SNPs used for each score were limited to those showing
nominal main effects in large-scale GWAS as a compromise
between discovery and utilization of prior information, which
was supported by the weaker results in sensitivity models
incorporating either stronger (suggestive main-effect) or weaker
(all SNPs, LDpred) variant filters (Supplementary Table 2).

Though FRS for 6 CRFs were developed and tested, only that
for LDL cholesterol showed nominal significance in predicting
1-y changes in the corresponding CRF. Multiple factors could
explain this lack of predictive performance, including residual
confounding of the observed interactions and misclassification
of the dietary exposure (despite the use of FFQs optimized for
detection of dietary fat). Additionally, power calculations suggest
that a cohort of this size may not be powered to detect gene-
environment interactions with small effects.

CSMD1, PTPRD, and RGS12 stood out as genes containing
the highest number of SNPs in the LDL-FRS (11, 9, and 9,
respectively, after LD-pruning for r2 <0.5). CSMD1 variants
are notably associated with LDL cholesterol response to statin
treatment (30) as well as SBP response to a high-salt diet
(31). CSMD1 has also shown epigenetic associations with LDL
cholesterol (32) as well as response to modification of dietary
fat composition (33). PTPRD variants modulate the response of
type 2 diabetes patients to pioglitazone therapy (34) and show
suggestive associations with eating behaviors (caloric intake at
dinner) (35). RGS12 has been linked to LDL cholesterol in GWAS
(36). Altogether, these genes have literature evidence for relations
to dietary intake, response to cardiometabolic therapies, and LDL
cholesterol, but have not been shown to directly modify the
LDL cholesterol response to dietary fat proportions. We note that
prioritizing main-effect SNPs for inclusion creates a bias towards
identifying LDL cholesterol-related variants in the LDL-FRS.

A reasonable body of literature exists establishing GDIs
for both dietary fat on CRFs (37, 38) and general dietary
exposures on LDL cholesterol (39). Multiple studies have looked
specifically at genetic variants modulating the LDL cholesterol
response to dietary fat. For example, a caloric restriction inter-
vention in type 2 diabetics was more effective in reducing LDL
cholesterol in ApoE4 carriers (−15.6% versus −0.7%) (40). In

the POUNDS Lost trial, carriers of specific alleles at APOA5and
CETP variants saw 7.5 and 8.9 mg/dL greater LDL cholesterol
decreases during a low-fat dietary intervention (41, 42). Our
observed effect size of a 5.4 mg/dL decrease in LDL cholesterol
is of a similar magnitude and emerged despite the multifactorial
nature of the WHI dietary intervention. The observed variance
explained of 3.7% for the LDL-FRS means that the score
does not capture most of the interindividual variability in LDL
cholesterol response to the WHI DM trial intervention. This
explanatory power was modestly strengthened after adjustment
for baseline LDL cholesterol as well as principal components
reflecting baseline metabolic biomarker patterns. Based on prior
observations of an inflection point in the impact of various
genetic risk scores near the 90th percentile (43), we additionally
evaluated the impact of LDL-FRS in the top 10%, finding almost
double the LDL cholesterol reduction in these DM intervention
participants.

The potential clinical utility of these findings can be evaluated
in the context of a framework recently put forth for the scientific
assessment of GDI (44). This genetic score was developed using
a rigorous study design starting in an observational cohort and
validating in a randomized trial, and relies on an “intermediate”
interaction in which many nondietary factors are also expected
to influence LDL cholesterol concentrations. Given that the
biological plausibility is difficult to determine for a polygenic
score and that the scientific validity of this FRS × diet interaction
would be classified as “possible” to “probable,” additional
validation of this or similar scores would be needed to render it
clinically actionable.

Main-effect GRS have been used as genetic variables in
order to improve statistical power to detect gene-environment
interactions (45). Genetic risk is then modeled as a predisposition
that is only triggered in certain environments (e.g., dietary
behaviors). Here, we observed little association of a main-
effect GRS for LDL cholesterol with greater LDL cholesterol
reductions in the DM trial (P = 0.19). This trend runs counter to
a prior observation of greater lifestyle intervention effectiveness
for LDL cholesterol reduction in those with low genetic risk
of hyperlipidemia (46), possibly due to differences between
the DM trial and the personalized diet and lifestyle changes
recommended in the intervention in question. Regardless, the
meaningful increase in predictive power of the LDL-FRS
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FIGURE 2 LDL-FRS characterization. A) Distribution of LDL-FRS in Women’s Health Initiative DM trial participants. B) Distribution of SNP weights
constituting the LDL-FRS (shown as the natural log-transformed absolute values of the true weights). C) SNP counts in different loci types for LDL-FRS
constituent SNPs. D) Genes are summarized by the number of annotated SNPs in the LDL-FRS (genes with ≥5 component SNPs are shown). E–F) 1-y
changes in LDL cholesterol in DM trial participants as a function of genetic scores. Mean changes in LDL cholesterol (y-axis) are shown as a function of either
LDL-FRS (E) or LDL-GRS (F) tertile (x-axis). Error bars represent SEs. DM, dietary modification trial; LDL-FRS, LDL cholesterol fat response genetic score;
LDL-GRS, LDL cholesterol main-effect genetic risk score; SNP, single nucleotide polymorphism.

compared with the main-effect GRS for LDL cholesterol
indicates the value in using interaction-based genetic scores for
personalized nutrition.

A useful diet response score should also predict downstream
changes in chronic disease risk. Suggestive interactions for
CHD, ischemic stroke, and diabetes were apparent across strata
(Figure 3A, B, D), corresponding to a decreased risk in fat
reduction participants (whose predicted LDL cholesterol drop
would be larger). Hemorrhagic stroke showed the opposite trend,
with a positive score-disease relation only in the fat reduction

group, in line with existing evidence for the detrimental effects of
low LDL cholesterol on hemorrhagic stroke risk (47). Non-CVD
death showed no major associations, which could be expected
due to the dominance of this category by cancer outcomes and
the equivocal associations of cancer with lipids (48). We note
that all disease outcome relations assessed here are subject to
the major caveat that dietary evolution and decreased adherence
likely developed over time in many subjects, diluting the utility
of the randomization and 1-y changes used for stratification in
Figure 3.
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log(HR) for hemorrhagic stroke
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C
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log(HR) for diabetes
(1052 events)

D
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log(HR) for non−CVD death
(1185 events)

E
DM Intervention
(n = 2165)

DM Control
(n = 3281)

DM Intervention & Fat Reduced
(n = 1871)

DM Control & Fat Increased
(n = 1003)

FIGURE 3 LDL-FRS prediction of chronic disease development. The x-axis shows log-HR estimates for the LDL-FRS from Cox proportional hazards
regression for A) coronary heart disease, B) ischemic stroke, C) hemorrhagic stroke, D) diabetes, and E) non-CVD death. Separate estimates are shown for
DM trial intervention arm, control arm, and the same strata filtered for FFQ-reported fat reduction or increase, respectively. Cox models are adjusted for age at
baseline and include a random effect for Women’s Health Initiative genotyping substudy. Error bars represent 95% CI estimates for the regression coefficients.
CVD, cardiovascular disease; DM, dietary modification trial; LDL-FRS, LDL cholesterol-fat response genetic score.

The present study had the advantage of developing a diet-
focused genetic score in almost 10,000 women and testing in
a dietary intervention trial using independent individuals from
the same population. However, nominal main-effect SNPs were
prioritized to improve statistical power given this moderate
sample size, an approach that may fail to identify interactions
with effect directions opposite to that of the main effect. Smaller
fractions of alternate ancestries in this population also made
the development of ancestry-specific response scores unrealistic.
Additionally, the DM trial intervention included additional
nonfat-related dietary recommendations and did not ultimately
achieve its intended 20% fat reduction, making it an imperfect
proxy for a pure fat reduction intervention. Finally, this study
only examined women, despite the fact that CRF profiles and their
genetic architectures vary across sexes (49).

In summary, we present a method for the development of diet
response scores based on genome-wide, observational GDI study
summary statistics. We provide proof-of-concept that a genetic
score focused on LDL cholesterol may be useful for predicting
changes in both CRFs and long-term disease risk during a
dietary intervention. However, not all dietary FRSs derived here

were informative, highlighting the continued need for increased
sample sizes and improved diet measures for the discovery of
sufficiently robust genetic interactions genome-wide. Our results
provide a foundation for future investigations using new datasets
and dietary variables to explore the genetic architecture of diet
response.
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