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Abstract

Predictive models have succeeded in distinguishing between individuals with Alcohol use 

Disorder (AUD) and controls. However, predictive models identifying who is prone to develop 

AUD and the biomarkers indicating a predisposition to AUD are still unclear. Our sample (n=656) 

included offspring and non-offspring of European American (EA) and African American (AA) 

ancestry from the Collaborative Study of the Genetics of Alcoholism (COGA) who were recruited 

as early as age 12 and were unaffected at first assessment and reassessed years later as AUD 

(DSM-5) (n=328) or unaffected (n=328). Machine learning analysis was performed for 220 EEG 

measures, 149 alcohol-related single nucleotide polymorphisms (SNPs) from a recent large 

Genome-wide Association Study (GWAS) of alcohol use/misuse and 2 family history (mother 

DSM-5 AUD and father DSM-5 AUD) features using supervised, Linear Support Vector Machine 

(SVM) classifier to test which features assessed before developing AUD predict those who go on 
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to develop AUD. Age, gender, and ancestry stratified analyses were performed. Results indicate 

significant and higher accuracy rates for the AA compared to the EA prediction models and a 

higher model accuracy trend among females compared to males for both ancestries. Combined 

EEG and SNP features model outperformed models based on only EEG features or only SNP 

features for both EA and AA samples. This multidimensional superiority was confirmed in a 

follow-up analysis in the AA age groups (12–15, 16–19, 20–30) and EA age group (16–19). In 

both ancestry samples, the youngest age group achieved higher accuracy score than the two other 

older age groups. Maternal AUD increased the model’s accuracy in both ancestries’ samples. 

Several discriminative EEG measures and SNPs features were identified, including lower posterior 

gamma, higher slow wave connectivity (delta, theta, alpha), higher frontal gamma ratio, higher 

beta correlation in the parietal area, and 5 SNPs: rs4780836, rs2605140, rs11690265, rs692854 

and rs13380649. Results highlight the significance of sampling uniformity followed by stratified 

(e.g., ancestry, gender, developmental period) analysis, and wider selection of features, to generate 

better prediction scores allowing a more accurate estimation of AUD development.

Introduction

Identifying who is vulnerable to develop Alcohol Use Disorder (AUD), determining 

‘sensitive periods’, and finding relevant biological markers are a major challenge. Studies 

show that rates of alcohol consumption dramatically increase during the teenage years 1 and 

genetic and environmental factors can increase the risk for transitioning to AUD 2. However, 

clear indication as to who is prone to develop AUD is still unclear. Recent studies have 

suggested that multidimensional modeling of genetic, biological, and psychosocial 

information may better reflect the underlying pathophysiology compared to one-dimensional 

measures 3, 4. Indeed, over the last decade, machine learning (ML) approaches and data 

mining processes have been successfully applied for analysis of multidimensional datasets 

including neuroimaging and genetic data to help in the context of disease diagnosis 5, 6, 

outperforming classical regression approaches 7. ML Support Vector Machine (SVM) 

classifiers have succeeded in predicting diagnosis, clinical outcomes, and classifying 

disorders such as depression 6, schizophrenia 4, 8, and AUD 9–11. Specifically, AUD 

classifiers achieved significant accuracy utilizing electrophysiological features such as EEG 

coherence and spectral power (89.3%)10, 11, EEG’s nonlinear features (91.7%) 9, family 

history (FH) of AUD and psycho-social features 3, 7, as well as genetic information 3, 12. 

However, there are no longitudinal studies that analyzed the predictive model of AUD based 

on data acquired prior to its development, thus, avoiding the confounding with effects of 

AUD. Such a model can give important information about biomarkers which can indicate the 

sensitivity to develop AUD. The current study used longitudinal multidimensional data from 

COGA (e.g., clinical, electrophysiological, SNP, FH), including individuals of European 

American (EA) and African American (AA) ancestry. COGA collects data and follows 

AUD/non-AUD individuals starting as early as age 12, enabling a unique opportunity to 

compare individual’s status before and after AUD developed.

Our central hypothesis was that a multidimensional features model will result in a better 

prediction than each of the modalities separately (EEG measures and genomic data) and that 

the addition of a FH feature will further increase the prediction score. In this paper we 
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present a supervised ML method (SVM) to classify individuals before AUD emerged into 

those who developed AUD years later and those who did not. The analysis incorporates EEG 

measures, FH information, and data on a set of SNPs derived from recent GWAS of alcohol 

consumption12, 13, alcohol dependence14, 15, and alcohol-related EEG measures15, 16, as 

features. An essential aspect of identifying a true classifier is to control for possible effects 

of confounding variables such as age17, 18, gender19, 20, and ancestry21, 22 which can lead to 

misclassification of the model 23. Age, gender and ancestry stratified analysis can lead to 

separate, more accurate models for each of the groups.17, 19, 21 Using stratification to control 

for the confounding variables, age, gender, and ancestry, we expected to find differences in 

the prediction models between the groups. We also examined the most discriminative 

features in the predictive models, enhancing our understanding of brain mechanism/

genetics/FH features underlying AUD development, risk and resilience.

Method

Participants

The data comprised 656 participants (376 males and 280 females) from Collaborative Study 

of the Genetics of Alcoholism (COGA), examined within the age range of 12 to 30 years. 

Data from six collection sites were included in this study. Ascertainment and assessment 

procedures of COGA recruits have been described elsewhere 24–26 and in Supplementary 

Materials. For this study we examined only participants who were unaffected at their first 

visit and reassessed years later and divided them into two groups: DSM-5 AUD and 

unaffected controls. The AUD group (n=328, 188 males, 140 females) was defined as those 

diagnosed as unaffected during the first visit (mean age: 17.88±2.95) and diagnosed with 

lifetime DSM-5 AUD during a follow-up visit (mean number of years between 

visits=7.36±3.01). The control group (n=328, 188 males, 140 females) was age matched (p = 

0.5) to the AUD group during the first visit (mean age: 17.69±3.11) and diagnosed as 

unaffected both at that visit and during a follow-up visit (mean number of years between 

visits=6.64±3.35) (Figure 1). In a series of analyses, the groups were further divided 

according to ancestry (EA, AA), age (early adolescence: 12–15 years old, late adolescence: 

16–19 years old, and adults: 20–30 years old) 27, 28 and gender (male, female). All groups 

were matched on age. Ancestry, gender, age and missing values dictated a series of analyses 

that included different subsets of subjects. Full description of each of the groups can be 

found in Supplementary Tables 1 & 2.

Procedure

EEG data acquisition and preprocessing—Resting EEG was recorded for four 

minutes in all participants as they were resting on a comfortable chair in a dimly lit, sound-

attenuated RF-shielded booth (Industrial Acoustics, Inc., Bronx, NY, USA). A 64-channel 

electrode cap (Electro-Cap International, Inc., Eaton, OH, USA) based on the extended 10–

20 System 29, 30 was used. Participants were asked to stay awake with eyes closed and not to 

move. EEG recording and preprocessing procedures are described in Supplementary 

Materials.
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Feature Extraction

EEG extracted features: Full description of the EEG features extraction analysis can be 

found in Supplementary Materials. The following electrophysiological features were 

extracted: 1. The spectral power (40 features). 2. Coherence values (90 features). 3. 

Correlation values (90 features)

FH extracted features: Parental AUD data (mother or father DSM-5 AUD) (2 features).

Genetic data extracted features: SNPs (149 features; Supplementary Table 3) were 

selected based upon associations with EEG and alcohol-related traits from several recent 

Genome-wide Association Study (GWAS) involving EA and AA populations. These include 

fast beta EEG16, alcohol consumption12, 13, DSM-IV alcohol dependence14, 15, and 

maximum number of alcoholic drinks within 24 h31. Genotyping, imputation and quality 

control have been previously reported 32, 33 and can be found in Supplementary Materials.

Feature selection and classification model estimation

Feature selection and model estimation and validation were done separately for every group 

(i.e. only EEG, only SNPs, combined EEG+SNP, male, female, AA, EA and different age 

groups). To control for variables overfitting we used regularization method4, 34, enhancing 

the prediction accuracy and interpretability of the statistical model. Specifically, for feature 

selection we used the least absolute shrinkage and selection operator (LASSO) penalty as 

described by Tibshirani (1996)35. The sparsity property of LASSO (i.e. generating 

coefficient estimates of exactly zero), makes it attractive for feature selection as it reduces 

the estimation variance while providing a more interpretable final model 36. Its application 

to genomic data 37, 38 has shown that selecting a small number of representative features can 

achieve satisfactory classification. We first determined the regularization parameter using a 

10-fold cross-validation (CV) procedure, with the label: control vs. AUD as the response 

variable. All features with a non-zero coefficient were retained for subsequent analyses. The 

reduced set of most discriminant features were fed into the classifier to classify the study 

participants into their respective groups, i.e., either AUD or controls.

A linear-kernel SVM was trained to distinguish between the two groups in a 10-fold cross-

validation (CV) procedure that included parameter optimization. For the 10-fold CV, 

subjects were randomly divided into ten equal groups, a classifier was then trained on nine 

of the ten groups and tested on the left-out one. Every fold, the entire dataset was shuffled to 

insure randomization of the groups. Due to the effect of the random division on the 

classification results we repeated this process 10 times, averaging the output results. To 

evaluate model performance, we recorded the number of true positives (TP, number of 

correctly classified AUD) and true negatives (TN, number of correctly classified controls) 

scores. Classification accuracy was computed as a ratio of sum of TP and TN divided by the 

sum of all classified subjects. Area under curve (AUC)3 and F-scores were used to evaluate 

the classification models, while F was defined by the equation 10, 11, 39 and can be 

interpreted as a weighted harmonic average of precision and recall values 39.The precision is 

defined as the number of true positives divided by the number of true positives plus the 

number of false positives and the recall is defined as the number of true positives divided by 
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the number of true positives plus the number of false negatives. Due to an absence of prior 

information about either precision or recall, the beta value was set to 1. More description of 

models’ calculation and comparison can be found in Supplementary Materials.

F = (1 + β2) x Precision x recall
β x Precision + recall

Results

Different SVM prediction models with overlapping features and different subsets of subjects 

divided according to ancestry, age and gender were used for the predictive models. Table 1 

summarizes the results of the significant predictive model scores across ancestry, gender and 

age (see Supplementary Tables 4–6 for full results), revealing higher scores for the AA than 

for the EA sample (p < 0.001), for females over males in both EA (borderline trend) and AA 

(p(EA male vs. female)=0.06, p(AA male vs. female)=0.03) and for the younger age group over the 

others in both samples (EA; F2 = 76.29, p < 0.001, AA; F2 = 8.27, p = 0.001) (Table 1). 

Table 1 and Figure 2 highlight that the combined model of EEG+SNP was more accurate 

than the model based on only EEG features or only SNP features for both the AA and EA 

samples (EA; p(EEG vs. EEG+SNP)< 0.001, p(SNP vs. EEG+SNP <.001) (AA; p(EEG vs. EEG+SNP)< 

0.001, p(SNP vs. EEG+SNP <0.001). Results were confirmed in a follow up analysis in the AA 

and EA age groups (AA: p(early adolescence ,EEG vs. EEG+SNP)<.001, 

p(late adolescence s, EEG vs. EEG+SNP)< 0.001, p(adults, EEG vs. EEG+SNP)< 0.001 )(EA: 

p(late adolescence s, EEG vs. EEG+SNP)= 0.002 )(Table 1, Supplementary Figure 1). The EA age 

groups combined models reached significance in the early and late adolescence age range 

but did not outperform the EEG based model accuracy (Table 1, Supplementary Figure 1). 

Gender stratified analyses unveiled higher model accuracy in the AA female group over the 

male in all three features categories (EEG, SNPs and the combined EEG+SNP model) 

(whole sample; p(EEG male vs. EEG female)< 0.001, AA; p(SNP male vs. SNP female)= 0.008, 

p(EEG+SNP male vs. EEG+SNP female)< 0.001) while in the EA group only the combined model 

EA: p(EEG+SNP male vs. EEG+SNP female)< 0.001 (Figure 3). Overall, out of all the combined 

models of EEG+SNP features, the AA & EA female groups achieved the highest accuracy of 

79.33% (specificity=71.02%, sensitivity = 87.67%, AUC=0.99, F=0.81), 78.91% 

(specificity=76.82%, sensitivity = 81%, AUC=0.9, F=0.79), respectively, and the AA & EA 

early adolescence range age of 79.54% (specificity=79.55%, sensitivity = 79.52%, 

AUC=0.93, F=0.79), 74.2% (specificity=68.43%, sensitivity = 79.23%, AUC=0.89, F=0.76), 

respectively (full list of the significant models in Table 1). Interestingly, we found gender 

and ethnicity differences when comparing the addition of the FH feature of mother DSM-5 

AUD or father DSM-5 AUD to the combined model of EEG+SNP. For both AA and EA, 

male and female samples, mother AUD feature increased model accuracy EA:

(p(son-mother vs. EEG+SNP)<0.001) (p(daughter -mother vs. EEG+SNP)=0.02), AA:

(p(son-mother vs. EEG+SNP)=0.001, p(daughter -mother vs EEG+SNP)<0.001). Father AUD increased 

the accuracy of the combined model only for the AA female sample (p 

(daughter-father vs EEG+SNP) <0.001) (Table 1, Figure 4). Finally, the AA female group with the 

combined model of EEG+SNP features with the addition of FH of father AUD or mother 

AUD feature achieved the highest accuracy of 87.55% (father AUD) (specificity =85.71%, 

sensitivity=89.38%, AUC=0.99, F=0.89) and 87.11% (mother AUD)(specificity =81.3%, 
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sensitivity=92.92%, AUC=0.99, F=0.88). Comparing the EA & AA groups’ sensitivity and 

specificity values revealed higher sensitivity values in the AA sample (p(sensitivity)=0.002).

Discriminative Features

EEG: Supplementary Table 7 presents a summary of selected shared and group specific 

features stratified by ancestry and gender for the combined EEG and SNP models. The most 

consistent EEG predictor shared by all the AUD groups for the combined EEG+SNP based 

model, which distinguished the participants with AUD from the controls, included lower 

posterior gamma (e.g., amplitude, coherence, correlation) and higher slow wave connectivity 

(delta, theta, alpha) in multiple locations (weight ranking for each group/band/frequency in 

Supplementary Table 7 and Supplementary Tables 8–11). All AUD groups exhibited lower 

occipital gamma amplitude compared to control (weight ranking 1–4). EA-AUD genders 

shared lower gamma parietal interhemispheric coherence (male) and amplitude (female) 

(weight ranking 2,4), AA-AUD genders shared lower delta occipital interhemispheric 

correlation (weight ranking 1,7) and EA and AA female samples shared lower Frontal-

Parietal gamma correlation (weight ranking 2,8). On the other hand, higher theta was 

revealed in AUD EA male interhemispheric connectivity in the occipital, frontal and 

temporal lobes (weight ranking 1,4,5) while both female groups showed higher slow wave 

intrahemispheric connectivity (delta, alpha) in frontal-parietal (AA, EA) (weight ranking 

2,8) and temporal-iparietal (EA) (weight ranking 4) lobes. The groups differed in higher 

frontal gamma ratio and higher beta correlation in the parietal area (AA male) (weight 

ranking 2) and lower beta intrahemispheric correlation in the frontal-parietal (EA female) 

(weight ranking 5).

SNPs: A summary of the most robust SNP predictors for vulnerability to develop AUD is 

presented in Supplementary Table 12 (the full features ranking is in Supplementary Tables 

8–11). EA and AA-AUD females shared one SNP, which was found on chromosome 16 

(rs4780836, weight ranking 9,7). Ancestry-gender-specific loci were found for EA AUD 

female sample on chromosome 17 gene FLII (rs2605140, weight ranking 7), and on 

chromosome 18 (rs303757, weight ranking 18), and two on chromosome 3 (rs7430178, 

weight ranking 3), (rs13093097, weight ranking 3).

In the AA female sample, loci were found on chromosome 2 (rs11690265, weight ranking 

2), and two on chromosome 18 (rs167336, weight ranking 18), and (rs303754, weight 

ranking 18) and on chromosome 11 (rs34467936, weight ranking 11 ), and two on 

chromosome 16 (rs62057756, weight ranking 16), and (rs28709965, weight ranking 16). A 

locus was found for EA-AUD male sample on chromosome 19 gene FUT2 (rs692854, 

weight ranking 19), and for the AA-AUD male sample on chromosome 16 (rs13380649, 

weight ranking 16). Overall, females had more SNP features than males (#SNP (AA female) 

=8, (#SNP (AA male) =1) (#SNP (EA female) =5, (#SNP (EA male) =1) (Supplementary Tables 5–

6).

Discussion

Machine learning applications hold promise for creating innovative disease prediction 

models based on longitudinal data. This study used COGA’s rich datasets with EEG, 
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genetic, and FH information acquired from individuals as early as age 12, before developing 

AUD, and followed years later when they either were diagnosed as DSM-5 AUD or 

unaffected. This is the first study to formulate a prediction model for those who are 

predisposed to develop AUD using ML with multidimensional features while considering 

gender and ancestry. We found higher accuracy rates for the prediction models in AA than 

EA samples. In both AA and EA samples combining EEG and SNP features resulted in 

higher accuracy scores than the models based on only EEG features or only SNPs, and these 

results were confirmed in a follow up analysis (same dataset) within the different AA age 

groups (early adolescence, late adolescence and adults) and EA late adolescence age group. 

Gender analyses revealed trend of higher model accuracy in the female group over the male 

group in both the EA and the AA for all three features categories (EEG, SNPs, and the 

combined EEG+SNP model). We further found gender differences in model accuracy with 

parental history of AUD added to the model. Interestingly, both EA and AA samples showed 

history of maternal AUD as a discriminative feature, increasing the accuracy of the 

combined EEG+SNP based model. History of paternal AUD increased the model accuracy 

over the combined EEG+SNP based model only in the AA females. In both samples, the 

younger age group achieved higher accuracy score than the two older age groups. Several 

discriminative EEG and SNP features were identified for each of the models revealing novel 

gender and ancestry specific AUD predisposition biomarkers. Overall, our findings suggest 

that higher model accuracy is anchored in a wide range of multidimensional features 

generated from specific homogenous samples (e.g., gender, age, ancestry). Importantly, 

identifying group-related specific features will generate formulation of better prediction 

models.

The ML model based on the combined genetic data and EEG data achieved better 

classification accuracy than using either alone. These results indicate that these two 

modalities might reflect somewhat different aspects of AUD etiopathology, and cannot 

replace each other in terms of portraying the disease, also confirming previous literature 

results showing the advantage of a ML model using multiple dimensions to classify a 

disease 3. Importantly, these results open the door to more personalized approaches to 

predicting diseases. Models based on different modalities can include features that change 

over time (i.e., brain structures and functions)40 and over human maturation (i.e., behavior 

and psychology)41 making it possible to focus on specific groups (such as categorization by 

age, gender, ancestry, FH, culture, and behavior) to create prediction models where 

individualization has real value to advance personalized care for patients.

Accurate predictive models rely on an optimal subset of a given feature set for a given 

population. The given set of features in the current study better predicted AUD females than 

males, and AA-AUD than EA-AUD, implying the need to continue and search for group-

specific variables with importance or ‘strength’ relatable to each group. For example, the 

low prediction score of both male groups might relate to the models’ limited genetic 

discriminative features (i.e., only one SNP was implicated in any of the male models) in 

comparison to the females’ models (where 4–5 SNPs were implicated).

Our results indicate that across gender and ancestry, individuals who are vulnerable to AUD 

have posterior (e.g. occipital, parietal) lower gamma activity. These findings are in 
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accordance with a recent review on the neurophysiological correlates of numerous 

psychiatric disorders, such as depression, bipolar disorder, anxiety and AUD, showing that 

the most dominant pattern of change across disorder types is power decreases across higher 

frequencies42. Indeed, we found lower parietal gamma (amplitude and coherence) in EA in 

both males and females and lower frontal-parietal gamma connectivity in only female 

groups in both EA and AA, all together suggesting that lower posterior gamma is not only a 

disease biomarker but also a predisposition factor for increased vulnerability to develop 

AUD. Gamma activity has been proposed to promote the feed forward or “bottom-up” flow 

of information from lower to higher regions of the brain during thalamocortical iterative 

recurrent activity43. Reduction in the gamma band power and connectivity is possibly index 

disruption in bottom-up communication across the posterior cortex leading to sensory and 

executive dysfunctions, which may reflect altered cortical integration.

On the other hand, we found increased connectivity of slower wave bands (delta, theta, 

alpha) for both EA genders. These results confirm previous finding of increased absolute 

theta log power at all locations on the scalp of eyes-closed EEGs of alcohol-dependent 

individuals44 and increased frontal45 and occipital46 theta in binge drinkers, as well as, 

increased interhemispheric47 and intrahemispheric theta coherence48 when compared to 

controls. Increased cortical theta is usually linked to deep resting stages49, transition to sleep 
50 and while practicing meditation 51. These mental processes relate to the suggested model 

of the “posterior salience network” unfolded in a functional connectivity analysis during rest 

as an interoceptive network, regulating central somatic awareness, physiological reactivity 

and internal homeostatic states52, 53. These results suggest that higher-theta-connectivity 

alcohol-vulnerable individuals have reduced outside attention over introspect inside 

attention.

Various SNPs were implicated as salient features in predicting the vulnerability to develop 

AUD. Interestingly, they varied by gender and ancestry. Moreover, females and males did 

not share any implicated SNPs, which may shed light on previous discrepancies observed in 

unstratified studies. One variant on chromosome 16 (rs4780836), previously associated in a 

large GWAS with alcohol consumption12, was found both in AA and EA females’ models 

suggesting gender-specificity of this susceptibility marker. While this study focused on 

individual SNPs from previous GWAS, future studies should aggregate information from a 

large number of potentially causal SNPs, such as Polygenic Risk Score (PRS), to increase 

features matching12, 54

The ability to predict vulnerability and identify related predisposition biomarkers holds 

enormous possibilities including preventions tactics, treatments or simply avoidance. 

Equally important is the ability to identify resilience factors, those biomarkers or 

psychosocial “protective” characteristics, that can thwart or prevent the progress of alcohol 

dependence. Overall, our findings demonstrate the importance of embedded ancestry, gender 

and age in the calculation of model prediction of the development of AUD. This approach 

we argue, should be expanded to any diagnosis or prediction of treatment response. We 

further show that the model based on various features from different realms (genetics, 

electrophysiology and FH) outperform prediction models based on singular-realm features. 

Wider selection of features with a narrower approach when choosing the sample will 
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generate better prediction scores, enabling accurate anticipation of the development of an 

undesirable disorder. We also identified specific robust features of EEG and SNP 

measurement for each gender/ancestry group, further deepening our understanding of the 

predisposition of brain mechanisms underlying the future development of AUD. Future 

studies are required to further validate these results with larger cohorts, sampling uniformity 

and wider selection of features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A data-flow diagram
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Fig. 2. 
Model accuracy by ancestry. Classification obtained by the only EEG features, only SNP 

features and by the combined EEG and SNP features for EA and AA samples. Results 

indicate that the combined model has higher accuracy than the EEG based model, and the 

SNP based model. The error bars are standard deviations. *p < 0.05, **p < 0.01
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Fig. 3. 
Model accuracy by gender and ancestry. Classification accuracy obtained by the only EEG 

features, only SNP features and by the combined EEG and SNP features stratified by gender. 

Results indicate higher accuracy scores for the female compared to male in both EA and AA 

samples for the three models-based features. The error bars are standard deviations. *p < 

0.05, **p < 0.01
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Fig. 4. 
Model accuracy by gender, family history and ancestry. Mother AUD and father AUD 

features were added to the female and male models. Results highlight ancestry and gender 

differences of the effect of parent AUD over the accuracy of the model. For both AA and 

EA, male and female samples, mother AUD feature increased model accuracy. Father AUD 

increased the accuracy of the combined model for the AA female sample. The error bars are 

standard deviations. *p < 0.05, **p < 0.01
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Table 1

Selected significant models, classifying AUD and unaffected controls divided by ancestry, age and gender

Model features Specificity (%) Sensitivity (%) Accuracy (%) AUC F

EEG

EEG male 68.4 72.66 70.53 0.84 0.71

EEG female 73.5 77.86 75.68 0.86 0.76

EEG (12–15) 73.99 72.68 73.35 0.87 0.72

EA

EEG + SNP 69.03 75.04 72.04 0.84 0.73

EEG + SNP female 76.82 81 78.91 0.9 0.79

EEG + SNP male mother AUD 70.94 68.08 69.54 0.78 0.69

EEG + SNP female father AUD 70.15 78.22 74.18 0.92 0.76

EEG + SNP female mother AUD 75.16 79.48 77.32 0.89 0.78

EEG + SNP (12–15) 68.43 79.23 74.2 0.89 0.76

AA

EEG + SNP 74.14 78.43 76.29 0.9 0.77

EEG + SNP female 71.02 87.67 79.33 0.99 0.81

EEG + SNP male mother AUD 74.69 67.78 71.23 0.83 0.71

EEG + SNP female father AUD 85.71 89.38 87.55 0.99 0.89

EEG + SNP female mother AUD 81.3 92.92 87.11 0.99 0.88

EEG + SNP (12–15) 79.55 79.52 79.54 0.93 0.79

EEG + SNP (16–19) 65.46 85.56 76.53 0.92 0.80

EEG + SNP (20–30) 73.2 73.18 73.19 0.97 0.71

F tests were used for comparisons between the two groups. AUC (area under the curve) calculations werc used for classification analysis in order to 
determine which of the used models predicts the labels best. Values arc means of the ten CV fold model calculation
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