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Abstract

Background: On July 21–22, 2012, Beijing, China, suffered its heaviest rainfall in 60 years. Two 

studies have estimated the fatality toll of this disaster using a traditional surveillance approach. 

However traditional surveillance can miss disaster-related deaths, including a substantial number 

of deaths from natural causes triggered by disaster exposure. Here we investigated community-

wide mortality risk during this flood compared to rates in unexposed reference periods.

Methods: We compared community-wide mortality rates on the peak flood day and the four 

following days to seasonally-matched non-flood days in previous years (2008–2011), controlling 

for potential confounders, to estimate the relative risks (RRs) of daily mortality among Beijing 

residents associated with this flood.

Results: On July 21, 2012, the flood-associated RRs of all-cause, circulatory, and accidental 

mortality were 1.34 (95% confidence interval, 1.11–1.61), 1.37 (1.01–1.85), and 4.40 (2.98–6.51), 

respectively, compared to unexposed periods. No evidence of increased risk of respiratory 

mortality was observed. For the flood period of July 21–22, 2012, we estimated a total of 79 

excess deaths among Beijing residents; by contrast, only 34 deaths were reported among Beijing 

residents in a study using a traditional surveillance approach.
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Conclusions: To our knowledge, this is the first study analyzing community-wide changes in 

mortality rates during the 2012 flood in Beijing, and one of the first to do so for any major flood 

worldwide. This study offers critical evidence on flood-related health impacts, as urban flooding is 

expected to become more frequent and severe in China.
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INTRODUCTION

On July 21, torrential rains fell from mid-day through the night, triggering flash floods.1–3 

Almost 90% of the city experienced rainfall totals >100 millimeters (mm),2 and flooding 

was reported throughout the city.4 In some regions of the city, the disaster was particularly 

severe—for example, Fangshan District experienced >450 mm of rainfall.2 Flooding 

affected over 60 main roads at low-lying underpasses and bridges.2 Over 50,000 people were 

evacuated,3 and damages totaled over a billion dollars.2 As is often the case for urban flash 

floods,5 a key factor was that the rate of rainfall exceeded drainage capacity.3,4 Flood waters 

quickly receded after rainfall ended early on July 22,6 as drainage networks caught up, 

although clean-up of debris and mud was needed in following days, and some residents 

remained evacuated from their homes for several days.2,3,7

Two studies estimated the fatality toll from this flood,8,9 using a traditional surveillance 

approach of investigating each death that occurred in Beijing during the flood period, case-

by-case, to identify which were flood-attributable. This surveillance approach searches death 

certificates for specific mentions of ties to a disaster and, in some cases, may draw on other 

available details on the circumstances of a specific death, including government and media 

reports, to determine if that death can be attributed to the disaster.8–10

Based on this approach, 60 or more of the deaths in Beijing on July 21–22, 2012, including 

34 among Beijing residents, were attributable to the flood, mostly from drowning.8,9 Most 

deaths identified from the two surveillance studies were those caused by direct physical 

forces of the flood, such as drowning, or were from accidental causes linked to hazards 

created by the event, such as crushing by falling objects and electrical shocks.8,9 The 

traditional surveillance approach used for these estimates can, however, undercount disaster-

associated deaths, especially from indirect causes that are also common outside of disaster 

periods.11 Further, this approach is unable to identify any patterns of potential avoided 

deaths during the disaster (e.g., a reduction in automobile fatalities related to people 

avoiding driving during severe weather conditions).12 Given these limitations in the 

traditional surveillance approach, an alternative approach that implements a counterfactual 

scenario in which mortality rates during the disaster are evaluated against mortality rates 

from comparable reference periods may provide more robust estimates of risk.

While assessments of community-wide mortality rates have been used to help understand the 

health impacts of other climate-related disasters, especially extreme temperature and heat 

waves,13,14 few studies worldwide have used a similar technique to better understand the 

mortality risks associated with floods. Several previous studies have explored large-scale, 
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multi-year patterns in flood-related fatality tolls, including in the United States and 

Australia,15,16 but these employed a traditional surveillance approach. Worldwide, only a 

few studies have investigated flood-associated mortality risks by comparing the rate of 

community-wide mortality observed during the flood to rates in non-flooded periods or 

areas,17–21 making evidence on how community-wide mortality rates change during severe 

floods extremely limited, including in China.

Community-wide assessments can be particularly helpful in capturing changes in rates of 

circulatory and respiratory mortality during a disaster, as both are common mortality 

outcomes outside of disaster periods and so hard to attribute to a disaster on a case-by-case 

basis. Limited studies from outside China have found floods can substantially increase the 

risk of non-fatal cardiorespiratory outcomes, including risks of heart palpitations22 and heart 

attacks,23 making it plausible that major floods could also increase community-wide rates of 

circulatory and respiratory deaths. Beijing’s large population (> 21 million)24 provides the 

statistical power to investigate how a major flood changed community-wide mortality rates 

in a major Chinese city during and immediately after the event, both for deaths from all-

causes and for deaths from several specific causes (circulatory, respiratory, and accidental).

METHODS

Data

We obtained daily mortality counts from the Chinese Center for Disease Control and 

Prevention (CDC) for all Beijing residents from January 1, 2008, to December 31, 2012. 

Cause of death was coded according to the International Classification of Disease, Revision 

10 (ICD-10, 2003 version).25 We aggregated data to create daily community-wide counts of 

deaths from four causes: all-cause, accidental (ICD-10: S00–Z99), circulatory (I00–I99), and 

respiratory (J00–J99). We obtained residential population data from the National Bureau of 

Statistics of China.24 We obtained daily temperature data from a weather station located in 

Nanjiao District (between Beijing’s fifth and sixth ring roads) and daily average 

concentrations of particulate matter with an aerodynamic diameter ≤ 2.5 micrometers 

(PM2.5) (used in sensitivity analysis) from a station in the Haidian District, both 

administrated by the Beijing Meteorological Bureau.

Statistical Analysis

The methodology of analyzing community-wide health risks from a disaster, by comparing 

the mortality rates observed during the disaster to the rates that would be expected had the 

disaster not occurred, is still in development. One potential approach is to use methods 

developed to study continuous ambient exposures like air pollution and temperature: time 

series analysis26 and time-stratified case-crossover.27 However, a potential limitation of both 

of these approaches to study the effects of discrete disaster periods is that they use, as 

controls, periods that are close in time to the event. While this implicitly helps control for 

long-term trends in baseline community mortality rates when studying continuous 

exposures, it could lead to biased estimates when studying disasters if disasters have 

extended impacts on community health risks and if this period of potential extended disaster 

effects is incorrectly specified in the model. A recent study provides a good example of the 
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plausibility of such extended disaster effects: following Hurricane Maria’s landfall, the 

mortality rate in Puerto Rico for the next three months increased 62% compared with the 

same period of the previous year.28

Given these potential concerns with applying the time series or case-crossover study designs 

to analyze the effects of a disaster, we instead used a study design that matched the days of 

the flood disaster to similar unexposed days from the same time of the year in other years in 

Beijing, with control for long-term trends in mortality rates and the influence of temperature 

on mortality risk incorporated in the statistical model fit to this matched data. Previous 

studies have used similar study design to investigate hospitalization risk of other natural 

disasters, including heat waves29 and wildfires.30 As a sensitivity analysis, we also estimated 

risks based on time series and case-crossover designs,13,14,26,27 to help determine the 

sensitivity of estimates to the choice of study design.

While some floods can be long-lasting, this flash resulted from extreme rainfall from a 

single storm system, which began mid-day on July 21 and ended early in the morning of 

July 22.2,8 The flood waters receded in the hours following the rains,6 as the city’s drainage 

system caught up with the excess water. In heavily affected areas, many residents were 

evacuated within a day,2 limiting exposure to lingering flood waters in these districts. Given 

the rapid onset and dissipation of flooding, we classified the July 21 as the main exposed 

day (peak flood day). We also investigated potential changes in health risks in the four 

following days, which we modeled as lagged associations from the peak flood day. Such 

delayed associations could represent either delayed health effects from exposure on the peak 

flood day or health effects associated with exposure to mud, debris, lingering flood waters, 

or flood-associated infrastructure damage in the days following the peak flood day.

We matched the peak flood day (July 21, 2012), as well as four days after, with similar 

unexposed days. For the matched unexposed days, we selected days that were in: (1) a 

different year than the flood year; (2) the same month of year as the flood (July); and (3) the 

same day of week as the exposed day (e.g., the peak flood day, a Saturday, was matched to 

other Saturdays). To this matched data, we fit a model incorporating an unconstrained 

distributed lag while controlling for the potential confounders of long-term trends in 

mortality rates and temperature’s influence on mortality risk. We fit the following 

generalized linear model, using an over-dispersed Poisson distribution:

log E Y t = log nYear t + α + β∑l = 0
4 xt − l + γY eart + δT t (1)

where:

• Yt is the daily mortality among all Beijing residents on day t;

• nYear(t) is the residential population of Beijing in the year of day t, included as an 

offset term to capture variation in Beijing’s population over the years included in 

the study period;

• α is the model intercept;
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• β is a vector of length five (βl, l = 0,…, 4) of coefficients estimated from an 

unconstrained distributed lag function of flood exposure,31 where xt is 1 for the 

peak flood day and 0 for other days, and therefore xt-l is an indicator variable 

denoting whether a given day at lag l from day t is within the flood-exposed 

period or within the matched unexposed period;

• Yeart is the year for day t, with γ as the coefficient for year, allowing control for 

a linear trend in mortality rates across study years;

• Tt is the mean temperature for day t, with δ as the coefficient for Tt We also 

tested sensitivity to a more flexible control for temperature through a distributed 

lag non-linear function of daily temperature for lags 0–2.

With this unconstrained distributed lag model, separate associations are estimated for each 

lag; given the study design, data used in the analysis are matched on day of week for each 

lag-specific estimate, removing the need for further statistical control of day of week in the 

model.

The estimated lag-specific RRs of mortality on lag l from the peak flood day were calculated 

as RRl = exp(βl), based on the values of βl estimated from eq. 1. We estimated the flood-

attributable number of deaths (El)as32

El = Y l(
RRl − 1

RRl
) (2)

where Yl is the observed death count at lag l from the peak flood day.

Previous research, which calculated the fatality tolls for this flood using a traditional 

surveillance method,8,9 determined fatality tolls for the two days of July 21–22, 2012. To 

allow us to compare estimated flood-associated fatality tolls between our analysis approach 

and the traditional surveillance method, we also calculated excess deaths specifically for 

these two days. We calculated confidence interval for the estimate of total excess deaths on 

this two-day period using Monte Carlo simulations (details in Supplementary Material).

Sensitivity analysis.—In additional to our primary analysis, we also investigated the 

sensitivity of estimates to study design and modeling choices. First, we investigated whether 

results changed with differing selections of control days, changing to select from any day of 

the same month of year as the flood (July) in other years rather than restricting by day of 

week (referred to as “Matching by month” in results). Second, we changed the model’s 

control for potential confounders. We first adjusted for the daily average concentration of 

fine particulate matter (PM2.5) (“PM2.5-adjusted”). PM2.5 could be a potential confounder 

for the association between flooding and mortality. Ambient PM2.5 has been associated with 

increased mortality risk in China33 and can also influence summer rainfall frequency34 in 

China, a common cause of urban flooding in the country. We next fit a model that did not 

adjust for temperature as in the primary analysis (“Not temperature-adjusted”). Finally, we 

investigated the sensitivity of effect estimates to using time series and case-crossover designs 

rather than matching to similar days from other years. In the time series analysis (“Time 

series”), we used year-round data from the five-year study period, fitting a natural cubic 
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spline function of time with 7 degree of freedom per year in the model to control for 

seasonal and long-term trends and, to control for temperature, a natural cubic spline with 3 

degree of freedom. In the case-crossover analysis (“Case-crossover”), we used the time-

stratified variant of this design,27 defining the case day as the peak flood day and control 

days as those days in the same year, month of year, and day of week as the case day. We 

analyzed the case-crossover data using a conditional Poisson generalized linear model,35 

resulting in a risk ratio estimate that is directly comparable to the risk ratio estimates 

generated from the other study designs considered.

RESULTS

Compared to non-flood reference periods in other years, community-wide mortality rates 

were substantially higher among Beijing residents during the flood period for all-cause, 

circulatory, and accidental mortality compared to rates in matched unexposed periods 

(Figures 1 and 2). The highest increased risks were observed on the peak flood day (July 21, 

2012) (Figures 1 and 2), when community-wide mortality rates were 34% higher for all-

causes combined (relative risk [RR]: 1.34; 95% confidence interval [CI]: 1.11–1.61), 37% 

higher for cardiovascular causes (RR: 1.37; 95% CI: 1.01–1.85), and 340% higher for 

accidental causes (RR: 4.40; 95% CI: 2.98–6.51) (Figure 2). These estimated relative risks 

translated to 59 flood-related excess deaths overall on the peak flood day among Beijing 

residents, including 28 excess circulatory deaths and 24 excess accidental deaths (Table 1). 

For respiratory mortality, conversely, there was no evidence of an increase during the flood 

compared to matched unexposed days.

The increases in community-wide rates for all-cause, circulatory, and accidental mortality 

were largest on the peak flood day (July 21, 2012), with some evidence of a continued 

increase on the following day (Figure 2). For the days considered further after the peak flood 

day (lags 2–4), we did not find evidence of significantly increased mortality risk for any 

cause considered. Since traditional surveillance considered the two-day period of July 21–

22, 2012,8,9 we also estimated flood-associated deaths for this two-day period and estimated 

a total of 79 excess deaths in this period among Beijing residents (Table 1). Most of these 

deaths were from circulatory causes (an estimated 46 flood-related deaths) or accidental 

deaths (an estimated 28 flood-related deaths) (Table 1).

Estimates of RRs were robust to modeling choice and the matching method for selecting 

unexposed days for all-cause, circulatory, and respiratory mortality (Table 2). In all cases, 

we estimated increases of approximately 30% in all-cause mortality, increases of 

approximately 35% in circulatory mortality, and decreases of approximately 10% in 

respiratory mortality on the peak flood day compared to non-flood reference periods. 

However, when considering accidental mortality, results were somewhat sensitive to study 

design (Table 2). This could be because the accidental mortality rate in July across the years 

included in the study varied in a pattern that was difficult to capture using a linear control for 

long-term patterns in mortality rates (eFigure 1), as conducted in our primary analysis. 

When temperature was controlled with a more flexible control and to a longer lag, effect 

estimates were almost identical to the primary results (eFigure 2).

Yan et al. Page 6

Epidemiology. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

Our results demonstrate this flood’s considerable impacts on public health in Beijing (79 

deaths among Beijing residents), with over half of this impact resulting from increased risk 

of non-accidental mortality, in particular circulatory mortality (46 deaths among Beijing 

residents). The government of China, using a traditional surveillance approach of identifying 

flood-related deaths on a case-by-case basis, identified 60 flood-related deaths (among 

Beijing residents and non-residents combined) on July 21–22, 2012.8 Another study that 

similarly used a traditional surveillance approach—expanding on the government analysis 

by combining fatality information on specific deaths from different sources like government 

reports and site visitations— found 79 flood-related deaths, 71 of which could be identified 

as residents or non-residents, with 34 of these among Beijing residents.9 The estimated 

fatality toll among Beijing residents based on the traditional surveillance approach is 

therefore less than half the number of flood-related deaths we estimated based on an 

approach of comparing community-wide mortality rates during July 21–22, 2012, to the 

rates in comparable reference periods (Table 1).

Further, the previous surveillance-based research found the majority of flood-attributable 

deaths were due to drowning.8,9 The surveillance approach did identify two circulatory 

deaths from the flood—two people who died while conducting rescues because of excessive 

work and heart failure.9 While we similarly estimated a substantial toll from accidental 

deaths (28 excess accidental deaths estimated for July 21–22), we also found an important 

increase in non-accidental mortality during the flood period, with 46 excess circulatory 

deaths estimated for July 21–22 (Table 1), an impact largely missed through the traditional 

surveillance method. The increased risk during the flood for circulatory deaths, and its 

associated impact, can be much more difficult to capture using the traditional disaster 

surveillance method than accidental deaths (e.g., drowning deaths). This is in part because 

circulatory deaths are not directly caused by the physical forces of the flood and in part 

because circulatory deaths are not rare outside of flood periods, making it harder to declare 

that a specific circulatory death would not have occurred without the flood.

The flood-related circulatory deaths we observed could have resulted in part from the flood 

disrupting health services through associated damage to infrastructure (such as 

transportation and communications). During this period in Beijing, many roads and bridges 

were flooded (about 63 main roads in Beijing),2 crowded with fallen building and trees, or 

destroyed.2 Infrastructure damage can prevent residents from reaching healthcare resources, 

which is especially dangerous among people with pre-existing chronic medical conditions, 

or hinder medical personnel from offering services.36–38 Beijing’s dense population and 

heavy reliance on public transportation make it particularly susceptible to these 

complications. In addition, flooding can be an emotional trigger that exacerbates the 

initiating process of acute cardiac events,39 an effect that has been identified for other types 

of disasters including earthquakes and human-caused disasters.40,41 Flood-related deaths 

from circulatory causes have also been reported in flood events in England,23 Bangladesh,42 

and France,43 and a retrospective study of 1997 floods in the Czech Republic found the rates 

of cardiac-related mortality in the month of flood was more than twice the rate in the two 

previous months.21
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Conversely, we did not find a short-term association between respiratory mortality and this 

flood. Studies have found the likelihood of indoor mold growth increases in months 

following major floods,44 and indoor dampness or mold has been shown to be consistently 

associated with respiratory problems.45 Thus, while we found no evidence of an association 

between this flood and immediate respiratory mortality rates, the flood might have increased 

risk of respiratory mortality at a longer period (e.g., months) than that investigated here. A 

few epidemiological studies have found increased longer-term risk of respiratory problems 

and infections among people in flood-affected areas.43,46,47 For example, in Bangladesh, 

about half of respondents (46.8%) in two affected districts reported developing or suffering 

exacerbation of respiratory problems in the two months following the 1998 flood,42 and 

approximately 13% of reported deaths from the country’s 1988 flood were attributed to 

respiratory disease.47 Further, six months after the 2004 floods in rural Bangladesh, a 

substantial increase in risk of acute respiratory infection (RR = 1.25, 95% CI, 1.06–1.47) 

was observed in flooded versus unflooded areas.20 Other health outcomes could also have 

increased risk in the weeks and months following the flood, given previous research 

indicating increased risk for health outcomes including psychological outcomes following 

major disasters, and these could be explored in future research focusing on health risks in the 

weeks and months following this severe flash flood.48,49

The increased mortality risks we identified occurred primarily on the peak flood day (July 

21), with lower mortality risks on the following day and little or no evidence of elevated 

risks on the days following that (Figure 2). This pattern may, however, be specific to this 

Beijing flood, which varied in some key characteristics from other major floods that have 

been studied. Although this flood was extreme for Beijing (the heaviest rainfall in six 

decades), it resulted from an extreme precipitation event that was much shorter (< 24 hours) 

and had a much lower total rainfall than other major flood events like the two-month 

flooding in Bangladesh in 1998.42 Further, in the most affected districts of Beijing (e.g., 

Fangshan District), most residents were evacuated within a day,2 which may have helped 

prevent additional flood-related deaths on following days. Flood characteristics can be 

important in determining patterns in flood-associated health risks;43,50 future research could 

explore whether community-wide flood mortality risks, including patterns in lagged effects 

following the flood, can be partially explained by variation in factors like the duration of 

rainfall and the community’s emergency response measures. Finally, here we take an 

approach of modeling associations at a lag from a single peak flood day. While appropriate 

given the characteristics of this flood, this approach would be less appropriate for other types 

of flood events. For example, river floods can have a slow onset, building over many days, 

and can persist for days or weeks.5 In that case, continuing flooding would have lasting 

impacts on human health, thus modeling associations based on lag from a single peak flood 

may be ambiguous.

One limitation of this study is that we were unable to explore district-level mortality risks 

and impacts of this flood, as mortality data at the district level were not available. The 

intensity of this rainfall was heterogeneous across Beijing;4,8 for example, the average 

hourly precipitation on July 21–22 in the Fangshan District (in the southwest of Beijing) was 

15.2 mm, while in the Huairou District (northeast of Beijing) it was 5.7 mm.8 Based on one 

of the studies that analyzed this event using a traditional disaster surveillance method,8 the 
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amount of rainfall in a person’s neighborhood was found to be an important factor in the 

risks of flood-related mortality, a pattern we are unable to explore using city-level data. A 

second limitation stems from the difficulty of estimating increases in community-wide 

mortality rates compared to reference periods. However, we found our key conclusions (an 

approximately 30% increased risk in all-cause mortality associated with the flood, with 

important contributions from both circulatory and accidental deaths) were robust across 

several study designs considered, all of which compare mortality rates during the flood to 

different non-flood reference periods, adding weight to these conclusions, although choices 

among study design added some uncertainty to the exact quantitative estimates of risks and 

associated impacts, particularly for accidental mortality outcomes. Finally, while the 

sensitivity analysis suggested that the main results were not confounded by PM2.5, we were 

not able to test for potential confounding by another air pollutant, ground-level ozone, which 

can reach concentrations dangerous to human health in Beijing.51 Since the formation of 

ozone is a function of sunlight and temperature,52 its concentration was likely lower on the 

peak flood day, when torrential rainfall occurred, than on other summer days, and so failure 

to control for ozone pollution may bias our estimates towards the null if some of the 

unexposed days were characterized by high ozone levels. We lacked complete ozone data 

from 2012 and other study years to test for such confounding, but with the recent 

implementation of wide-scale ozone monitoring in China,51 future research on more recent 

flood events could investigate this.

Recent and expected climate trends make it critical to improve our understanding of the 

health risks associated with climate-related disasters, including floods, in order to mitigate 

the health impacts of future events. Our study city, Beijing, is located in the North China 

Plain, where although the amount and frequency of rainfall have decreased over the last 

decades,53 the intensity of heavy rainfall is projected to increase substantially over the next 

few decades.54 Although flood events as severe as the one investigated in this study have to 

date been rare in Beijing, floods of similar magnitude may be more common in the coming 

decades. Throughout China, most regions have experienced an increase in extreme rainfall 

events and are expected to experience an increased frequency of severe flood events through 

the end of the 21st century,53,54 as are many other locations worldwide (e.g., Europe and the 

Midwest and Northeast regions of the U.S.).55,56 This study, and similar studies estimating 

the community-wide change in mortality rates during flood events, can add to existing 

studies of flood-related mortality based on a traditional surveillance method to offer critical 

evidence in assessing flood-related health impacts and crafting strategies to limit or prevent 

flood-related deaths during future events.
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Sources of financial support:

This research was supported by a R00ES022631 from National Institute of Environmental Health Science as well as 
grants from the National Natural Science Foundation of China (Grant: 21277135), Beijing Natural Science 
Foundation (7172145), and the National High-level Talents Special Support Plan of China for Young Talents.

Yan et al. Page 9

Epidemiology. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

1. Chen S, Liu H, You Y, et al. Evaluation of high-resolution precipitation estimates from satellites 
during July 2012 Beijing flood event using dense rain gauge observations. PLoS One 
2014;9(4):e89681. [PubMed: 24691358] 

2. Wang K, Wang L, Wei Y-M, Ye M. Beijing storm of July 21, 2012: Observations and reflections. 
Natural Hazards 2013;67(2):969–74.

3. Andrew Jacobs. Heavy Rains Blamed for at Least 37 Deaths in Beijing. The New York Times 2012 
7 https://www.nytimes.com/2012/07/23/world/asia/beijing-rains-leave-dozens-dead.html. Accessed 
17 Sept 2019.

4. Hénonin J, Hongtao M, Zheng-Yu Y, et al. Citywide multi-grid urban flood modelling: the July 2012 
flood in Beijing. Urban Water Journal 2015;12(1):52–66.

5. Doswell III CA. Flooding. Encyclopedia of Atmospheric Sciences 2003 Elsevier Science Ltd, 
Amsterdam.

6. Yin Z, Guo W, Li N, and Xie Y. Numerical Simulation of Urban Ponding in Beijing. Meteorological 
Monthly 2015;41(9):1111–1118. (In Chinese).

7. Zhen X, Tan Z. Beijing Flood Death Toll Hit 77. China Daily 2012 http://www.chinadaily.com.cn/
china/2012-07/27/content_15622158.htm. Accessed 17 Sept 2019.

8. Liu J, Wang S-Y. Analysis of human vulnerability to the extreme rainfall event on 21–22 July 2012 
in Beijing, China. Natural Hazards and Earth System Sciences 2013;13(11):2911–26.

9. Du W, FitzGerald G, Hou X-Y, Zhu W. A case study in flood fatality: Beijing July 2012 flood. 2013 
Available from: http://eprints.qut.edu.au/76146/. Accessed 22 Jan 2019.

10. Rocha LA, Fromknecht CQ, Redman SD, Brady JE, Hodge SE, and Noe RS. Medicolegal death 
scene investigations after natural disaster-and weather-related events: A review of the literature.” 
Academic Forensic Pathology 2017;7(2): 221–39. [PubMed: 28845205] 

11. McKinney N, Houser C, Meyer-Arendt K. Direct and indirect mortality in Florida during the 2004 
hurricane season. International Journal of Biometeorology 2011;55(4):533–46. [PubMed: 
20924612] 

12. Naumann RB, Dellinger AM, Kresnow M-J. Driving self-restriction in high-risk conditions: How 
do older drivers compare to others? Journal of Safety Research 2011;42(1):67–71. [PubMed: 
21392632] 

13. Anderson GB, Bell ML. Heat waves in the United States: Mortality risk during heat waves and 
effect modification by heat wave characteristics in 43 US communities. Environmental Health 
Perspectives 2011;119(2):210. [PubMed: 21084239] 

14. Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient 
temperature: A multicountry observational study. The Lancet 2015;386(9991):369–75.

15. Ashley ST, Ashley WS. Flood fatalities in the United States. Journal of Applied Meteorology and 
Climatology 2008;47(3):805–18.

16. FitzGerald G, Du W, Jamal A, Clark M, Hou X-Y. Flood fatalities in contemporary Australia 
(1997–2008). Emergency Medicine Australasia 2010;22(2):180–6. [PubMed: 20534054] 

17. Milojevic A, Armstrong B, Kovats S, et al. Long-term effects of flooding on mortality in England 
and Wales, 1994–2005: Controlled interrupted time-series analysis. Environmental Health 
2011;10(1):11. [PubMed: 21288358] 

18. Stephens KU, Grew D, Chin K, et al. Excess mortality in the aftermath of Hurricane Katrina: A 
preliminary report. Disaster Medicine and Public Health Preparedness 2007;1(1):15–20. [PubMed: 
18388597] 

19. Bennet G. Bristol floods 1968. Controlled survey of effects on health of local community disaster. 
British Medical Journal 1970;3(5720):454. [PubMed: 5454327] 

20. Milojevic A, Armstrong B, Hashizume M, et al. Health effects of flooding in rural Bangladesh. 
Epidemiology 2012;23(1):107–15. [PubMed: 22082995] 

21. Obrová J, Sovová E, Ivanová K, Táborsky M, Loyka S. Effects of the July 1997 floods in the 
Czech Republic on cardiac mortality. Disaster Medicine and Public Health Preparedness 
2014;8(6):492–6. [PubMed: 25418017] 

Yan et al. Page 10

Epidemiology. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nytimes.com/2012/07/23/world/asia/beijing-rains-leave-dozens-dead.html
http://www.chinadaily.com.cn/china/2012-07/27/content_15622158.htm
http://www.chinadaily.com.cn/china/2012-07/27/content_15622158.htm
http://eprints.qut.edu.au/76146/


22. Chae E-H, Kim TW, Rhee S-J, Henderson TD. The impact of flooding on the mental health of 
affected people in South Korea. Community Mental Health Journal 2005;41(6):633–45. [PubMed: 
16328579] 

23. Carroll B, Balogh R, Morbey H, Araoz G. Health and social impacts of a flood disaster: 
Responding to needs and implications for practice. Disasters 2010;34(4):1045–63. [PubMed: 
20618385] 

24. National Bureau of Statistics of China. National data [Internet]. 2016 [cited 2018 Jun 1];Available 
from: http://data.stats.gov.cn/english/easyquery.htm?cn=E0103. Accessed 22 Jan 2019

25. World Health Organization. International Statistical Classification of Diseases and Related Health 
Problems, 10th Revision [Internet]. World Health Organization; 2003 Available from: http://
apps.who.int/classifications/apps/icd/icd10online2003/fr-icd.htm. Accessed 22 Jan 2019.

26. Schwartz J, Marcus A. Mortality and air pollution in London: a time series analysis. American 
Journal of Epidemiology 1990;131(1): 185–194. [PubMed: 2403468] 

27. Levy D, Lumley T, Sheppard L, Kaufman J, Checkoway H. Referent selection in case-crossover 
analyses of acute health effects of air pollution. Epidemiology 2001;12(2): 186–192. [PubMed: 
11246579] 

28. Kishore N, Marqués D, Mahmud A, et al. Mortality in Puerto Rico after Hurricane Maria. New 
England Journal of Medicine 2018;379(2): 162–170. [PubMed: 29809109] 

29. Bobb JF, Obermeyer Z, Wang Y, Dominici F. Cause-specific risk of hospital admission related to 
extreme heat in older adults. Journal of the American Medical Association 2014;312(24): 2659–
2667. [PubMed: 25536257] 

30. Liu JC, Wilson A, Mickley LJ, et al. Wildfire-specific fine particulate matter and risk of hospital 
admissions in urban and rural counties. Epidemiology 2017;28(1): 77–85. [PubMed: 27648592] 

31. Gasparrini A. Modeling exposure–lag–response associations with distributed lag non-linear 
models. Statistics in Medicine 2014;33(5):881–99. [PubMed: 24027094] 

32. Steenland K, Armstrong B. An overview of methods for calculating the burden of disease due to 
specific risk factors. Epidemiology 2006;17(5):512–9. [PubMed: 16804473] 

33. Chen R, Yin P, Meng X, et al. “Fine particulate air pollution and daily mortality. A nationwide 
analysis in 272 Chinese cities.” American Journal of Respiratory and Critical Care Medicine 
2017;196(1): 73–81. [PubMed: 28248546] 

34. Choi Y, Ho C, Kim J, Gong D, Park RJ. “The impact of aerosols on the summer rainfall frequency 
in China.” Journal of Applied Meteorology and Climatology 2008;47(6): 1802–1813.

35. Armstrong BG, Gasparrini A, Tobias A. Conditional Poisson models: a flexible alternative to 
conditional logistic case cross-over analysis. BMC Medical Research Methodology 
2014;14(1):122. [PubMed: 25417555] 

36. Du W, FitzGerald GJ, Clark M, Hou X-Y. Health impacts of floods. Prehospital and Disaster 
Medicine 2010;25(3):265–72. [PubMed: 20586021] 

37. Schatz JJ. Floods hamper health-care delivery in southern Africa. The Lancet 2008; 
371(9615):799–800.

38. Axelrod C, Killam PP, Gaston MH, Stinson N. Primary health care and the Midwest flood disaster. 
Public Health Reports 1994;109(5):601. [PubMed: 7938379] 

39. Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nature Reviews Cardiology 
2012;9(6):360. [PubMed: 22473079] 

40. Leor J, Kloner RA. The Northridge earthquake as a trigger for acute myocardial infarction. 
American Journal of Cardiology 1996;77(14):1230–2. [PubMed: 8651102] 

41. Steinberg JS, Arshad A, Kowalski M, et al. Increased incidence of life-threatening ventricular 
arrhythmias in implantable defibrillator patients after the World Trade Center attack. Journal of the 
American College of Cardiology 2004;44(6):1261–4. [PubMed: 15364329] 

42. Kunii O, Nakamura S, Abdur R, Wakai S. The impact on health and risk factors of the diarrhoea 
epidemics in the 1998 Bangladesh floods. Public Health 2002;116(2):68–74. [PubMed: 11961673] 

43. Ruin I, Creutin J-D, Anquetin S, Lutoff C. Human exposure to flash floods—Relation between 
flood parameters and human vulnerability during a storm of September 2002 in Southern France. 
Journal of Hydrology 2008;361(1–2):199–213.

Yan et al. Page 11

Epidemiology. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://data.stats.gov.cn/english/easyquery.htm?cn=E0103
http://apps.who.int/classifications/apps/icd/icd10online2003/fr-icd.htm
http://apps.who.int/classifications/apps/icd/icd10online2003/fr-icd.htm


44. Barbeau DN, Grimsley LF, White LE, El-Dahr JM, Lichtveld M. Mold exposure and health effects 
following Hurricanes Katrina and Rita. Annual Review of Public Health 2010;31:165–78.

45. Mendell MJ, Mirer AG, Cheung K, Douwes J. Respiratory and allergic health effects of dampness, 
mold, and dampness-related agents: A review of the epidemiologic evidence. Environmental 
Health Perspectives 2011;119(6):748. [PubMed: 21269928] 

46. Biswas R, Pal D, Mukhopadhyay S. A community-based study on health impact of flood in a 
vulnerable district of West Bengal. Indian Journal of Public Health 1999;43(2):89–90. [PubMed: 
11243077] 

47. Siddique A, Baqui A, Eusof A, Zaman K. 1988 floods in Bangladesh: Pattern of illness and causes 
of death. Journal of Diarrhoeal Diseases Research 1991;310–4. [PubMed: 1800561] 

48. Ahern M, Kovats RS, Wilkinson P, Few R, & Matthies F. Global health impacts of floods: 
epidemiologic evidence. Epidemiologic Reviews 2005;27(1):36–46. [PubMed: 15958425] 

49. Galea S, Nandi A, Vlahov D. The epidemiology of post-traumatic stress disorder after disasters. 
Epidemiologic Reviews 2005;27(1):78–91. [PubMed: 15958429] 

50. Jonkman SN, Maaskant B, Boyd E, Levitan ML. Loss of life caused by the flooding of New 
Orleans after Hurricane Katrina: Analysis of the relationship between flood characteristics and 
mortality. Risk Analysis 2009;29(5):676–98. [PubMed: 19187485] 

51. Lu X, Hong J, Zhang L, et al. Severe surface ozone pollution in China: A global perspective. 
Environmental Science & Technology Letters 2018;5(8): 487–494.

52. Stathopoulou E, Mihalakakou G, Santamouris M, Bagiorgas HS. On the impact of temperature on 
tropospheric ozone concentration levels in urban environments. Journal of Earth System Science 
2008;117(3):227–36.

53. Fu G, Yu J, Yu X, et al. Temporal variation of extreme rainfall events in China, 1961–2009. Journal 
of Hydrology 2013;487:48–59.

54. Chen H, Sun J, Chen X. Future changes of drought and flood events in China under a global 
warming scenario. Atmospheric and Oceanic Science Letters 2013;6(1):8–13.

55. Alfieri L, Feyen L, Dottori F, Bianchi A. Ensemble flood risk assessment in Europe under high end 
climate scenarios. Global Environmental Change 2015;35:199–212.

56. Melillo JM, Richmond T, Yohe GW, Eds. Highlights of climate change impacts in the United 
States: The Third National Climate Assessment [Internet] U.S. Global Change Research Program; 
2014 Available from: http://s3.amazonaws.com/nca2014/high/NCA3_Highlights_HighRes.pdf?
download=1. Accessed 22 Jan 2019.

Yan et al. Page 12

Epidemiology. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://s3.amazonaws.com/nca2014/high/NCA3_Highlights_HighRes.pdf?download=1
http://s3.amazonaws.com/nca2014/high/NCA3_Highlights_HighRes.pdf?download=1


Figure 1. 
Daily mortality counts for Beijing residents in July 2012 (red) compared with average 

mortality counts in July of previous years for (A) all-cause mortality, (B) circulatory 

mortality, (C) respiratory mortality, and (D) accidental mortality. Shown for comparison are 

the mean (blue line) of the five-day moving average of mortality, as well as the range (grey 

area) of daily mortality counts in July of the four previous years (2008–2011). The yellow 

vertical lines show the peak flood day (July 22).
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Figure 2. 
Estimates of the relative risk of mortality for four mortality outcomes on the peak flood day 

(lag 0) and on the four following days (lags 1–4) compared with matched unexposed days 

from other years, with modeled control for temperature and long-term mortality trends. Dots 

show point estimates and horizontal lines show 95% confidence intervals. The gray vertical 

line shows as a reference a relative risk of 1.
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Table 1.

Estimates of relative risk of mortality compared to matched unexposed days, as well as the resulting estimates 

of flood-associated excess deaths, among Beijing residents on the peak flood day (July 21, 2012) and the 

following day. For each point estimate, 95% confidence intervals are shown in parentheses.

Relative risk on July 21, 
2012 (peak flood day)

Relative risk on July 22, 
2012

Excess deaths on peak 

flood day
a

Excess deaths on July 

21–22, 2012
b

All-cause mortality 1.34 (1.11, 1.61) 1.11 (0.91, 1.35) 59 (23, 89) 79 (22, 125)

Circulatory 
mortality

1.37 (1.01, 1.85) 1.22 (0.90, 1.65) 28 (1, 49) 46 (6, 79)

Respiratory 
mortality

0.94 (0.52, 1.72) 0.64 (0.32, 1.28) −1 (−14, 6) −7 (−29, 5)

Accidental mortality 4.40 (2.98, 6.51) 1.49 (0.82, 2.71) 24 (21, 26) 28 (20, 32)

a
Confidence intervals were calculated based on the uncertainty of estimated relative risk on the peak flood day.

b
Confidence intervals were calculated using Monte Carlo simulation (details in the Supplementary Material).
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Table 2.

Sensitivity of estimates of relative risk on the peak flood day (July 21, 2012) to study design and modeling 

choices. The first row repeats the estimates generated based on our primary analysis (also shown in Table 1). 

All other rows show estimates based on alternative study design or modeling choices; see the Methods for 

descriptions of each. Shown in parentheses are the 95% confidence intervals for each estimate.

All-cause mortality Circulatory mortality Respiratory mortality Accidental mortality

Primary analysis 1.34 (1.11, 1.61) 1.37 (1.01, 1.85) 0.94 (0.52, 1.72) 4.40 (2.98, 6.51)

Matching by month 1.35 (1.11, 1.63) 1.38 (1.01, 1.88) 0.91 (0.50, 1.66) 3.86 (2.70, 5.54)

PM2.5-adjusted 1.33 (1.09, 1.62) 1.32 (0.97, 1.79) 0.90 (0.49, 1.66) 4.55 (2.96, 6.98)

Not temperature-adjusted 1.27 (1.02, 1.57) 1.28 (0.92, 1.77) 0.88 (0.48, 1.64) 4.22 (2.87, 6.21)

Time series 1.30 (1.11, 1.52) 1.33 (1.06, 1.67) 0.93 (0.55, 1.56) 5.48 (3.73, 8.06)

Case-crossover 1.33 (1.09, 1.62) 1.38 (1.04, 1.83) 0.85 (0.46, 1.57) 6.64 (3.48, 12.67)
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