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Abstract
We investigate a well-known phenomenon of variational approaches in image processing, where typically the best image
quality is achieved when the gradient flow process is stopped before converging to a stationary point. This paradox originates
from a tradeoff between optimization and modeling errors of the underlying variational model and holds true even if deep
learning methods are used to learn highly expressive regularizers from data. In this paper, we take advantage of this paradox
and introduce an optimal stopping time into the gradient flow process, which in turn is learned from data by means of an
optimal control approach. After a time discretization, we obtain variational networks, which can be interpreted as a particular
type of recurrent neural networks. The learned variational networks achieve competitive results for image denoising and image
deblurring on a standard benchmark data set. One of the key theoretical results is the development of first- and second-order
conditions to verify optimal stopping time. A nonlinear spectral analysis of the gradient of the learned regularizer gives
enlightening insights into the different regularization properties.

Keywords Variational problems · Gradient flow · Optimal control theory · Early stopping · Variational networks ·
Deep learning

Mathematics Subject Classification 68T45 · 93A30 · 34H05 · 49K15 · 65L05

1 Introduction

Throughout the past years, numerous image restoration tasks
in computer vision such as denoising [38] or super-resolution
[39] have benefited from a variety of pioneering and novel
variational methods. In general, variational methods [9] are
aiming at the minimization of an energy functional designed
for a specific image reconstruction problem, where the
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energy minimizer defines the restored output image. For the
considered image restoration tasks, the observed corrupted
image is generated by a degradation process of the corre-
sponding ground truth image, which is the real uncorrupted
image.

In this paper, the energy functional is composed of an a pri-
ori known, task-dependent, and quadratic data fidelity term
and a Field-of-Experts-type regularizer [36], whose building
blocks are learned kernels and learned activation functions.
This regularizer generalizes the prominent total variation
regularization functional and is capable of accounting for
higher-order image statistics. A classical approach to min-
imize the energy functional is a continuous-time gradient
flow, which defines a trajectory emanating from a fixed ini-
tial image. Typically, the regularizer is adapted such that the
end point image of the trajectory lies in a proximity of the
corresponding ground truth image. However, even the gen-
eral class of Field-of-Experts-type regularizers is not able to
capture the entity of the complex structure of natural images,
that is why the end point image may substantially differ from
the ground truth image. To address this insufficientmodeling,
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we advocate an optimal control problem using the gradient
flow differential equation as the state equation and a cost
functional that quantifies the distance of the ground truth
image and the gradient flow trajectory evaluated at the stop-
ping time T . Besides the parameters of the regularizer, the
stopping time is an additional control parameter learned from
data.

The main contribution of this paper is the derivation of
criteria to automatize the calculation of the optimal stopping
time T for the aforementioned optimal control problem. In
particular, we observe in the numerical experiments that the
learned stopping time is always finite even if the learning
algorithm has the freedom to choose a larger stopping time.

For the numerical optimization, we discretize the state
equation by means of the explicit Euler and Heun schemes.
This results in an iterative scheme which can be interpreted
as static variational networks [11,19,24] as a subclass of
deep learning models [26]. Here, the prefix “static” refers to
constant regularizers with respect to time. In several exper-
iments we demonstrate the superiority of the learned static
variational networks for image restoration tasks terminated
at the optimal stopping time over classical variational meth-
ods. Consequently, the early stopped gradient flow approach
is better suited for image restoration problems and computa-
tionallymore efficient than the classical variational approach.

A well-knownmajor drawback of mainstream deep learn-
ing approaches is the lack of interpretability of the learned
networks. In contrast, following [16], the variational struc-
ture of the proposed model allows us to analyze the learned
regularizers by means of a nonlinear spectral analysis.
The computed eigenpairs reveal insightful properties of the
learned regularizers.

There have been several approaches to cast deep learning
models as dynamical systems in the literature, in which the
model parameters can be seen as control parameters of an
optimal control problem. E [12] clarified that deep neural
networks such as residual networks [21] arise from a dis-
cretization of a suitable dynamical system. In this context,
the training process can be interpreted as the computation
of the controls in the corresponding optimal control prob-
lem. In [27,28], Pontryagin’smaximumprinciple is exploited
to derive necessary optimality conditions for the optimal
control problem in continuous time, which results in a rig-
orous discrete-time optimization. Certain classes of deep
learning networks are examined as mean-field optimal con-
trol problems in [13], where optimality conditions of the
Hamilton–Jacobi–Bellman type and the Pontryagin type are
derived. The effect of several discretization schemes for
classification tasks has been studied under the viewpoint of
stability in [4,7,17], which leads to a variety of different net-
work architectures that are empirically proven to be more
stable.

The benefit of early stopping for iterative algorithms is
examined in the literature from several perspectives. In the
context of ill-posed inverse problems, early stopping of iter-
ative algorithms is frequently considered and analyzed as
a regularization technique. There is a variety of literature
on the topic, and we therefore only mention the selected
monographs [14,23,34,41]. Frequently, early stopping rules
for inverse problems are discussed in the context of the
Landweber iteration [25] or its continuous analogue com-
monly referred to as Showalter’s method [44] and are based
on criteria such as the discrepancy or the balancing principle.

In what follows, we provide an overview of recent
advances related to early stopping. Raskutti et al. [37] exploit
early stopping for nonparametric regression problems in
reproducing kernel Hilbert spaces (RKHS) to prevent over-
fitting and derive a data-dependent stopping rule. Yao et al.
[42] discuss early stopping criteria for gradient descent algo-
rithms for RKHS and relate these results to the Landweber
iteration. Quantitative properties of the early stopping con-
dition for the Landweber iteration are presented in Binder
et al. [5]. Zhang and Yu [45] prove convergence and consis-
tency results for early stopping in the context of boosting.
Prechelt [33] introduces several heuristic criteria for optimal
early stopping based on the performance of the training and
validation error.Rosasco andVilla [35] investigate early stop-
ping in the context of incremental iterative regularization and
prove sample bounds in a stochastic environment.Matet et al.
[30] exploit an early stoppingmethod to regularize (strongly)
convex functionals. In contrast to these approaches, we pro-
pose early stopping on the basis of finding a local minimum
with respect to the time horizon of a properly defined energy.

To illustrate the necessity of early stopping for iterative
algorithms, we revisit the established TV-L2 denoising func-
tional [38], which amounts to minimizing the variational
problem E[u] = ‖u − g‖2

L2(�)
+ ν|Du|(�) among all func-

tions u ∈ BV(�), where� ⊂ R
n denotes a bounded domain,

ν > 0 is the regularization parameter and g ∈ L∞(�) refers
to a corrupted input image. An elementary, yet very inef-
ficient optimization algorithm relies on a gradient descent
using a finite difference discretization for the regularized
functional (ε > 0)

Eε[uh] = ‖uh − gh‖2L2(�h)

+ ν
∑

(i, j)∈�h

√
|(Duh)i, j |2 + ε2, (1)

where �h denotes a lattice, uh, gh : �h → R are discrete
functions and (Duh)i, j is a finite difference gradient operator
with Neumann boundary constraint (for details see [8, Sec-
tion 3]). For a comprehensive list of state-of-the-art methods
to efficiently solve TV-based variational problems, we refer
the reader to [9].
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Fig. 1 Contour plot of the peak signal-to-noise ratio depending on
the number of iterations and the regularization parameter ν for TV-L2

denoising. The globalmaximum ismarkedwith a red cross (Color figure
online)

Figure 1 depicts the dependency of the peak signal-to-
noise ratio on the number of iterations and the regularization
parameter ν for the TV-L2 problem (1) using a step size 10−4

and ε = 10−6, where the input image g ∈ L∞(�h, [0, 1])
with a resolution of 512 × 512 is corrupted by additive
Gaussian noise with standard deviation 0.1. As a result, for
each regularization parameter ν there exists a unique optimal
number of iterations, where the signal-to-noise ratio peaks.
Beyond this point, the quality of the resulting image is dete-
riorated by staircasing artifacts and fine texture patterns are
smoothed out. The global maximum (26, 0.0474) is marked
with a red cross, the associated image sequence is shown in
Fig. 2 (left to right: input image, noisy image, restored images
after 13, 26, 39, 52 iterations).1 If the gradient descent is con-
sidered as a discretization of a time continuous evolution
process governed by a differential equation, then the optimal
number of iterations translates to an optimal stopping time.

In this paper, we refer to the standard inner product in the
Euclidean space Rn by 〈·, ·〉. Let � ⊂ R

n be a domain. We
denote the space of continuous functions byC0(�), the space
of k-times continuously differentiable functions by Ck(�)

for k ≥ 1, the Lebesgue space by L p(�), p ∈ [1,∞),
and the Sobolev space by Hm(�) = Wm,2(�), m ∈ N,
where the latter space is endowed with the Sobolev (semi-
)norm for f ∈ Hm(�) defined as | f |Hm (�) = ‖Dm f ‖L2(�)

and ‖ f ‖Hm (�) = (
∑m

j=0 | f |2
H j (�)

)
1
2 . With a slight abuse of

notation, we frequently set Ck(�) = C0(�) ∩ Ck(�). The
identity matrix inRn is denoted by Id. 1 = (1, . . . , 1)� ∈ R

n

is the one vector.

1 Image by Nichollas Harrison (CC BY-SA 3.0).

This paper is organized as follows: In Sect. 2, we argue
that certain classes of image restoration problems can be
perceived as optimal control problems, in which the state
equation coincides with the evolution equation of static vari-
ational networks, and we prove the existence of solutions
under quite general assumptions. Moreover, we derive a first
order necessary as well as a second-order sufficient condi-
tion for the optimal stopping time in this optimal control
problem. A Runge–Kutta time discretization of the state
equation results in the update scheme for static variational
network, which is discussed in detail in Sect. 3. In addition,
wevisualize the effect of the optimality conditions in a simple
numerical example in R2 and discuss alternative approaches
for the derivation of static variational networks. Finally, we
demonstrate the applicability of the optimality conditions to
two prototype image restoration problems in Sect. 4: denois-
ing and deblurring.

2 Optimal Control Approach to Early
Stopping

In this section, we derive a time continuous analog of
static variational networks as gradient flows of an energy
functional E composed of a data fidelity term D and a
Field-of-Experts-type regularizer R. The resulting ordinary
differential equation is used as the state equation of an
optimal control problem, in which the cost functional incor-
porates the squared L2-distance of the state evaluated at the
optimal stopping time to the ground truth aswell as (box) con-
straints of the norms of the stopping time, the kernels and the
activation functions. We prove the existence of minimizers
of this optimal control problem under quite general assump-
tions. Finally, we derive first- and second-order optimality
conditions for the optimal stopping time using a Lagrangian
approach.

Let u ∈ R
n be a data vector, which is either a signal of

length n in 1D, an image of size n = n1 ×n2 in 2D or spatial
data of size n = n1 × n2 × n3 in 3D. Since we are primarily
interested in two-dimensional image restoration, we focus on
this task in the rest of this paper and merely remark that all
results can be generalized to the remaining cases. For con-
venience, we restrict to grayscale images, the generalization
to color or multi-channel images is straightforward. In what
follows, we analyze an energy functional of the form

E[u] = D[u] + R[u] (2)

that is composed of a data fidelity term D and a regular-
izer R specified below. We incorporate the Field-of-Experts
regularizer [36], which is a common generalization of the
discrete total variation regularizer and is given by
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Fig. 2 Image sequence with globally best PSNR value. Left to right: input image, noisy image, restored images after 13, 26, 39, 52 iterations

R[u] =
NK∑

k=1

m∑

i=1

ρk((Kku)i )

with kernels Kk ∈ R
m×n and associated nonlinear func-

tions ρk : R → R for k = 1, . . . , NK .
Throughout this paper, we consider the specific data

fidelity term

D[u] = 1

2
‖Au − b‖22

for fixed A ∈ R
l×n and fixed b ∈ R

l . We remark that various
image restoration tasks can be cast in exactly this form for
suitable choices of A and b [9].

The gradient flow [1] associated with the energy E for a
time t ∈ (0, T ) reads as

˙̃x(t) = −DE[x̃(t)]

= −A�(Ax̃(t) − b) −
NK∑

k=1

K�
k �k(Kk x̃(t)), (3)

x̃(0) = x0, (4)

where x̃ ∈ C1([0, T ],Rn) denotes the flow of E with T ∈ R,
and the function �k ∈ Vs is given by

(y1, . . . , ym)� �→ (ρ′
k(y1), . . . , ρ

′
k(ym))�.

For a fixed s ≥ 0 and an a priori constant-bounded open-
interval I ⊂ R, we consider Cs(R,R)-conforming basis
functions ψ1, . . . , ψNw with compact support in I for Nw ≥
1. The vectorial function space Vs for the activation func-
tions is composed of m identical component functions φ ∈
Cs(R,R), which are given as the linear combination of
(ψ j )

Nw

j=1 with weight vector w ∈ R
Nw , i.e.

Vs :=
⎧
⎨

⎩� = (φ, . . . , φ) : Rm → R
m
∣∣∣∣φ =

Nw∑

j=1

w jψ j

⎫
⎬

⎭ .

(5)

We remark that in contrast to [4,17], inverse problems for
image restoration rather than image classification are exam-
ined. Thus, we incorporate in (3) the classical gradient flow
with respect to the full energy functional in order to promote
data consistency, whereas in the classification tasks, only the
gradient flow with respect to the regularizer is considered.

In what follows, we analyze an optimal control problem,
for which the state equation (3) and initial condition (4) will
arise as equality constraints. The cost functional J incorpo-
rates the L2-distance of the flow x̃ evaluated at time T and
the ground truth state xg ∈ R

n and is given by

J̃ (T , (Kk,�k)
NK
k=1) := 1

2
‖x̃(T ) − xg‖22.

We assume that the controls T , Kk and �k satisfy the box
constraints

0 ≤ T ≤ Tmax, α(Kk) ≤ 1, β(�k) ≤ 1, (6)

as well as the zero mean condition

Kk1 = 0 ∈ R
m . (7)

Here, we have k = 1, . . . , NK and we choose a fixed param-
eter Tmax > 0. Further, α : Rm×n → R

+
0 and β : Vs → R

+
0

are continuously differentiable functions with non-vanishing
gradient such that α(K ) → ∞ and β(�) → ∞ as ‖K‖2 →
∞ and ‖�‖L∞ → ∞.We include the condition (7) to reduce
the dimensionality of the kernel space. Moreover, this con-
dition ensures an invariance with respect to gray-value shifts
of image intensities.
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Fig. 3 Schematic drawing of optimal trajectory (black curve) as well
as suboptimal trajectories (gray dashed curves) emanating from x0 with
ground truth xg , optimal restored image x̃(T ), sink/stable node x̃∞ and
energy isolines (red concentric circles) (Color figure online)

Theparticular choice of the cost functional originates from
the observation that a visually appealing image restoration is
obtained as the closest point on the trajectory of the flow x̃
(reflected by the L2-distance) to xg subjected to a moderate
flow regularization as quantified by the box constraints. Fig-
ure 3 illustrates this optimization task for the optimal control
problem. Among all trajectories of the ordinary differential
equation (3) emanating from a constant initial value x0, one
seeks the trajectory that is closest to the ground truth xg
in terms of the squared Euclidean distance as visualized by
the energy isolines. Note that each trajectory is uniquely
determined by (Kk,�k)

NK
k=1. The sink/stable node x̃∞ is an

equilibrium point of the ordinary differential equation, in
which all eigenvalues of the Jacobian of the right-hand side
of (3) have negative real parts [40].

The constraint of the stopping time is solely required for
the existence theory. For the image restoration problems, a
finite stopping time can always be observed without con-
straints. Hence, the optimal control problem reads as

min
T∈R,Kk∈Rm×n ,�k∈Vs

J̃ (T , (Kk,�k)
NK
k=1) (8)

subject to the constraints (6) and (7) as well as the nonlinear
autonomous initial value problem (Cauchy problem) repre-
senting the state equation

˙̃x(t) = f (x̃(t), (Kk,�k)
NK
k=1)

:= − A�(Ax̃(t) − b) −
NK∑

k=1

K�
k �k(Kk x̃(t)) (9)

for t ∈ (0, T ) and x̃(0) = x0. We refer to the minimiz-
ing time T in (8) as the optimal early stopping time. To
better handle this optimal control problem, we employ the
reparametrization x(t) = x̃(tT ), which results in the equiv-
alent optimal control problem

min
T∈R,Kk∈Rm×n ,�k∈Vs

J (T , (Kk,�k)
NK
k=1) (10)

subject to (6), (7) and the transformed state equation

ẋ(t) = T f (x(t), (Kk,�k)
NK
k=1), x(0) = x0 (11)

for t ∈ (0, 1), where

J (T , (Kk,�k)
NK
k=1) := 1

2
‖x(1) − xg‖22.

Remark 1 The long-term dynamics of the nonlinear
autonomous state equation (11) is determined by the set
of fixed points {y ∈ R

n : f (y) = 0} of f . A system is
asymptotically stable at a fixed point y if all real parts of
the eigenvalues of Df (y) are strictly negative [18,40]. In the
case of convex potential functions ρ with unbounded sup-
port and a full rank matrix A, the autonomous differential
equation (3) is asymptotically stable.

In the next theorem, we apply the direct method in the cal-
culus of variations to prove the existence of minimizers for
the optimal control problem.

Theorem 1 (Existence of solutions) Let s ≥ 0. Then the min-
imum in (10) is attained.

Proof Without restriction, we solely consider the case NK =
1 and omit the subscript.

Let (T i , Ki ,�i ) ∈ R × R
m×n × Vs be a minimizing

sequence for J with an associated state xi ∈ C1([0, 1],Rn)

such that (6), (7) and (11) hold true (the existence of xi is ver-
ified below). The coercivity of α and β implies ‖Ki‖2 ≤ Cα

and ‖�i‖L∞ ≤ Cβ for fixed constants Cα,Cβ > 0. Due
to the finite dimensionality of V and the boundedness of
‖�i‖L∞ ≤ Cβ , we can deduce the existence of a subse-
quence (not relabeled) such that �i → � ∈ V . In addition,
using the bounds T i ∈ [0, Tmax] and ‖Ki‖2 ≤ Cα we
can pass to further subsequences if necessary to deduce
(T i , Ki ) → (T , K ) for suitable (T , K ) ∈ [0, Tmax]×R

m×n

such that ‖K‖2 ≤ Cα . The state equation (11) implies

‖ẋ i (t)‖2
≤ T i‖Ki‖2‖�i‖L∞ + T i‖A‖2(‖A‖2‖xi (t)‖2 + ‖b‖2)
≤ TmaxCαCβ + Tmax‖A‖2(‖A‖2‖xi (t)‖2 + ‖b‖2).

This estimate already guarantees that [0, 1] is contained in
the maximum domain of existence of the state equation due
to the linear growth of the right-hand side in xi [40, Theo-
rem 2.17]. Moreover, Gronwall’s inequality [18,40] ensures
the uniform boundedness of ‖xi (t)‖2 for all t ∈ [0, 1] and all
i ∈ N, which in combination with the above estimate already
implies the uniform boundedness of ‖ẋ i (t)‖2. Thus, by pass-
ing to a subsequence (again not relabeled), we infer that
x ∈ H1((0, 1),Rn) exists such that x(0) = x0 (the pointwise
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evaluation is possible due to the Sobolev embedding theo-
rem), xi⇀x in H1((0, 1),Rn) and xi → x inC0([0, 1],Rn).
In addition, we obtain

‖T i (Ki )��i (Ki xi (t)) − T K��(Kx(t))‖C0([0,1]) → 0

as i → ∞ and ẋ(t) = −T K��(Kx(t))−T A�(Ax(t)−b)
holds true in a weak sense [18]. However, due to the con-
tinuity of the right-hand side, we can even conclude x ∈
C1([0, 1],Rn) [18, Chapter I]. Finally, the theorem follows
from the continuity of J along this minimizing sequence. ��
In the next theorem, a first-order necessary condition for the
optimal stopping time is derived.

Theorem 2 (First-order necessary condition for optimal stop-
ping time)Let s ≥ 1. Then for each stationary point (T , (Kk,

�k)
NK
k=1) of J with associated state x such that (6), (7) and

(11) are valid the equation

∫ 1

0
〈p(t), ẋ(t)〉 dt = 0 (12)

holds true.Here, p ∈ C1([0, 1],Rn) denotes the adjoint state
of x, which is given as the solution to the ordinary differential
equation

ṗ(t) =
NK∑

k=1

T K
�
k D�k(Kkx(t))Kk p(t) + T A�Ap(t) (13)

with terminal condition

p(1) = xg − x(1). (14)

Proof Again,without loss of generality,we restrict to the case
NK = 1 and omit the subscript. Let z = (x, T , K ,�) ∈
Z := H1((0, 1)) × [0, Tmax] × R

m×n × Vs be a sta-
tionary point of J , which exists due to Theorem 1. The
constraints (11), (6) and (7) can be written as

G(x, T , K ,�) ∈ C := {0} × {0} × R
−
0 × R

−
0 × {0},

where G : Z → P := L2((0, 1),Rn) × R
n × R × R × R

m

(note that L2((0, 1),Rn)∗ ∼= L2((0, 1),Rn)) is given by

G(x, T , K ,�) =

⎛

⎜⎜⎜⎜⎝

ẋ + T K��(Kx) + T A�(Ax − b)
x(0) − x0
α(K ) − 1
β(�) − 1

K1

⎞

⎟⎟⎟⎟⎠
.

For multipliers in the space P , we consider the associ-
ated Lagrange functional L : Z × P → R to minimize J

incorporating the aforementioned constraints, i.e., for z =
(x, T , K ,�) ∈ Z and p ∈ P we have

L(z, p) = J (T , K ,�) +
∫ 1

0
〈p1,G1(z)〉 dt

+
5∑

i=2

〈pi ,Gi (z)〉. (15)

Following [22,43], the Lagrange multiplier p exists if J is
Fréchet differentiable at z, G is continuously Fréchet differ-
entiable at z and z is regular, i.e.

0 ∈ int {DG(z)(Z − z) + G(z) − C} . (16)

The (continuous) Fréchet differentiability of J and G at z
can be proven in a straightforward manner. To show (16),
we first prove the surjectivity of DG1(z). For any z =
(x, T , K ,�) ∈ Z , we have

DG1(z)(z) = ẋ + T K
�
D�(Kx)Kx + T A�Ax

+ T K
�
�(Kx) + T A�(Ax − b)

+ T K��(Kx) + T K
�
D�(Kx)Kx

+ T K
�
�(Kx).

The surjectivity of DG1(z) with initial condition given by
x(0) = x0 follows from the linear growth in x , which implies
that the maximum domain of existence coincides with R.
This solution is in general only a solution in the sense of
Carathéodory [18,40]. Since α and β have non-vanishing
derivatives, the validity of (16) and thus the existence of the
Lagrange multiplier follow.

The first-order optimality conditions with test functions
x ∈ H1((0, 1),Rn), K ∈ R

m×n , � ∈ Vs and p ∈ P read as

Dx L(x, T , K ,�, p)(x)

= 〈x(1) − xg, x(1)〉 + 〈p2, x(0)〉

+
∫ 1

0
〈p1, ẋ + T K

�
D�(Kx)Kx + T A�Ax〉 dt = 0,

(17)

d

dT
L(x, T , K ,�, p)

=
∫ 1

0
〈p1, K�

�(Kx) + A�(Ax − b)〉 dt = 0, (18)

DK L(x, T , K ,�, p)(K )

=
∫ 1

0
〈p1, T K��(Kx) + T K

�
D�(Kx)Kx〉 dt

+ 〈p3, Dα(K )(K )〉 + 〈p5, K1〉 = 0,

D�L(x, T , K ,�, p)(�)
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=
∫ 1

0
〈p1, T K

�
�(Kx)〉 dt + 〈p4, Dβ(�)(�)〉 = 0,

DpL(x, T , K ,�, p)(p)

=
∫ 1

0
〈p1,G1(z)〉 dt +

5∑

i=2

〈pi ,Gi (z)〉 = 0. (19)

The fundamental lemma of calculus of variations yields in
combination with (17) and (19) for t ∈ (0, 1)

ẋ(t) = −T K
�
�(Kx(t)) − T A�(Ax(t) − b),

x(0) = x0, (20)

ṗ1(t) = T K
�
D�(Kx(t))K p1(t) + T A�Ap1(t),

p1(1) = xg − x(1) (21)

in a distributional sense. Since the right-hand sides of (20)
and (21) are continuous if s ≥ 1, we can conclude x, p ∈
C1([0, 1],Rn) [18,40] and hence (21) holds in the classical
sense. Finally, (18) and (19) imply

d

dT
L(x, T , K ,�, p) = − 1

T

∫ 1

0
〈p1, ẋ〉 dt = 0, (22)

which proves (12) if T > 0 (the case T = 0 is trivial). ��
Thepreceding theoremcan easily be adapted for fixedkernels
and activation functions leading to a reduced optimization
problem with respect to the stopping time only:

Corollary 1 (First-order necessary condition for subproblem)
Let K k ∈ R

m×n and �k ∈ Vs for k = 1, . . . , NK be fixed
with s ≥ 1 satisfying (6) and (7). We denote by p the adjoint
state (13). Then, for each stationary point T of the subprob-
lem

T �→ J (T , (Kk,�k)
NK
k=1), (23)

in which the associated state x satisfies (11), the first-order
optimality condition (12) holds true.

Remark 2 Under the assumptions of Corollary 1, a rescaling
argument reveals the identities for t ∈ (0, 1)

d

dT
x(t) = t f (x(t), (Kk,�k)

NK
k=1),

d

dT
p(t) =

NK∑

k=1

t K
�
k D�k(Kkx(t))Kk p(t) + t A�Ap(t).

We conclude this section with a second-order sufficient con-
dition for the partial optimization problem (23):

Theorem 3 (Second-order sufficient conditions for subprob-
lem) Let s ≥ 2. Under the assumptions of Corollary 1,

T ∈ (0, Tmax) with associated state x is a strict local mini-
mum of T �→ J (T , (Kk,�k)

NK
k=1) if a constant C > 0 exists

such that

∫ 1

0

NK∑

k=1

〈p, T K
�
k D

2�k(Kkx)(Kkx, Kkx)

+ 2K
�
k D�k(Kkx)Kkx + 2A�Ax〉 dt + 〈x(1), x(1)〉

≥ C(1 + ‖x‖2H1((0,1),Rn)
) (24)

for all x ∈ C1((0, 1),Rn) satisfying x(0) = 0 and

ẋ =
NK∑

k=1

(
−T K

�
k D�k(Kkx)Kkx − K

�
k �k(Kkx)

)

− T A�Ax − A�(Ax − b). (25)

Proof As before, we restrict to the case NK = 1 and omit
subscripts. Let us denote by L the version of the Lagrange
functional (15) with fixed kernels and fixed activation func-
tions tominimize J subject to the side conditionsG1(x, T ) =
G2(x, T ) = 0 as specified in Corollary 1. Let z = (x, T ) ∈
Z := H1((0, 1),Rn) × (0, Tmax) be a local minimum
of J . Furthermore, we consider arbitrary test functions z1 =
(x1, T1), z2 = (x2, T2) ∈ Z , where we endow the Banach
space Z with the norm ‖z‖2Z := ‖x‖2

H1((0,1),Rn)
+ |T |2 for

z = (x, T ) ∈ Z . Then,

D2 J (T )(z1, z2) = 〈x1(1), x2(1)〉,
D2G1(z)(z1, z2) =T K

�
D2�(Kx)(Kx1, Kx2)

+ T2 K
�
D�(Kx)Kx1

+ T1 K
�
D�(Kx)Kx2

+ T2A
�Ax1 + T1A

�Ax2,

D2G2(x)(x1, x2) = 0.

Following [43, Theorem 43.D], J has a strict local mini-
mum at z if the first-order optimality conditions discussed in
Corollary 1 holds true and a constant C > 0 exists such that

D2 J (T )(z, z) +
∫ 1

0
〈p1, D2G1(z)(z, z)〉 dt

= 〈x(1), x(1)〉 +
∫ 1

0
〈p1, T K

�
D2�(Kx)(Kx, Kx)

+ 2T K
�
D�(Kx)Kx + 2T A�Ax〉 dt ≥ C‖z‖2Z (26)

for all z = (x, T ) ∈ Z satisfying

DG1(z)(z) = ẋ + T K
�
D�(Kx)Kx + T K

�
�(Kx)

+ T A�Ax + T A�(Ax − b) = 0
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and DG2(z)(z) = x(0) = 0. The theorem follows from the
homogeneity of order 2 in T in (26), which results in the
modified condition (25). ��
Remark 3 All aforementioned statements remain valid when
replacing the function space Vs and the norm of the activa-
tion functions by suitable Sobolev spaces andSobolev norms,
respectively. Moreover, all statements only require minor
modifications if instead of the box constraints (6) nonneg-
ative, coercive and differentiable functions of the norms of
T , Kk , and �k are added in the cost functional J .

3 Time Discretization

The optimal control problem with state equation originating
from the gradient flow for the energy functional E was ana-
lyzed inSect. 2. In this section,weprove that static variational
networks can be derived from a time discretization of the
state equation incorporating Euler’s or Heun’s method [2,6].
To illustrate the concepts, we discuss the optimal control
problem in R

2 using fixed kernels and activation functions
in Sect. 3.1. Finally, a literature overview of alternative ways
to derive variational networks as well as relations to other
approaches are presented in Sect. 3.2.

Let S ≥ 2 be a fixed depth. For a stopping time T ∈ R

we define the node points ts = s
S for s = 0, . . . , S. Con-

sequently, Euler’s explicit method for the transformed state
equation (11) with fixed kernels and fixed activation func-
tions � = ((Kk,�k)

NK
k=1) reads as

xs+1 = xs + T

S
f (xs,�) (27)

for s = 0, . . . , S−1with x0 = x(0). Thediscretizedordinary
differential equation (27) defines the evolution of the static
variational network. We stress that this time discretization
is closely related to residual neural networks with constant
parameters in each layer. Here, xs is an approximation of
x(ts), the associated global error x(ts) − xs is bounded from
above by

max
s=0,...,S

‖x(ts) − xs‖2 ≤ CT

S

with C :=
(
eL f −1

)
‖ f ′′‖C0

2L f
, where L f denotes the Lipschitz

constant of f [2, Theorem 6.3]. In general, this global error
bound has a tendency to overestimate the actual global error.
Improved error bounds can either be derived by performing
a more refined local error analysis, which solely results in
a better constant C , or by using higher-order Runge–Kutta
methods.Oneprominent example of an explicit Runge–Kutta
scheme with a quadratic order of convergence is Heun’s
method [6], which is defined as

xs+1 = xs + T

2S

(
f (xs,�) + f

(
xs + T

S
f (xs,�)

))
.

(28)

We abbreviate the right-hand side of (13) as follows:

g(x, p, (Kk,�k)
NK
k=1) =

NK∑

k=1

K�
k D�k(Kkx)Kk p + A�Ap.

The corresponding update schemes for the adjoint states are
given by

ps = ps+1 − T

S
g(xs+1, ps+1,�) (29)

in the case of Euler’s method and

ps = ps+1 − T

2S

(
g(xs+1, ps+1,�)

+ g

(
xs, ps+1 − T

S
g(xs+1, ps+1,�),�

))
(30)

in the case of Heun’s method. We remark that in general
implicit Runge–Kutta schemes are not efficient due to the
complex structure of the Field-of-Experts regularizer.

In all cases, we have to choose the step size T
S such that

the explicit Euler scheme is stable [6], i.e.,

max
i=1,...,n

∣∣∣∣1 + T

S
λi

∣∣∣∣ ≤ 1 (31)

for all s = 0, . . . , S, where λi denotes the i th eigenvalue
of the Jacobian of either f or g. Note that this condition
already implies the stability of Heun’s method. Thus, in the
numerical experiments, we need to ensure a constant ratio of
the stopping time T and the depth S to satisfy (31).

3.1 Optimal Control Problem inR2

In this subsection, we apply the first- and second-order crite-
ria for the partial optimal control problem (see Corollary 1)
to the simple, yet illuminative example in R

2 with a single
kernel, i.e., l = m = n = 2 and NK = 1. More general
applications of the early stopping criterion to image restora-
tion problems are discussed in Sect. 4. Below, we consider
a regularized data fitting problem composed of a squared
L2-data term and a nonlinear regularizer incorporating a for-
ward finite difference matrix operator with respect to the
x-direction. In detail, we choose φ(x) = x√

x2+1
and

x0 =
(
1
2

)
, xg =

( 3
2
1
2

)
, b =

(
1
1
2

)
,
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Fig. 4 Left: Trajectories of the state equation for T varying in T (black
curves), initial value x0 (blue point), sink/stable node x∞ (blue point),
ground truth state xg and end point of optimal trajectory (red points).
Right: function plots of the energy (red plot) and thefirst-order condition
(blue plot) (Color figure online)

A =
(
1 0
0 1

)
, K =

(
1 −1
0 0

)
.

To compute the solutions of the state (11) and the adjoint (13)
differential equation, we use Euler’s explicit method with
100 equidistant steps. All integrals are approximated using a
Gaussian quadrature of order 21. Furthermore, we optimize
the stopping time T in the discrete set T = 0.05 ·N∩[ 1

10 , 3].
Figure 4 (left) depicts all trajectories for T ∈ T (black

curves) of the state equation emanating from x0 with
sink/stable node x∞. The end points of the optimal trajec-
tory and the ground truth state are marked by red points.
Moreover, the gray line indicates the trajectory of xT + pT
(the subscript denotes the solutions calculated with stop-
ping time T ) associated with the optimal stopping time. The
dependency of the energy (red curve)

T �→ J (T , K ,�)

and of the first-order condition (12) (blue curve)

T �→ − 1

T

∫ 1

0
〈pT , ẋT 〉 dt

on the stopping time T is visualized in the right plot in Fig-
ure 4. Note that the black vertical line indicating the optimal
stopping time T given by (12) crosses the energy plot at the
minimum point. The function value of the second-order con-
dition (24) in Theorem 3 is 0.071, which confirms that T is
indeed a strict local minimum of the energy.

3.2 Alternative Derivations of Variational Networks

We conclude this section with a brief review of alterna-
tive derivations of the defining equation (27) for variational
networks. Inspired by the classical nonlinear anisotropic dif-
fusion model by Perona and Malik [31], Chen and Pock [11]
derive variational networks as discretized nonlinear reaction

diffusion models of the form xs+1−xs
h = −R[xs] − D[xs]

with an a priori fixed number of iterations, where R and
D represent the reaction and diffusion terms, respectively,
that coincide with the first and second expression in (11).
By exploiting proximal mappings, this scheme can also be
used for non-differentiable data terms D. In the same spirit,
Kobler et al. [24] related variational networks to incremental
proximal and incremental gradient methods. Following [19],
variational networks result from a Landweber iteration [25]
of the energy functional (2) using the Field-of-Experts reg-
ularizer. Structural similarities of variational networks and
residual neural networks [21] are analyzed in [24]. In par-
ticular, residual neural networks (and thus also variational
networks) are known to be less prone to the degradation
problem, which is characterized by a simultaneous increase
of the training/test error and the model complexity. Note that
in most of these approaches time varying kernels and activa-
tion functions are examined. In most of the aforementioned
papers, the benefit of early stopping has been observed.

4 Numerical Results for Image Restoration

We examine the advantageousness of early stopping for
imagedenoising and imagedeblurringusing static variational
networks in this section. In particular, we show that the first-
order optimality condition results in the optimal stopping
time. We do not verify the second-order sufficient condition
discussed in Theorem 3 since in all experiments the first-
order condition indicates an energy minimizing solution and
thus this verification is not required.

4.1 Image Reconstruction Problems

In the case of image denoising, we perturb a ground truth
image xg ∈ R

n by additive Gaussian noise

n ∼ N (0, σ 2Id)

for a certain noise level σ resulting in the noisy input
image g = xg +n. Consequently, the linear operator is given
by the identity matrix and the corrupted image as well as the
initial condition coincide with the noisy image, i.e., A = Id
and b = x0 = g.

For image deblurring, we consider an input image g =
x0 = Axg + n ∈ R

n that is corrupted by a Gaussian blur of
the ground truth image xg ∈ R

n and a Gaussian noise n with
σ = 0.01. Here, A ∈ R

n×n refers to the matrix representa-
tion of the 9 × 9 normalized convolution filter with the blur
strength τ > 0 of the function

(x, y) �→ 1√
2πτ 2

exp

(
− x2 + y2

2τ 2

)
.
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4.2 Numerical Optimization

For all image reconstruction tasks, we use the BSDS 500
data set [29] with grayscale images in [0, 1]341×421. We train
all models on 200 train and 200 test images from the BSDS
500 data set and evaluate the performance on 68 validation
images as specified by [36].

In all experiments, the activation functions (5) are para-
metrized using Nw = 63 quadratic B-spline basis func-
tions ψ j ∈ C1(R) with equidistant centers in the inter-
val [−1, 1]. Let ξ ∈ R

n1×n2 be the two-dimensional image
of a corresponding data vector u ∈ R

n , n = n1 · n2. Then,
the convolution κ ∗ξ of the image ξ with a filter κ is modeled
by applying the corresponding kernel matrix K ∈ R

m×n to
the data vector u. We only use kernels κ of size 7× 7. Moti-
vated by the relation ‖K‖F = m‖κ‖F , we choose α(K ) =
1
m2 ‖K‖2F . Additionally, we use β(�) = β(w) = ‖w‖22 for
a weight vector w associated with �. Since all numerical
experiments yield a finite optimal stopping time T , we omit
the constraint T ≤ Tmax.

For a given training set consisting of pairs of corrupted
images xi0 ∈ R

n and corresponding ground truth images xig ∈
R
n , we denote the associated index set by I. To train the

model, we consider the discrete energy functional

JB(T , (Kk, wk)
NK
k=1) := 1

|B|
∑

i∈B

1

2
‖xiS − xig‖22 (32)

for a subset B ⊂ I, where xiS denotes the terminal value of
the Euler/Heun iteration scheme for the corrupted image xi0.
In all numerical experiments, we use the iPALM algorithm
[32] described inAlgorithm 1 to optimize all parameters with
respect to a randomly selected batch B. Each batch consists
of 64 image patches of size 96×96 that are uniformly drawn
from the training data set.

For an optimization parameter q representing either T , Kk

or wk , we use in the lth iteration step the over-relaxation

q̃[l] = q[l] + 1√
2
(q[l] − q[l−1]).

We denote by Lq the Lipschitz constant that is determined
by backtracking and by projQ the orthogonal projection onto
the corresponding set denoted by Q.

Here, the constraint sets K and W are given by

K = {
K ∈ R

m×n : α(K ) ≤ 1, K1 = 0
}
,

W =
{
w ∈ R

Nw : β(w) ≤ 1
}

.

Each component of the initial kernels Kk in the case
of image denoising is independently drawn from a Gaus-
sian random variable with mean 0 and variance 1 such that

for l = 1 to L do
randomly select batches B ⊂ I;
update xi and pi for i ∈ B using either (27)/(29) or (28)/(30);
for k = 1 to NK do

K [l+1]
k = projK

(
K̃ [l]
k −

1
LK

DKk JB(T [l], (K̃ [l]
k , w

[l]
k )

NK
k=1)

)
;

end
for k = 1 to NK do

w
[l+1]
k = projW

(
w̃

[l]
k −

1
Lw

Dwk JB(T [l], (K [l+1]
k , w̃

[l]
k )

NK
k=1)

)
;

end

T [l+1] = proj
R

+
0

(
T̃ [l]−

1
LT

DT JB(T̃ [l], (K [l+1]
k , w

[l+1]
k )

NK
k=1)

)
;

end
Algorithm 1: iPALM algorithm for stochastic training of
image restoration tasks for L steps.

Kk ∈ K. The learnedoptimal kernels of the denoising task are
incorporated for the initialization of the kernels for deblur-
ring. Theweightswk of the activation functions are initialized
such that φk(y) ≈ 0.1y around 0 for both reconstruction
tasks.

4.3 Results

In the first numerical experiment, we trainmodels for denois-
ing anddeblurringwith NK = 48kernels, a depth S = 10 and
L = 5000 training steps. Afterward, we use the calculated
parameters (Kk,�k)

NK
k=1 and T as an initialization and train

models for various depths S = 2, 4, . . . , 50 and L = 500.

Figure 5 depicts the average PSNR value PSNR(xiS, x
i
g)i∈Î

with Î denoting the index set of the test images and the
learned stopping time T as a function of the depth S for
denoising (first two plots) and deblurring (last two plots).
As a result, we observe that all plots converge for large S,
where the PSNR curve monotonically increases. Moreover,
the optimal stopping time T is finite in all these cases, which
empirically validates that early stopping is beneficial. Thus,
we can conclude that beyond a certain depth S the per-
formance increase in terms of PSNR is negligible and a
proper choice of the optimal stopping time is significant.
The asymptotic value of T for increasing S in the case of
image deblurring is approximately 20 times larger compared
to image denoising due to the structure of the deblurring
operator A. Figure 6 depicts the average �2-difference of
consecutive convolution kernels and activation functions for
denoising and deblurring as a function of the depth S. We
observe that the differences decrease with larger values of S,
which is consistent with the convergence of the optimal
stopping time T for increasing S. Both time discretization
schemes perform similar, and thus in the following exper-
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Fig. 5 Plots of the average PSNRvalue across the test set (first and third
plot) as well as the learned optimal stopping time T (second and fourth
plot) as a function of the depth S for denoising (top) and deblurring
(bottom). All plots show the results for the explicit Euler and explicit
Heun schemes

iments, we solely present results calculated with Euler’s
method due to advantages in the computation time.

We next demonstrate the applicability of the first-order
condition for the energy minimization in static variational
networks using Euler’s discretization scheme with S = 20.
Figure 7 depicts band plots along with the average curves
among all training/test images of the functions

T �→ J{i}(T , (Kk, wk)
NK
k=1) and (33)

T �→ − 1

T

∫ 1

0
〈piT , ẋ iT 〉 dt

for all training and test images for denoising (first two plots)
and deblurring (last two plots). We approximate the integral
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Fig. 6 Average change of consecutive convolution kernels (solid blue)
and activation functions (dotted orange) for denoising (left) and deblur-
ring (right) in terms of the �2-norm (Color figure online)
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Fig. 7 Plots of the energies (first and third plot) and first-order condi-
tions (second and fourth plot) for training and test set with σ = 0.1
for denoising (first pair of plots) and τ = 1.5/σ = 0.01 for deblurring
(last pair of plots). The average value across the training/test sets are
indicated by the dotted red/solid green curves. The area between the
minimal and maximal function value for each T across the training/test
set are indicated by the red and green area, respectively (Color figure
online)
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ground truth image input image
PSNR = 20.00

S = 10/T = T
2 /

PSNR = 26.36
S = 20/T = T = 1.08/

PSNR = 29.68
S = 30/T = 3T

2 /
PSNR = 29.15

S = 1000/T = 50T/
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ground truth image input image
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S = 30/T = 3T
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S = 1000/T = 50T/
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Fig. 8 From left to right: ground truth image, noisy input image (σ = 0.1), restored images for T = T
2 , T , 3T

2 , 50T with T = 1.08 for image
denoising. The zoom factor of the magnifying lens is 3

in the first-order condition (12) via

∫ 1

0
〈p(t), ẋ(t)〉 dt ≈ 1

S + 1

S∑

s=0

〈ps, T f (xs, (Kk,�k)
NK
k=1)〉.

We deduce that the first-order condition for each test image
indicates the energy minimizing stopping time. Note that all
image dependent stopping times are distributed around the
average optimal stopping time that is highlighted by the black
vertical line and learned during training.

Figure 8 depicts two input images xg (first column): the
corrupted images g (second column) and the denoised images

for T = T
2 , T , 3T

2 , 100T (third to sixth column). The max-
imum values of the PSNR obtained for T = T are 29.68
and 29.52, respectively. To ensure a sufficiently fine time

discretization, we enforce S
T = const, where for T = T

we set S = 20. Likewise, Fig. 9 contains the corresponding
results for the deblurring task. Again, we enforce a constant
ratio of S and T . The PSNR value peaks around the opti-
mal stopping time, and the corresponding values are 29.52
and 27.80, respectively. We observed an average computa-
tion time of 5.694ms f orthedenoisingand8.687ms for the
deblurring task using a RTX 2080 Ti graphics card and the
PyTorch machine learning framework.

As desired, T indicates the energyminimizing time,where
both the average curves for the training and test sets nearly
coincide, which proves that the model generalizes to unseen
test images. Although the gradient of the average energy
curve (33) is rather flat near the learned optimal stopping
time, the proper choice of T is indeed crucial as shown by
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ground truth image input image
PSNR = 26.68

S = 10/T = T
2 /

PSNR = 28.78
S = 20/T = T = 20.71/
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ground truth image input image
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2 /
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Fig. 9 From left to right: ground truth image, blurry input image (τ = 1.5, σ = 0.01), restored images for T = T
2 , T , 3T

2 , 50T with T = 20.71
for image deblurring. The zoom factor of the magnifying lens is 3

the qualitative results in Figs. 8 and 9. In the case of denois-
ing, for T < T , we still observe noisy images, whereas
for too large T , local image patterns are smoothed out. For
image deblurring, images computed with too small values of
T remain blurry, while for T > T ringing artifacts are gener-
ated and their intensity increasewith larger T . For a corrupted
image, the associated adjoint state requires the knowledge of
the ground truth for the terminal condition (14), which is in
general not available. However, Fig. 7 shows that the learned
average optimal stopping time T yields the smallest expected
error. Thus, for arbitrary corrupted images, T is used as the
stopping time.

Figure 10 illustrates the plots of the energies (blue plots)
and the first-order conditions (red plots) as a function of the
stopping time T for all test images for denoising (left) and

deblurring (right), which are degraded by noise levels σ ∈
{0.075, 0.1, 0.125, 0.15} and different blur strengths τ ∈
{1.25, 1.5, 1.75, 2.0}. Note that in each plot the associated
curves of three prototypic images are visualized. To ensure
a proper balancing of the data fidelity term and the regular-
ization energy for the denoising task, we add the factor 1

σ 2

to the data term as typically motivated by Bayesian infer-
ence. For all noise levels σ and blur strengths τ , the same
fixed pairs of kernels and activation functions trained with
σ = 0.1/τ = 1.5 and depth S = 20 are used. Again,
the first-order conditions indicate the degradation depend-
ing energy minimizing stopping times. The optimal stopping
time increases with the noise level and blur strength, which
results from a larger distance of x0 and xg and thus requires
longer trajectories.
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Fig. 10 Band plots of the energies (blue plots) and first-order conditions (red plots) for image denoising (left) and image deblurring (right) and
various degradation levels. In each plot, the curves of three prototypic images are shown (Color figure online)

Table 1 Average PSNR value
of the test set for image
denoising/deblurring with
different degradation levels
along with the optimal stopping
time T

σ = 0.075 σ = 0.1 σ = 0.125 σ = 0.15

PSNR T PSNR T PSNR T PSNR T

Image denosing

Full optimization of all controls 30.05 0.724 28.72 1.082 27.72 1.445 26.95 1.433

Optimization only of T 30.00 0.757 27.73 1.514 26.95 2.055

Optimization only for σ = 0.1 29.74 1.082 26.51 1.082 22.73 1.082

TV-L2 28.60 27.32 26.38 25.66

τ = 1.25 τ = 1.5 τ = 1.75 τ = 2.0

PSNR T PSNR T PSNR T PSNR T

Image deblurring

Full optimization of all controls 29.95 39.86 28.76 37.78 27.87 40.60 27.13 40.01

Optimization only of T 29.73 23.86 27.69 47.72 26.71 51.70

Optimization only for τ = 1.5 27.75 37.78 27.55 37.78 26.59 37.78

IRcgls 28.00 27.05 26.37 25.82

The first rows of each table present the results obtained by the optimization of all control parameters. The
second rows show the results calculated with fixed (Kk , wk)

NK
k=1, which were pretrained for σ = 0.1/τ = 1.5.

In the third rows, we evaluate the models trained for σ = 0.1/τ = 1.5 on different degradation levels without
any further optimization. The last rows present PSNR values obtained with the TV-L2 model [38] using a
dual accelerated gradient descent and the IRcgls [15] algorithm, respectively

Table 1 presents pairs of average PSNR values and
optimal stopping times T for the test set for denois-
ing (top) and deblurring (bottom) for different noise lev-
els σ ∈ {0.075, 0.1, 0.125, 0.15} and blur strengths τ ∈
{1.25, 1.5, 1.75, 2.0}. All results in the table are obtained
using NK = 48 kernels and a depth S = 20. Both first
rows present the results incorporating an optimization of
all control parameters (Kk, wk)

NK
k=1 and T . In contrast, both

second rows show the resulting PSNR values and opti-
mal stopping times for only a partial optimization of the
stopping times and pretrained kernels and activation func-
tions (Kk, wk)

NK
k=1 for σ = 0.1/τ = 1.5. Further, both third

rows present the PSNRvalues and stopping times obtained by

using the reference models without any further optimization.
Finally, the last rows present the results obtained by using the
FISTA algorithm [3] for the TV-L2 variationalmodel [38] for
denoising and the IRcgls algorithmof the “IRTools” package
[15] for deblurring, which are both not data-driven and thus
do not require any training. In detail, the weight parameter of
the data term as well as the early stopping time are optimized
using a simple grid search for the TV-L2 model. We exploit
the IRcgls algorithm to iteratively minimize ‖Ax−b‖22 using
the conjugate gradient method until an early stopping rule
based on the relative noise level of the residuum is satis-
fied. Note that IRcgls is a Krylov subspace method, which is
designed as a general-purpose method for large-scale inverse
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PSNR = 19.97 PSNR = 26.18

PSNR = 27.16

PSNR = 30.75 PSNR = 32.15

PSNR = 34.37

Fig. 11 Corrupted input image (first/third row, left), restored images
using the FISTA/IRcgls algorithm (first/third row, right), and the pro-
posedmethod (second/fourth row, left) aswell as the ground truth image
(second/fourth row, right) for denoising (upper quadruple) and deblur-
ring (lower quadruple). The zoom factor of the magnifying lens is 3

problems (for further details see [15] and [20, Chapter 6] and
the references therein). Figure 11 shows comparison of the
results of the FISTAalgorithm for the TV-L2/the IRcgls algo-
rithm and our method (with the optimal early stopping time)
for σ = 0.1/τ = 1.5.

In Table 1, the resulting PSNR values of the first and sec-
ond row are almost identical for image denoising despite
varying optimal stopping times. Consequently, a model that
was pretrained for a specific noise level can be easily adapted
to noise levels by only modifying the optimal stopping time.
Neglecting the optimization of the stopping time leads to
inferior results as presented in the third rows, where the
reference model was used for all degradation levels with-
out any change. However, in the case of image deblurring,
the model benefits from a full optimization of all con-

trols, which is caused by the dependency of A on the blur
strength. For the noise level 0.1weobserve the averagePSNR
value 28.72 which is on par with the corresponding results of
[10, Table II]. We emphasize that in their work a costly full
minimization of an energy functional is performed, whereas
we solely require a depth S = 20 to compute comparable
results.

For the sake of completeness, we present in Fig. 12
(denoising) and Fig. 13 (deblurring) the resulting triplets
of kernels (top), potential functions (middle) and activation
functions (bottom) for a depth S = 20. The scaling of the
axes is identical among all potential functions and activa-
tion functions, respectively. Note that the potential functions
are computed by numerical integration of the learned activa-
tion functions and we choose the integration constant such
that every potential function is bounded from below by 0.
As a result, we observe a large variety of different kernel
structures, including bipolar forward operators in different
orientations (e.g., 5th kernel in first row, 8th kernel in third
row) or pattern kernels representing prototypic image tex-
tures (e.g. kernels in first column). Likewise, the learned
potential functions can be assigned to several representa-
tive classes of common regularization functions like, for
instance, truncated total variation (8th function in second
row of Fig. 12), truncated concave (4th function in third
row of Fig. 12), double-well potential (10th function in first
row of Fig. 12) or “negative Mexican hat” (8th function in
third row of Fig. 12). Note that the associated kernels in both
tasks nearly coincide, whereas the potential and activation
functions significantly differ. We observe that the activation
functions in the case of denoising have a tendency to gener-
ate higher amplitudes compared to deblurring, which results
in a higher relative balancing of the regularizer in the case of
denoising.

4.4 Spectral Analysis of the Learned Regularizers

Finally, in order to gain intuitionof the learned regularizer,we
perform a nonlinear eigenvalue analysis [16] for the gradient
of the Field-of-Experts regularizer learned for S = 20 and
T = T . For this reason, we compute several generalized
eigenpairs (λ j , v j ) ∈ R × R

n satisfying

NK∑

k=1

K�
k �k(Kkv j ) = λ jv j

for j = 1, . . . , Nv . Note that by omitting the data term,
the forward Euler scheme (27) applied to the generalized
eigenfunctions v j reduces to

v j − T

S

NK∑

k=1

K�
k �k(Kkv j ) =

(
1 − λ j T

S

)
v j , (34)
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Fig. 12 Triplets of 7 × 7-kernels (top), potential functions ρ (middle) and activation functions φ (bottom) learned for image denoising
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Fig. 13 Triplets of 7 × 7-kernels (top), potential functions ρ (middle) and activation functions φ (bottom) learned for image deblurring
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λ1 = 0.025 λ2 = 0.042 λ3 = 0.052 λ4 = 0.063 λ5 = 0.070 λ6 = 0.072 λ7 = 0.080 λ8 = 0.081

λ9 = 0.092 λ10 = 0.095 λ11 = 0.104 λ12 = 0.105 λ13 = 0.111 λ14 = 0.119 λ15 = 0.121 λ16 = 0.130

λ17 = 0.138 λ18 = 0.139 λ19 = 0.139 λ20 = 0.142 λ21 = 0.156 λ22 = 0.160 λ23 = 0.164 λ24 = 0.180

λ25 = 0.184 λ26 = 0.196 λ27 = 0.200 λ28 = 0.200 λ29 = 0.204 λ30 = 0.206 λ31 = 0.214 λ32 = 0.219

λ33 = 0.226 λ34 = 0.228 λ35 = 0.249 λ36 = 0.252 λ37 = 0.268 λ38 = 0.273 λ39 = 0.282 λ40 = 0.290

λ41 = 0.297 λ42 = 0.297 λ43 = 0.297 λ44 = 0.325 λ45 = 0.341 λ46 = 0.364 λ47 = 0.366 λ48 = 0.374

λ49 = 0.398 λ50 = 0.402 λ51 = 0.458 λ52 = 0.476 λ53 = 0.504 λ54 = 0.521 λ55 = 0.587 λ56 = 0.923

λ57 = 1.001 λ58 = 1.012 λ59 = 1.056 λ60 = 2.379 λ61 = 3.093 λ62 = 3.501 λ63 = 5.028 λ64 = 11.696

Fig. 14 Nv = 64 eigenpairs for image denoising, where all eigenfunctions have the resolution 127 × 127 and the intensity of each eigenfunction
is adjusted to [0, 1]
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λ1 = −0.02922 λ2 = −0.00243 λ3 = −0.00212 λ4 = −0.00176 λ5 = −0.00127 λ6 = −0.00123 λ7 = −0.00120 λ8 = −0.00103

λ9 = −0.00059 λ10 = −0.00057 λ11 = −0.00053 λ12 = −0.00040 λ13 = −0.00035 λ14 = −0.00006 λ15 = 0.00006 λ16 = 0.00007

λ17 = 0.00011 λ18 = 0.00016 λ19 = 0.00024 λ20 = 0.00030 λ21 = 0.00031 λ22 = 0.00031 λ23 = 0.00034 λ24 = 0.00039

λ25 = 0.00041 λ26 = 0.00042 λ27 = 0.00046 λ28 = 0.00049 λ29 = 0.00054 λ30 = 0.00058 λ31 = 0.00058 λ32 = 0.00059

λ33 = 0.00065 λ34 = 0.00070 λ35 = 0.00072 λ36 = 0.00074 λ37 = 0.00079 λ38 = 0.00081 λ39 = 0.00082 λ40 = 0.00087

λ41 = 0.00098 λ42 = 0.00100 λ43 = 0.00100 λ44 = 0.00101 λ45 = 0.00103 λ46 = 0.00105 λ47 = 0.00105 λ48 = 0.00106

λ49 = 0.00122 λ50 = 0.00131 λ51 = 0.00134 λ52 = 0.00157 λ53 = 0.00169 λ54 = 0.00187 λ55 = 0.00194 λ56 = 0.00213

λ57 = 0.00215 λ58 = 0.00242 λ59 = 0.00242 λ60 = 0.00270 λ61 = 0.00366 λ62 = 0.00375 λ63 = 0.00445 λ64 = 0.00783

Fig. 15 Nv = 64 eigenpairs for image deblurring, where all eigenfunctions have the resolution 127 × 127 and the intensity of each eigenfunction
is adjusted to [0, 1]
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where the contrast factor (1 − λ j T
S ) determines the global

intensity change of the eigenfunction. We point out that due
to the nonlinearity of the eigenvalue problem such a formula
only holds locally for each iteration of the scheme.

We compute Nv = 64 generalized eigenpairs of size 127×
127 by solving

min
v j

∥∥∥∥∥

NK∑

k=1

K�
k �k(Kkv j ) − �(v j )v j

∥∥∥∥∥

2

2

(35)

for all j = 1, . . . , Nv , where

�(v) =
〈∑NK

k=1 K
�
k �k(Kkv), v

〉

‖v‖22
denotes the generalized Rayleigh quotient, which is derived
byminimizing (35) with respect to�(v). The eigenfunctions
are computed using an accelerated gradient descent with step
size control [32]. All eigenfunctions are initialized with ran-
domly chosen image patches of the test image data set, from
which we subtract the mean. Moreover, in order to mini-
mize the influence of the image boundary, we scale the image
intensity values with a spatial Gaussian kernel. We run the
algorithm for 104 iterations, which is sufficient for reaching
a residual of approximately 10−5 for each eigenpair.

Figure 14 depicts the resulting pairs of eigenfunctions and
eigenvalues for image denoising. We observe that eigen-
functions corresponding to smaller eigenvalues represent
in general more complex and smoother image structures.
In particular, the first eigenfunctions can be interpreted as
cartoon-like image structures with clearly separable inter-
faces. Most of the eigenfunctions associated with larger
eigenvalues exhibit texture-like patterns with a progressive
frequency. Finally, wave and noise structures are present in
the eigenfunctions with the highest eigenvalues.

We remark that all eigenvalues are in the interval [0.025,
11.696]. Since T

S ≈ 0.054, the contrast factors (1 − λ j T
S )

in (34) are in the interval [0.368, 0.999], which shows that
the regularizer has a tendency to decrease the contrast. For-
mula (34) also reveals that eigenfunctions corresponding to
contrast factors close to 1 are preserved over several iter-
ations. In summary, the learned regularizer has a tendency
to reduce the contrast of high-frequency noise patterns, but
preserves the contrast of texture- and structure-like patterns.

Figure 15 shows the eigenpairs for the deblurring task.
All eigenvalues are relatively small and distributed around 0,
which means that the corresponding contrast factors lie in
the interval [0.992, 1.030]. Therefore, the learned regular-
izer can both decrease and increase the contrast. Moreover,
most eigenfunctions are composed of smooth structures with
a distinct overshooting behavior in the proximity of image

boundaries. This implies that the learned regularizer has a
tendency to perform image sharpening.

5 Conclusion

Starting from a parametric and autonomous gradient flow
perspective of variational methods, we explicitly modeled
the stopping time as a control parameter in an optimal con-
trol problem. By using a Lagrangian approach, we derived
a first-order condition suited to automatize the calculation
of the energy minimizing optimal stopping time. A forward
Euler discretization of the gradient flow led to static vari-
ational networks. Numerical experiments confirmed that a
proper choice of the stopping time is of vital importance for
the image restoration tasks in terms of the PSNR value. We
performed a nonlinear eigenvalue analysis of the gradient
of the learned Field-of-Experts regularizer, which revealed
interesting properties of the local regularization behavior.
A comprehensive long-term spectral analysis in continuous
time is left for future research.

A further future research direction would be the extension
to dynamic variational networks, in which the kernels and
activation functions evolve in time. However, a major issue
related to this extension emerges from the continuation of
the stopping time beyond its optimal point.
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