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Abstract

Serotonin neurotransmission may impact the etiology and pathology of attention-deficit and hyperactivity disorder
(ADHD), partly mediated through single nucleotide polymorphisms (SNPs). We propose a multivariate, genetic and
positron emission tomography (PET) imaging classification model for ADHD and healthy controls (HC). Sixteen patients
with ADHD and 22 HC were scanned by PET to measure serotonin transporter (SERT) binding potential with e
DASB. All subjects were genotyped for thirty SNPs within the HTRI1A, HTR1B, HTR2A and TPH2 genes. Cortical and
subcortical regions of interest (ROI) were defined and random forest (RF) machine learning was used for feature
selection and classification in a five-fold cross-validation model with ten repeats. Variable selection highlighted the ROI
posterior cingulate gyrus, cuneus, precuneus, pre-, para- and postcentral gyri as well as the SNPs HTR2A rs1328684 and
rs6311 and HTR1B rs130058 as most discriminative between ADHD and HC status. The mean accuracy for the
validation sets across repeats was 0.82 (+0.09) with balanced sensitivity and specificity of 0.75 and 0.86, respectively.
With a prediction accuracy above 0.8, the findings underlying the proposed model advocate the relevance of the SERT
as well as the HTR1B and HTR2A genes in ADHD and hint towards disease-specific effects. Regarding the high rates of
comorbidities and difficult differential diagnosis especially for ADHD, a reliable computer-aided diagnostic tool for

disorders anchored in the serotonergic system will support clinical decisions.

Introduction

The most common neurodevelopmental disorder,
attention-deficit and hyperactivity disorder (ADHD),
affects up to 10% of children with symptoms often per-
sisting throughout the whole lifespan and predisposes to
comorbidities like major depressive disorder (MDD)".
However, substantial fluctuation of prevalence was
reported between and across nations, likely owed to dis-
puted diagnostic criteria that are mostly based on beha-
vioral symptoms rather than objective biomarkers. While
pathognomonic for many psychiatric disorders, the lack of
biomarkers for ADHD is particularly baneful due to the
overlap of core symptoms with other frequent psychiatric
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disorders as mood, anxiety and personality disorders.
Diagnosis of adult ADHD is further hindered by retro-
spective assessment of symptoms in the childhood. Dis-
putes among opinion leaders on ADHD and debates over
misuse of ADHD treatment like methylphenidate (MPH)
have encouraged research exploring objective over sub-
jective ADHD predictors, so far with modest success*>.
Genetics were expected to resolve disparate findings
and explain heterogeneity, especially in ADHD with her-
itability estimated to exceed 70%*°. Some candidate gene
studies associated variants implicated in the mono-
aminergic neurotransmission with ADHD®’, while the
GWAS mostly highlighted genes that previously received
less attention and are trickier to mesh with established
etiologic theories®. However, genetic studies did not
impact ADHD diagnosis or treatment yet’. Consequently,
the translation to the clinic is lacking so far.
Neuroimaging and data-driven diagnostics that natu-
rally come along with it were considered a corrective to
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the issues of subjective symptoms and heterogeneity.
Basic tools like electro-encephalography (EEG) as well as
more advanced techniques as magnetic resonance ima-
ging (MRI) have now been fully established in ADHD
research'®. While misbalance of dopaminergic and nora-
drenergic neurotransmission is putatively the main bio-
logical substrate of ADHD, data on in vivo neuroreceptor
binding are scarce due to the resource intensive nature of
positron emission tomography (PET). While serotonergic
neurotransmission is considered a pivotal substrate of
affective disorders, the role of serotonin is not sufficiently
understood in ADHD'"'?, Data from animal models as
well as pharmacological and genetic studies point toward
involvement of serotonin in ADHD and atomoxetine, a
well-established drug in ADHD treatment, has been
demonstrated to block the serotonin transporter in
addition to its noradrenergic properties’®, Emotional
dysregulation with mood swings and irritability, closely
linked to serotonergic pathways, has lately been discussed
as an additional core symptom of ADHD'*'*, Addition-
ally, comorbid mood disorders are frequent in ADHD.
Nevertheless, only few PET studies have targeted the
serotonin system in ADHD so far. Earlier studies on the
serotine transporter (SERT) binding did not support dif-
ferences while recently altered interregional connectivity
of SERT binding in the hippocampus and precuneus of
ADHD patients compared to control subjects was
demonstrated'®.

With the influx of advanced statistics into neu-
ropsychiatric research, a copious amount of machine
learning studies targeted ADHD classification. Algorithms
based on EEG and MRI features reported accuracies
ranging from hardly above chance level to beyond 90%'°.
However, no studies combined imaging and genetic pre-
dictors up to this point. A reliable diagnostic tool for
ADHD may be especially relevant to precision medicine
in psychiatry. Since serotonergic transmission has to some
extent been demonstrated to pilot the disorders, the focus
of this study was classification of ADHD and healthy
individuals based on multimodal serotonergic data.

Methods
Subjects

ADHD subjects derive from a previously reported study
on SERT binding measured with [''C]DASB!®.

In short, 16 patients with adult ADHD (aged 31.9 +
109 standard deviation (SD), seven females) were
recruited through the outpatient clinic for ADHD and
affective disorders at the Department of Psychiatry and
Psychotherapy, Medical University of Vienna. Twenty-
two healthy control subjects (aged 33.19 £+ 10.3 SD, nine
females) were recruited through advertisement at the
Department of Psychiatry and Psychotherapy. ADHD
patients were required to be free of neuropsychiatric
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medication for at least three months. None of the HC
were previously exposed to any psychopharmacologic
treatment. All study related procedures were approved by
the Ethics Committee of the Medical University of
Vienna. All participants consented in written form to
partake in the study after extensive explanation of the
study protocol.

Subjects were screened for any somatic or neurological
disorder by assessment of physical and neurological sta-
tus, laboratory tests including urine drug and pregnancy
tests and electrocardiography. Comorbid psychiatric dis-
orders were assessed with the structured clinical interview
for DSM-IV (SCID-I, SCID-II). Subjects with severe
comorbidities or any substance abuse or addiction other
than nicotine were excluded. ADHD symptomatology was
evaluated by Conners’ Adult ADHD Diagnostic Interview
(CAADID, Conners 1999).

Genotyping procedures

Genotyping protocols were published previously, please
see for details ref.'”. In summary, EDTA blood tubes of
9 ml were collected and the QiaAmp DNA blood maxi kit
was applied for DNA isolation (Qiagen, Hilden, Ger-
many). The iPLEX assay was used for genotyping on a
mass spectrometer (MassARRAY MALDI-TOF). Typer
3.4 (Sequenom, San Diego, CA, USA) was utilized for
genotype assignment after selection of the allele-spcific
extension products. Quality control required to surpass a
threshold of 80% individual and 99% SNP call rate identity
of genotyped CEU trios (Coriell Institute for Medical
research, Camden, NJ).

Thirty SNPs of four genetic key players of the ser-
otonergic system, the HTRIA, HTR1B, HTR2A and TPH2
genes, were selected for this analysis based on the litera-
ture. All SNPs were coded numerically for the number of
minor alleles, therfore ranging from 0 to 2. SNPs were
determined based on the literature. For an overview of
baseline characteristics, including genotypes (Table 1).

PET data acquisition

All PET and MRI scans were carried out at the
Department of Biomedical Imaging and Image-guided
Therapy, Division of Nuclear Medicine, Medical Uni-
versity of Vienna. A full-ring scanner (General Electric
Medical Systems, Milwaukee, WI, USA) in 3D acquisition
mode was used. For all subjects, the state-of-the-art
radiotracer [11 C]DASB was used to quantify SERT
binding as protocolled previously'®. In summary, for tis-
sue attenuation correction a transmission scan was
obtained for five minutes with retractable 68 Ge rod
sources. Data acquisition of the actual scan started with a
bolus i.v.-injection of [11 C]DASB. A series of 50 con-
secutive time frames (12x5s, 6 x 10s, 3x20s, 6 x 30s,
4 x 1 min, 5 x 2 min, 14 x 5 min) was carried out, resulting
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Table 1 Baseline characteristics with sex, age and
genotypes for the total sample, HC and ADHD.

n Total, 38 HC, 22 ADHD, 16
Age (mean £ SD) 3251+£105 33.19+103 319+109
Sex (female/male) 16/22 9/13 7/9
Mean Global BPyp 037+0.36 037+0.36 036+0.35
HTRTA rs6295 13/16/9 6/10/6 3/6/7
HTRTA rs878567 13/16/9 6/10/6 7/6/3
HTRTA rs1423691 13/16/9 6/10/6 7/6/3
HTRTA rs10042486 13/16/9 6/10/6 3/6/7
HTRI1B rs6296 4/18/16 2/10/10 2/8/6
HTRI1B rs6298 16/18/4 10/10/2 6/8/2
HTR1B rs130058 21/15/2 16/4/2 5/11/0
HTR1B rs13212041 25/12/1 13/8/1 12/4/0
HTR2A rs6311 11/18/9 7/13/2 4/5/7
HTR2A rs6313 11/18/9 7/13/2 4/5/7
HTR2A rs1328684 16/20/2 4/16/2 12/4/0
HTR2A rs1923886 10/19/9 5/10/7 5/9/2
HTR2A 152224721 17/16/5 8/10/4 9/6/1
HTR2A rs2770296 23/13/2 12/9/1 11/4/1
HTR2A rs6561332 9/20/9 4/11/7 5/9/2
HTR2A rs6561333 13/18/2 10/6/1 3/12/1
HTR2A rs7322347 11/22/5 7/12/3 4/10/2
HTR2A rs7984966 21/17/0 13/9/0 8/8/0
HTR2A rs7997012 13/19/6 7/11/4 6/8/2
HTR2A rs9316233 18/13/7 8/9/5 10/4/2
HTR2A rs9534495 9/18/11 5/10/7 4/8/4
TPH2 rs1386493 28/8/2 16/5/1 12/3/1
TPH2 rs1386497 29/7/2 16/5/1 13/2/1
TPH2 rs1487275 22/12/4 11/8/3 11/4/1
TPH2 rs1487278 26/10/2 16/4/2 10/6/0
TPH2 rs1843809 29/7/2 15/6/1 14/1/1
TPH2 rs4570625 25/12/1 17/5/0 8/7/1
TPH2 rs7305115 13/19/6 9/9/4 4/10/2
TPH2 rs10879352 17/14/7 10/7/5 7/7/2

For each single nucleotide polymorphism counts for major allele homozygotes,
heterozygotes and minor allele homozygotes are provided (in this order).
ADHD attention-deficit and hyperactivity disorder, MDD major depressive
disorder, HC healthy control, SD standard deviation, BPyp non-displaceable
binding potential.

in a measurement time of 90 min in total. FORE-ITER, an
iterative filtered back-projection algorithm, was used for
reconstructing the measured data in volumes of 35
transaxial sections (128 x 128 matrix). For this step, the
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spatial resolution was at 4.36 mm full-width at half max-
imum 1 cm next to the center of the field of view.

SERT quantification

The protocol for data quantification was reported pre-
viously, including preprocessing carried out in SPM12
(Wellcome Trust Centre for Neuroimaging, London, UK;
http://www.filion.uclac.uk/spm/)'®. In summary, the
means of all time frames without visually observable head
motion was used for realignment of each time frame of
the dynamic PET scans. All subjects also underwent MRI
scans on a 3 Tesla Philips scanner (Achieva, 3D T1 FFE
weighted sequence, 0.88 mm slice thickness, 0.8 x 0.8 mm
in-plane resolution). Summed PET images (integral) from
realigned data was co-registered to T1-weighted images.
Next, spatial normalization of the T1-weighted images
was performed. Transformation of the co-registered PET
images into MNI standard space was achieved by appli-
cation of the obtained transformation matrices to the
dynamic PET data. Finally, computation of voxel-vise
images of BPyp values was carried out with PMOD image
analysis software, version 3.509 (PMOD Technologies
Ltd., Zurich, Switzerland; http://www.pmod.com) and the
multilinear reference tissue model with two parameters
(MRTM2)". The cerebellar grey matter without vermis
and venous sinus was assigned as the reference region due
to negligible availability of SERT in this region®**".

Non-displaceable binding potential (BPyp) values were
extracted for regions defined according to the automated
anatomical atlas (AAL). Mean values were calculated from
BPyp for the left and right hemispheres. Thus, a total of
49 cortical and subcortical ROI was included in the
analyses.

Statistics

A classification model for ADHD and HC was com-
puted with genetic predictors, imaging predictors, all
predictors as well as the top performing predictors, for
each fold, respectively.

Computations were performed with the statistical soft-
ware “R” (https://www.R-project.org/). The package
“randomForest” was used for application of the epon-
ymous algorithm (RF)****, In short, RF is an ensemble
tree classification tool that randomly selects subsamples
of observations and builds a decision tree for optimal
splitting of these observations according to an outcome
variable by a combination of predictors. For each split, the
best performing predictor out of a random selection is
applied. Generally, a higher number of predictors allowed
for selection leads to optimal splits but also low diversity
of the individual trees. Therefore, restricting the number
of features can generate models that perform worse in the
training set but are more flexible when exposed to new
data. Here, 3000 trees were grown (ntree = 3000) for each
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model to enable multiple predictions for all patients.
Classification was performed with a five-fold cross-vali-
dation (CV) design to allow optimal validation in absence
of an independent test set>*. If hyperparameters must be
tuned, nested CV is the gold-standard technique to pre-
vent data leakage from training to the validation phase.
For RF only the number of features randomly selected at
each split (mtry) can be optimized; however, there is a
standard of using the square root of the number of pre-
dictors. To prevent overfitting, no optimization of mtry
was performed for this analysis.

For variable selection, a combination of established
algorithms “Boruta” and “varSelRF” for “R” were used*>?°.
Comparable to permutation-based importance evalua-
tions, “Boruta” doubles the predictors included in the
model by generating “shadow predictors” that show ran-
domly interchanged values for each observation. Then
500 iterations of RF are run and only those predictors
performing better than the best “shadow predictor” by a
p-value threshold of 0.01 are preserved. These relevant
predictors were then included in a backwards variable
elimination algorithm, “varSelRF”. The best performing
combination of predictors was then applied to the test set
corresponding to each fold of the CV.

The whole CV procedure was repeated ten times and
average accuracy is reported. See also Fig. 1 for a synopsis
of the CV design.

There is no established method of power calculation for
RF. Research indicated stable predictive capabilities of RF
and comparable machine learning algorithms when
enough observations are available, even in high dimen-
sional data with the number of variables surpassing that of
observations®®*’, For this dataset, a ratio of 79 predictors
to 38 subjects was observed.

In addition to the results produced by RF, a mixed
model was computed with the “Ime” package for “R”.
Linear mixed regression models for BPyp with diagnosis,
ROI and the most informative genetic predictors included
as fixed effects and subject as random effect were built.
Main and interaction effects (up to three-way) were
computed. Mixed model results were corrected for the
number of tests and models with a corrected threshold of
p<0.001. Based on these results, logistic regression
models for each ROI and SNP with diagnosis as outcome
variable and the respective ROI/SNP interaction term
were computed. Logistic regression results were not
corrected.

Results
Classification

Using all available predictors in a five-fold CV model
yielded an accuracy of 0.80 (+0.13). Restricting the pre-
dictors to either ROI or SNPs only, accuracies dropped to
0.58 (£0.15) and 0.62 (+0.15), respectively. Using only the
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n=38
rl_O\ Random Data
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Data
- fold oy
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1. Boruta:

number of variables
randomly selected for
splitting at RF nodes

Relevant predictors for each
CV-fold according to
permutation testing

2. VarSelRF: backwards feature elimination to select the
optimal combination of relevant predictors

mtry = +/n predictors

Fig. 1 Graphical representation of the five-fold CV design. CV was
performed with standard settings for variables randomly selected for
splitting at each node (mtr\y = square root of the number of
predictors) and variable selection based on imputation testing as
provided by “Boruta” and backwards feature elimination as provided
by “VarSelRF". The top perfroming predictors of each training set were
used for classification of the respective test set. The whole CV
procedure was repeated ten times and results were averaged. CV

cross-validation.
| J

Table 2 Performance evaluators of the classification
model for ADHD and HC.

Classification HC vs ADHD Sens Spec PPV NPV Accuracy

SNPs (n = 30) 056 066 055 067 062 (x0.15)
ROI (n =49) 050 073 050 061 058 (+0.15)
All (n=79) 082 080 075 086 080 (+0.13)
FS SNPs 071 080 072 079 076 (+0.13)
FS ROI 065 076 066 075 071 (x0.16)
FS SNP + ROl 075 086 080 083 082 (+0.09

Sensitivity, specificity, PPV, NPV and accuracy are provided for models based on
only ROI or SNP predictors, all predictors, and predictors highlighted by feature
selection. All results are averaged over 10 repeats of five-fold cross-validation.

ADHD attention-deficit and hyperactivity disorder, HC healthy control, PPV
positive predictive value, NPV negative predictive value, FS feature selection.

top performing predictors boosted the accuracy to 0.76
(+0.13) and 0.71 (+0.16) for SNPs and ROI, respectively.
Optimal results were achieved combining the selected
SNPs and ROI, with an accuracy of 0.82 (+0.09) and
positive and negative predictive values (PPV and NPV) of
0.80 and 0.83, indicating the probability of correct clas-
sification for and ADHD and HC, respectively

For a detailed overview of the classification outcome
with all evaluation parameters (Table 2).
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Variable selection

Concerning variable selection, most predictors showed
a high agreement between training sets. The posterior
cingulate gyrus was selected by 100% of models, followed
by cuneus (48%), precuneus (22%), middle temporal gyrus
(22%), precentral gyrus (20%), paracentral lobule (18%),
postcentral gyrus (18%) and temporal pole (18%). Among
the SNPs, HTR2A rs1328684 was selected by all models,
followed by HTR1B rs130058 (82%). Other than that, only
rs6311 (12%) and rs6313 (8%) were selected, which
showed identical allelic expression. For a graphical
depiction of importance measurements and probability
rates of the top scoring predictors being selected in the
training sets of each fold (Fig. 2).

Page 5 of 9

Mixed model and logistic regression statistics

Mixed model revealed three-way associations for
HTRIB SNP rs130058 (F = 1.67, p < 0.0001), HTR2A SNP
rs1328684 (F=1.61, p =0.001), HTR2A rs6313 (F =2.38,
p<0.0001) and TPH2 rs1843809 (F=2.08, p<0.0001).
Significant results of the mixed models are presented in
Table 3, section A.

Logistic regression revealed interaction effects for
the temporal pole (z=-2.29, p =0.022) as well as
posterior cingulate gyrus (z=—-2.14, p=0.032)
with HTRIB rs130058, none of which remained
significant after correction. Significant results of the
logistic regression models are presented in Table 3,
section B.
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Fig. 2 Variable importance measurement from RF by MDA for the total dataset (n = 38) with 5000 trees grown and 100 random

permutations. Predictors are ordered by declining information criterion for classification accuracy. Blue lines each represent drops in MDA after a
random permutation of the predictor values and the red line shows averages of all 100 permutations. The precentages indicate how often the top
predictors for the whole dataset were selected in the training sets of the cross-validation runs and thus were used for classification of the test sets. a
shows results for SNPs while b shows ROI predictors. RF RandomForest, MDA mean decrease in accuracy, SNP single nucleotide polymorphisms, ROI
region of interest.
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Table 3 A) Linear mixed model results for effects of diagnosis, ROl and the top performing SNPs on BPyp. B) Binomial

logistic regression results for classification of diagnosis.

A) Mixed model DF numerator DF denominator F value p-value
Group * ROI % HTR2A rs1328684 49 1666 161 0.001
Group * ROl % HTRIB rs130058 49 1666 949 <0.0001
Group * ROl % HTR2A rs6313 49 1666 2.38 <0.0001
Group * ROl % TPH2 rs1843809 49 1666 2.08 <0.0001
B) Logistic regression model Estimator Std. Error Z value p-value
Temporal Pole * HTR1B rs130058 —21.76 9.52 —-229 0.022
PCG x HTRIB rs130058 —1793 838 —2.14 0.032

Models were built for each of the top performing ROI and, respectively, for each interaction with performing SNPs, according to the machine learning classification
model. Interaction effects are marked with . Only significant results are shown (uncorrected). Mixed model results with p < 0.001 stayed significant after correction for

multiple testing. None of the logistic regression results withstood correction.

ROl region of interest, SNP single nucleotide polymorphisms, BPyp non-displaceable binding potential, DF Degrees of Freedom, PCG Posterior Cingulate Gyrus.

Discussion

Evaluating PET imaging and genetic predictors
anchored within the serotonergic system, a moderate
accuracy of 0.82 could be achieved for classification of
ADHD and HC. Beyond the utility as a diagnostic tool,
these results advocate different and recognizable ser-
otonergic properties for ADHD and HC.

Predictor evaluation based on importance can adum-
brate interaction effects that would not reach statistical
significance in conventional association as thousands of
predictor combinations are assessed for model building.
Concerning the most prominent features in this analysis,
SERT BPyp within the three ROI posterior cingulate
gyrus, cuneus and precuneus as well as SNPs rs130058 of
HTRIB and rs1328684 of HTR2A were selected con-
sistently by variable importance measures. All the anato-
mical structures labelled by these ROIs have previously
been implicated in ADHD pathology as part of the default
mode network (DMN)*®, Altered DMN activation during
sustained attention paradigms in ADHD could thereby be
partly redeemed by methylphenidate*~>'. Also both SNPs
rs130058 and rs1328684 were implicated to mediate
DMN abnormalities measured by MRI in a recent can-
didate gene study in PTSD**. HTRIB rs130058 was pre-
viously associated with ADHD as well as frequent
comorbidities as substance dependence disorders®>*,
Although HTRIB was highlighted as a top gene by can-
didate gene reviews in ADHD?, findings for rs130058
were overall inconsistent®®™%, In this sample, ADHD
patients  showed an increased frequency  of
rs1328684 minor alleles (1.69 vs 1.22) and decreased
frequency of rs130058 minor alleles (1.25 vs 1.75). Con-
cerning other predictors, the prominent SNPs rs6311 and
rs6313, which showed complete linkage in our sample, did
hardly impact classification results. Among other positive

reports, rs6311 was associated with ADHD in a rather
large candidate gene study, but overall no consistent
associations were reported so far 327,

However, the literature on in vivo SERT binding is
limited. A previous study using single-photon emission
computed tomography and the radioligand [***I]FP-CIT,
binding to dopamine and serotonin transporters, did not
demonstrate serotonergic binding differences in 17
ADHD patients compared to HC*. These findings were
supported by a PET study using the tracer [''CIMADAM
that reported similar mean binding between eight ADHD
patients and HC in several ROI, including prefrontal
cortex, thalamus and putamen“. However, these results
must be interpreted in the light of different radioligands
and small sample sizes. The most extensive analysis of
SERT binding in ADHD reported so far showed overall
decreased BPyp in 25 ADHD patients compared to age
and sex matched controls applying the current gold-
standard radioligand [''C]DASB. Strongest effects were
observed in the striatum, insula and anterior cingulate
cortex; however, these results did not withstand correc-
tion for multiple testing in the post hoc analyses. Inter-
estingly, only interregional molecular correlations of
SERT binding between the hippocampus and the pre-
cuneus withstood correction thresholds, indicating that
an interplay of brain regions may better portray
abnormalities of serotonergic transmission in ADHD'®.
These thoughts are in line with moderate to high accuracy
despite the lack of single predictor association results in
our sample.

There is a particularly abundant literature for ADHD
classification models to put these results into perspective
with. While advanced statistics and especially machine
learning methods have been established in all of neu-
ropsychiatric research in recent years, this particular
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boom in ADHD is probably owed to the heterogeneous
nature and lack of objective biomarkers contrasted by
overlapping clinical phenotypes with highly subjective
symptoms and frequent comorbidities. Usually, diagnostic
models were based on EEG or MRI data and aimed at
automated classification of ADHD or MDD and HC.

Thereby, no algorithm proved to be superior to the
other frequently applied techniques such as RF, support
vector machines (SVM), neural networks or gradient
boosting machines. This observation has been shared
throughout different application areas of machine learn-
ing and culminated in the “no-free-lunch”-theorem,
meaning that comparative algorithm performance cannot
be generalized and is dependent on structure and context
of the data as well as the model**. Nevertheless, RF and
SVM may be the most commonly applied and best-
established algorithms in imaging-based research'®*’,
While SVM was demonstrated to often outperform RF by
means of accuracy*’, RE may be more resilient to over-
fitting in small datasets as no hyper-parameter tuning is
necessary and the generalization error does not increase
with trees grown®’. Furthermore, in contrast to SVM,
both feature selection and classification can be performed
with RF. Consequently, for this investigation all analyses
were performed with RF.

A contemporary review suggested accuracy between 0.6
and 0.8 for published MRI based algorithms that conform
with methodological standards concerning validation and
feature selection in ADHD research'®. Surveying the
reports for MRI based models for ADHD diagnosis,
accuracies above 0.9 attract attention’. However, higher
accuracies reported by some imaging studies may be owed
to circular analysis or other intrusions of information
between training and test samples. Although EEG based
machine learning algorithms have been supported by the
Food and Drug Association (FDA), preliminary results are
hindered by the same issues *°.

The focus of this study on genetic imaging applying PET
instead of in comparison easily obtainable MRI data
brings about a considerably extenuated sample size of
34 subjects compared to some reported MRI based clas-
sification algorithms. While there is no other PET imaging
and genetic machine learning study for comparison, study
populations from MRI studies ranged from few dozens to
several hundred subjects. Interestingly, recent meta ana-
lyses and reviews have emphasized a curious finding of
decline of accuracy with increased sample size across
studies despite oppositional effects within studies*®*’.
While the majority of published studies featured below
100 observations, a decline on accuracy with sample size
was observed. This may partly be explained by the con-
trast of narrow study settings to the heterogeneity of
phenotypes in the clinical routine, which are better
reproduced by larger, more natural samples. Along these
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lines, larger samples are usually collected in multi-center
approach and slight differences in implementation of
study protocols or data acquisition and interpretation
among contributing centers may explain a reduction in
accuracy as machine learning algorithms can easily be
disrupted by data disparity. On the other hand, however,
accuracies may be inflated in small samples despite opti-
mal validation protocols. Furthermore, smaller studies
may be more prone to publication bias as low accuracy
samples are probably underreported.

Our results must be interpreted cautiously due to the
lack of external validation, constituting the most impor-
tant limitation. The latter was not possible as to our
knowledge there was no comparative sample on SERT
binding in ADHD measured with [11 C]DASB that could
have been used for validation. Thus, we cannot rule out
overoptimistic PPV and NPV in our model. Although
38 subjects can be considered a large sample for a PET
neuroimaging analysis, the observation count is marginal
for machine learning classification. The CV design with
fold-specific feature selection, refrainment from further
parameter tuning and averaging across repeats can be
regarded as state of the art but cannot substitute low
sample size and lack of external validation®, Along these
lines, the moderate standard deviation across the repeats
of the CV procedure must be noted and indicates that
results may still be dependent on the data context. In line
with these considerations, prediction accuracy based on
MRI data from a recently published large sample of MDD
patients thoroughly analyzed throughout a machine
learning competition did not surpass 0.65*>. These lower
accuracies but may be closer to the actual clinical value of
currently available models. While an accuracy higher than
0.8 generally indicates good discrimination®®, the cut-offs
necessary for clinical application are primarily dependent
on already available screening and diagnostic tests and the
expected ratio of observed cases. For example, an easily
applicable screening test designed for detecting the few
cases among a predominant number of controls must
show good sensitivity while diagnostic tests also need high
specificity to prevent false-positive outcomes. Considering
the cost-intensive nature of PET and, to a lesser degree,
also MRI, an imaging-based classification model can
currently only fulfill a role as specialized diagnostic tool in
clinically challenging cases as proposed for classification
of psychosis®. Consequently, current data do not support
the viability of solely imaging-based algorithms for clinical
applications, neither regarding ADHD nor MDD. Along
these lines, clinical predictors such as scores of the
Conners’ Adult ADHD Rating Scale can most likely
increase accuracies but were kept out of this analysis as
two clearly distinct samples, healthy controls and ADHD
patients, were compared. Keeping in mind the symptom
overlap between ADHD and frequent comorbidities, a
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clinical and bio-marker based transdiagnostic classifica-
tion model may be clinically meaningful even with mod-
erate accuracy.

To summarize, we propose a diagnostic prediction
model for ADHD and HC based on multimodal ser-
otonergic data. Thereby, we present the first PET based
classification model for ADHD and expand on previous
designs based solely on a single data type. We cannot yet
advocate clinical applicability of this diagnostic model but
present a step towards the goal of precision medicine in
psychiatry. More importantly, our findings support dif-
ferent serotonergic profiles in ADHD and HC, reflected
by distinct SERT and HTRIB as well as HTR2A activity,
and especially put emphasis on the rs130058 and
rs1328684 polymorphisms.
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