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Abstract

Background: Advances in sequencing technologies have led to the release of reference genomes and annotations
for multiple individuals within more well-studied systems. While each of these new genome assemblies shares
significant portions of synteny between each other, the annotated structure of gene models within these regions
can differ. Of particular concern are split-gene misannotations, in which a single gene is incorrectly annotated as
two distinct genes or two genes are incorrectly annotated as a single gene. These misannotations can have major
impacts on functional prediction, estimates of expression, and many downstream analyses.

Results: We developed a high-throughput method based on pairwise comparisons of annotations that detect
potential split-gene misannotations and quantifies support for whether the genes should be merged into a single
gene model. We demonstrated the utility of our method using gene annotations of three reference genomes from
maize (B73, PH207, and W22), a difficult system from an annotation perspective due to the size and complexity of
the genome. On average, we found several hundred of these potential split-gene misannotations in each pairwise
comparison, corresponding to 3-5% of gene models across annotations. To determine which state (i.e. one gene or
multiple genes) is biologically supported, we utilized RNAseq data from 10 tissues throughout development along
with a novel metric and simulation framework. The methods we have developed require minimal human
interaction and can be applied to future assemblies to aid in annotation efforts.

Conclusions: Split-gene misannotations occur at appreciable frequency in maize annotations. We have developed
a method to easily identify and correct these misannotations. Importantly, this method is generic in that it can
utilize any type of short-read expression data. Failure to account for split-gene misannotations has serious
consequences for biological inference, particularly for expression-based analyses.
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Introduction

The annotation of a genome is a useful resource in many
modern sequencing endeavors. It provides the initial link
connecting mapping studies to functional impact, and
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defines the context in which much of our genomic infer-
ence takes place. Modern software/pipelines [1] greatly
facilitated production of de novo annotations for a large
number of species, and multiple independent genome
assemblies and annotations have been produced for
more well-studied species [2—5].

Despite the importance of developing high quality an-
notations, and the exponential increase in annotated
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sequences over time that have come from assembly of
many new genomes, the annotation process remains no-
toriously error-prone [1, 6, 7]. Annotation pipelines at-
tempt to integrate multiple data types, such as RNAseq,
orthologous protein sequences, ESTSs, as well as ab initio
predictions from the genome sequence itself. In addition
to the complexity of the data, the challenge is height-
ened by the complexity (and scale) of the underlying
biological processes. Expression and maturation of tran-
scripts and proteins is a highly dynamic process that var-
ies over time as well as across different tissues, making it
hard to differentiate between functional and intermedi-
ate forms. Furthermore, biological errors such as tran-
scriptional read-through, as well as chimeric transcripts,
provide conflicting evidence to the true underlying
gene(s).

Research communities recognize the value of manual
curation in the improvement of annotations and have
encouraged input from community members [8, 9].
Manual curation of gene annotations often comes from
individual community members interested in a particular
gene or gene family, relying on their detailed knowledge
and data to identify and correct errors in a gene model.
Depending on the community size and resource avail-
ability to a given study system, the extent to which this
manual curation occurs and is effectively absorbed and
corrected in future annotations is variable. Bioinformati-
cians can facilitate this process by developing automated
algorithms that flag potential errors for subsequent man-
ual curation.

The presence of multiple de novo genome assemblies
and de novo annotations for a single species or multiple
closely related species provides a useful dataset for such
algorithms. By identifying the co-linear regions within
each reference and linking the homologous genes across
the annotations, researchers can discover discrepancies
between gene models in the different genome assem-
blies. One particularly insidious discrepancy is when two
distinct gene models in one annotation correspond to
non-overlapping parts of a single, merged gene in the al-
ternative annotation, commonly known as split-gene
misannotation [10]. These can have major impacts on
functional predictions, estimates of expression, as well as
downstream analyses. Here, we present a method to
compare annotations and automatically detect potential
split-gene misannotations, and subsequently determine
which gene model (merged vs split) is likely correct,
using transcript abundance estimates from short-read
sequence data. Expression data from multiple tissues is
standard input for most annotation pipelines [1, 11-16],
so in most cases, it should exist by virtue of having pro-
duced an annotation. This generic method accommo-
dates all standard RNAseq libraries, including single-end
and non-stranded preparations.
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The difficulty of the annotation process, and thus the
prevalence of errors, vary greatly across study systems
due to factors such as current and/or ancient polyploidy,
transposable element (TE) content, and gene density
throughout the genome. Maize is a good case system in
which to test our misannotation detection method as it
is an ancient polyploid with high TE content including
TEs that are in close proximity to gene models. We ana-
lyzed de novo annotations from three maize genome as-
semblies, including W22 [12], B73 [13, 17], and PH207
[11]. Using our pipeline, we identified hundreds of in-
stances where multiple genes corresponded to a single
gene in an alternate annotation and determined the
most likely annotation. We further demonstrate the bio-
logical misinterpretations that can result from these
split-gene misannotations.

Results

Split-gene Misannotation detection and classification
pipeline overview

Our pipeline proceeds in two major steps: 1.) identifica-
tion of potential split-gene misannotations (i.e. split-
gene candidates) based on pairwise alignments (Fig. 1;
Syntenic Homology Pipeline in Methods) followed by 2.)
determination of the supported gene model using short-
read expression data (Fig. 2; Split-gene classification in
Methods). The output of the first step, which is based
on a sequential alignment procedure using nucmer
followed by reciprocal BLAST, is a key that labels the
genes that have a one-to-one homologous relationship
across the annotations along with the genes that have a
one-to-many homologous relationship (a single gene in
one annotation corresponds to multiple genes in the al-
ternative annotation). The one-to-many genes will con-
tain both tandem duplicates as well as split-merge
candidates (Fig. 1a). These two classes of one-to-many
genes are distinguished by the proportionate overlap of
the BLAST query genes with respect to the total aligned
space of the subject gene (Fig. 1b). The split-gene candi-
dates are carried forward to the second ‘classification’
step in the pipeline.

Our classification method is based on the expectation
that the difference in expression across the split genes
should be greater if split (multiple) gene annotation is
correct than if the merged (single) gene annotation is
correct. To evaluate this degree of difference in expres-
sion patterns across the split genes, we developed the
M2f (‘Mean 2-fold split-gene expression difference’)
metric (Fig. 2a-b). Simulated, empirical null distributions
(Fig. 2c-d) are then used to determine significance
thresholds for the M2f metric, based on if the value is
lesser or greater than expected by chance. In other
words, are the expression differences across the split-
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Fig. 1 Identifying syntenic homologs and isolating split-gene candidates. a Homology classifications from syntenic homology pipeline. b
Schematic for calculation of tandem duplicate percentage. We require the ratio of L1 to L2 to be < 0.1 (i.e. the proportionate overlap of the
BLAST query genes with respect to the total aligned space of the subject gene). ¢ Summary of homology classifications and split-gene candidate
filtration. A Testable candidate’ is one in which all of the genes involved are expressed. d Corroboration of testable candidates. E.g. 43
‘Corroborated’ split-gene candidates in the B73 annotation ('B73 - Split’) were simultaneously identified as a single gene in W22 and PH207, while
there were 61 genes in B73 that corresponded to multiple genes in both PH207 and W22 (B73 - Merged’), and the 438 ‘Unique’ split-gene

candidates in B73 were identified as a single gene in W22 or PH207
J

genes consistent with an underlying biological reality of is currently in its fourth version, whereas W22 and
a single gene or multiple, distinct genes? PH207 are in their second and first version, respectively.

To demonstrate the utility of this identification and  Annotation of B73 was based on five evidence types, in-
classification method, we analyzed three maize reference  cluding long- (PacBio IsoSeq) and short-read RNAseq,
genome assemblies that each of been independently an-  optical mapping, full length ¢cDNAs (from BACs), and
notated. The annotations under consideration represent orthologous protein sequences [17]. The IsoSeq expres-
different stages of development as well as different types  sion data from B73 was also utilized for annotation of
and amounts of validating data. The annotation for B73 W22 as well as short read data and optical mapping
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specific to W22 [12]. The PH207 annotation included
only standard short-read RNAseq data from PH207 [11].
All annotations were produced using the MAKER-P
pipeline [18] (with a modification for long-read expres-
sion data for B73 and W22) and contain approximately
the same number of genes (~40k). Due to the lesser
data used for the genome and annotation of PH207, the
completeness and accuracy are predictably lower for
PH207.

Identification of maize candidate genes

Alignments generated using nucmer covered a large por-
tion of the genome with the greatest total alignment
length between B73 and W22 (1.07 Gb; ~ 46%). Pairwise
alignments with PH207 covered a much lower (~37%)
proportion of the genome, regardless of whether it was
aligned to B73 or W22. Furthermore, the alignments
with PH207 were broken up into many smaller aligned
regions (~60% of the average length in B73 x W22;
Additional file 1: Table S1). From the syntenic homology
pipeline (Fig. la) for each pairwise comparison, we
found >20k one-to-one homologs (with the greatest
number identified in the B73 x W22 comparison, likely
due to the shared IsoSeq data). We also found 1.2-2.3
thousand instances of one-to-many homology across the
pairwise comparisons (with the greatest numbers identi-
fied for comparisons involving PH207; Fig. 1c; list of
one-to-one and one-to-many homologous genes in Add-
itional files 2 and 3, respectively). Of these one-to-many
instances, the most common source were cases with
multiple genes in PH207 that corresponded to a single
gene in either B73 or W22. However, in 37% (compari-
son to B73) and 44% (comparison to W22) of these in-
stances, the split PH207 genes were on opposite strands,
and often overlapping (Additional file 1: Table S2), per-
haps indicative of overannotation of antisense transcrip-
tion events in PH207. Such opposite and overlapping
split-genes were also observed in B73 and W22, but to a
much lesser extent (Additional file 1: Table S2).

After filtering the remaining one-to-many candidates
to remove possible tandem duplications and retain only
expressed genes, there remained substantially more
split-gene candidates (‘Corroborated’ + ‘Unique’ =507 +
307 = 814; Fig. 1d) in PH207 versus B73 (481) and W22
(525). Furthermore, the number of split-gene candidates
in PH207 that were found to correspond to a single gene
in both B73 and W22 (i.e. they were ‘Corroborated’; Fig.
1d) is much higher than the ‘Corroborated’ B73 and
W22 split-gene candidates combined. This is again con-
cordant with comparatively less data used for the PH207
annotation, where for example, a lowly-expressed gene
in PH207 might lack the coverage necessary to generate
a full-length assembled transcript, resulting in annota-
tion of multiple genes instead of the single, true gene.
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Considering these split-genes along with the merged
genes to which they corresponded, our analysis concerns
1275, 1383, and 2125 genes in the W22, B73, and PH207
annotations, respectively, corresponding to roughly 3—
5% of all genes contained in these annotations. Attri-
butes of these genes tend to be comparable in many
regards to the one-to-one homologous genes, except that
they are usually nearer to neighboring genes and show
more tissue specific expression (Additional file 1: Figure
S1).

Classification of maize Split-merge candidate genes using
the M2f metric

For each of the split-gene candidates identified with the
syntenic homology pipeline (Fig. 1a), we sought to deter-
mine the gene model(s) with greatest support (ie.,
should the split-genes remain split or be merged into a
single gene?) using our M2f metric. The observed distri-
butions of M2f for the split-gene candidates from each
annotation are presented in Fig. 3a, along with the
threshold values (dotted lines) from the simulated, null
distributions. We observed clear differences in the over-
all distributions of the M2f metric across the different
genotypes (Fig. 3a, Table 1), which leads predictably to
differences in the number of split-gene candidates classi-
fied as either merged (ie., the annotation in which the
split-genes were annotated as a single gene is supported)
or split (i.e., the separate, split-gene annotation is sup-
ported) (Fig. 3a-b). The list of split-gene candidates,
along with the supported annotation, are provided in the
Additional file 10.

The M2f distribution of split-gene candidates in the
PH207 annotation (the lowest quality annotation, which
make up a majority of the overall split-gene candidates)
is shifted left relative to the other annotations (Fig. 3a,
Table 1), indicating that many of these are likely misan-
notations and should be merged as they have been anno-
tated in either W22 and/or B73 (Fig. 3b). Out of the
1129 sets of split-gene candidates in the PH207 annota-
tion that were identified in either the comparison with
B73 or W22, we found 505 that should be merged versus
only 162 that should remain as separate genes. We were
unable to make classification for 462 candidate sets
based on the 10th and 90th percentiles of the simulated
distributions. We observed the opposite pattern for
split-gene candidates in the high-evidence B73 annota-
tion (96 split-genes should be merged, 170 should re-
main as separate genes despite being merged in PH207
or W22, and 240 were unable to be called), where the
separate gene models tended to have higher support
based on M2f. The B73 gene model(s) tended to be fa-
vored by the M2f metric overall in comparison with ei-
ther W22 or PH207, in line with B73 having the deepest
evidence sources used to develop the annotation.
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Fig. 3 Results of M2f classification. a Observed M2f distribution across all split-genes detected in each annotation. The dotted lines are the
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Having multiple pairwise comparisons also allows us
to determine the consistency of the M2f metric. We
consider instances where a single gene in one annotation
corresponded to multiple genes in both of the alternative
annotations. This provides two M2f values for this single
gene, which should be correlated if M2f is sensitive to
the underlying biological truth. In Fig. 3c, we plot this
correlation in M2f metrics for each annotation. In this
plot, the ‘B73 x W22’ correlation concerns the single
PH207 genes that corresponded to multiple genes in
both B73 and W22. We found this correlation is highest
when W22 is the annotation with a single gene corre-
sponding to multiple genes in both PH207 and B73 (B73
vs. PH207 correlation = 0.85), followed by B73 (PH207
vs. W22 correlation = 0.68) and PH207 (B73 vs. W22
correlation = 0.66). While these correlations are

Table 1 Summary of M2f distributions for split-gene candidates
in each annotation. CV = coefficient of variation. N = number of
tested candidates

imperfect, they rarely lead to conflicting classifications
(Fig. 3d) and, typically, the M2f value trends in the same
direction even if the gene model does not pass the null
distribution thresholds. Of the 320 instances where a
single gene corresponded to two or more split-genes in
both of the alternate annotations, only five (1.56%) are
in conflict (i.e. M2f supports merging the split-genes for
one of the alternative annotations, while the other alter-
native annotation suggests the genes should be kept sep-
arate, or vice versa; Fig. 3d).

To further test the robustness and validity of our ap-
proach we investigated a number of potential confound-
ing factors (Additional file 1: Figures S2-4) that could
impact classification of genes based on the M2f metric.
First, we examined if genes that produce multiple iso-
forms have inflated M2f values. We compared the M2f
distributions for B73 genes with multiple isoforms versus
single isoforms (Additional file 1: Figure S2) and found a
slight inflation of M2f values for genes with multiple iso-
forms (Median M2f of 1.41 vs 1.59 for single and multi-

Split-genes Mean Median Variance v N isoform genes, respectively, within the split-gene candi-
873 545 509 249 0693 506 dates). Although this bias is slight, it serves to emphasize
PL2G7 - 5 507 088 1129 the. role of the 51mulat10n§ in protecting ?galnst potent.lal

artifacts. As long as the simulated data is representative
W22 205 1.66 242 0.759 614

of our split-gene candidates (multiple isoform genes, in
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this case, are not over-represented in our candidates), MS genes have comparatively fewer exons than MNS
the simulated null distribution will include this M2f in-  genes (Additional file 1: Figure S6a,c). The long, exon-
flation, thus protecting against misclassification due to  sparse MS genes may be more likely to be missing reads
this artifact. Notably, in our study, multi-isoform genes spanning particular exon-exon junctions and, thus, be
within our B73 candidates are less frequent in the em- more prone to being misannotated as multiple genes
pirical data (0.54) than to either the simulated split (particularly when relying on short-read RNAseq data).

genes (0.64) or the simulated merged genes (0.59). We Generally, the split-gene candidates (including genes
also explored the impact of exon number on our M2f originally annotated as split, along with their merged
metric and found that there is little impact of exon num-  counterparts in the alternate annotations), tend to be
ber on the distribution of M2f values (Additional file 1:  closer to other genes as compared to the genes with
Figure S3). Finally, we explored the impact of using an-  one-to-one homology across all three annotations (me-
notations from the different genome assemblies to set dian distance of 3.6 kb versus 4.1 kb). This suggests that
the thresholds for setting the 10th and 90th percentiles, gene dense regions may be more prone to split-gene
and found the thresholds were highly similar across the  misannotations, and that these misannotations may be

genomes (Additional file 1: Figure S4). more frequent in species with smaller, gene-dense ge-
nomes. Looking within the split-gene candidates (all cat-
Features of classified maize genes egories except for ‘One-to-one’ in Fig. 4), we found that

We explored features of the classified genes to deter- when split gene annotation is supported, the compo-
mine if there were common features that could be in- nents of the unsupported merged gene tend to be closer
formative in improving future automated annotation together. This suggests that the distance between these
efforts. Genes that were originally annotated as a single/  components contributed to the misannotation as a
merged gene model but were determined to be split merged gene, potentially through a mechanisms like
based on the M2f metric tended to be longer (Fig. 4b) transcriptional read through of proximate genes. We ob-
and have more exons (Additional file 1: Figure S6a). served the opposite trend in the PH207 annotation, but
Merged gene models supported by our M2f metric only for the split-genes in PH207 that corresponded to a
(MS = merged supported) were longer than the misanno-  single gene in W22 (split not supported (SNS) distance =
tated, merged genes (MNS = merged not supported); yet, 3.6 kb; SS distance = 5.3 kb).
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Fig. 4 Features of one-to-one genes as well as split-gene candidates. a Split-gene candidates are classified based on whether they were initially
annotated as split or merged for a given genotype followed by the classification based on the M2f method. E.g. The ‘SS" box for the B73
genotype are instances where multiple genes in B73 corresponded to a single gene in either PH207 or W22, and the multiple (split) genes of B73
were determined to be the correct annotation. Outliers were removed on all plots. b Length and Distance between genes. ¢ AED calculated from
MAKER-P for the B73 and PH207 annotations. For B73, multiple isoforms were annotated, and we took the max AED across all isoforms for a
given gene model. d Number of IsoSeq cDNAs for genes in each category. Genes with no IsoSeq support were excluded and shown separately
as a proportion on the right. IsoSeq cDNAs were filtered for mapping quality (MQ) > 20 and for coverage of at least 75% of the longest

transcript sequence
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We also investigated whether expression differed
between supported and unsupported annotations.
Overall, expression abundance did not markedly differ
from that seen in the one-to-one genes (Additional
file 1: Figure S6a). One slight exception is for the
genes that were incorrectly annotated as a single,
merged gene (MNS), where there is a higher density
of high expression for these ‘genes’. Increased expres-
sion of one or multiple proximate, distinct genes may
increase the likelihood of producing chimeric tran-
scripts (e.g. via transcriptional read through), thus
promoting incorrect annotation as a single, merged
gene. Tissue-specificity of expression differed mark-
edly between classification categories (Additional file
1: Figure S5a,b), particularly for the highly tissue-
specific genes (Additional file 1: Figure S5b). We
found that split-gene annotations (both split sup-
ported (SS) and SNS) were more likely to result when
expression of one of the genes was highly tissue-
specific, whereas merged gene annotations (both MS
and MNS) occurred more often when expression was
less tissue-specific. Interestingly, within each of these
categories, the subset of supported annotations (as
determined by our M2f metric) tended to be more
tissue-specific than the non-supported annotations
(Additional file 1: Figure S5b).

The annotation edit distance (AED) is a common an-
notation quality metric that can be used to summarize
the differences between an annotated gene model and
the supporting evidence [19]. We found that the AED
reported by MAKER-P for the B73 and PH207 annota-
tion is consistently higher for split-gene candidates as
compared to the one-to-one homologs (Fig. 4c), indicat-
ing lower quality of these gene models, generally. Not-
ably, the AED of nonsupported annotations (SNS and
MNYS) is higher than the supported annotations (SS and
MS). However, the AED distributions of supported and
nonsupported split-gene annotations are largely overlap-
ping; thus, while AED is sensitive to split-gene misanno-
tation, it cannot be used to robustly identify incorrectly
merged or split gene models.

We found that nonsupported annotations in B73
have lower or no IsoSeq coverage as compared to
supported annotated gene models (Fig. 4d). Both of
the nonsupported annotation categories (SNS and
MNS) have the highest proportion of genes with no
long-read support (SNS =0.54 and MNS =0.58 versus
SS=0.42 and MS =0.32). When we consider only the
genes that have long-read support, there tend to be
fewer supporting reads for the nonsupported annota-
tion categories, particularly when B73 has a nonsup-
ported, merged gene that M2f suggests should be
split (Median number of IsoSeq cDNAs for MNS =4
and SNS =7 versus MS =11 and SS = 8).
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Consequences of Split-gene Misannotations on biological

findings

We explored the consequences of split-gene misannota-
tions for biological inference that rely heavily on the an-
notation, namely expression-based analyses. Comparing
across genotypes, we found that genes that are one-to-
one homologs show a much tighter correlation in nor-
malized expression (r =0.92) than the correlation be-
tween supported split-genes and their corresponding
(nonsupported) single, merged gene (r = 0.43; Fig. 5a; SS
category in Fig. 4). If two distinct genes are incorrectly
annotated as a single gene, the estimated expression for
the single gene will be an average of the expression of
the two loci. Unless the two loci happen to be expressed
similarly, this average will likely be more dissimilar from
either of the two distinct genes than if we were to com-
pare expression with the true homologs (i.e. if the mis-
annotated merged gene was correctly annotated as two
distinct genes). The dissimilarity may be further ampli-
fied by normalization procedures that scale read counts
by the length of the feature over which expression is be-
ing measured. For an equivalent number of reads, the
longer, merged gene model will have lower normalized
expression. On the other hand, when the single, merged
gene was supported, we found a very tight correlation
between the expression of this gene and the correspond-
ing (non-supported) split-genes (r = 0.99; Additional file
1: Figure S7).

Poor estimations of transcript abundance for split-
gene candidates presumably will have consequences on
inference of differential expression as well as differential
exon usage. For example, the two PH207 genes in Fig.
5b are differentially expressed albeit in opposite direc-
tions across the immature ear and anthers, yet these dif-
ferences cancel out when we test for differential
expression of the single, merged gene as annotated in
W22 (Fig. 5b). Similarly, Fig. 5c illustrates improper in-
ference of differential exon usage of the left-most exon
in two of the tissues, when in fact, this exon is a distinct
(and differentially expressed) single-exon gene according
to our results. Across all of the non-supported merged
genes, there is an abundance of differential exon usage
as compared to the supported merged genes (Fig. 5d),
suggesting that unsupported merged gene models lead
to false inference of differential exon usage. We also ob-
served this trend for the DESeq2 analysis, albeit to a
lesser degree (Additional file 1: Figure S8). A much
higher proportion of exons are inferred to be differen-
tially used across tissues for these non-supported gene
models, which is expected when the non-supported
merged gene is composed of two or more multi-exon
genes (Additional file 1: Figure S9). Therefore, these
types of misannotations are highly predisposed for mis-
inference of underlying biological processes.
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Discussion

Accurate gene models are of paramount importance in
the era of genomics. While the bioinformatics commu-
nity continues to develop and improve tools for the pre-
diction of gene models (i.e. annotation), the burden of
verifying and, if necessary, correcting these predictions is
largely spread across the individuals invested in
researching the particular organism. Bioinformaticians
can do more to facilitate this process by developing
methods that flag/correct misannotated genes, preferably
without requiring the generation of additional data. We
have described a comparative approach to identify po-
tential split-gene misannotations across annotations of
individuals within a species or closely related species,
and a method to infer the correct annotation using pre-
existing RNAseq data.

Though our approach is based on short-read RNAseq
data, the utility of long-read expression data is clear in
our results. PH207, which was the only annotation that
did not utilize long-read data, exhibited substantially
more split-gene misannotations than W22 and B73 com-
bined. A single long read can capture all of the exon-
exon junctions, whereas observations on one or more
junctions are more likely to be missing with short-read
sequencing due to random variation in sequencing
coverage. In line with this, we found split-gene

misannotations are more often associated with lowly-
expressed and/or tissue-specific genes.

We have, however, shown that even annotations that
are based on long-read data will still contain split-gene
misannotations. These misannotations are not due to
the long-reads per se; they more likely result whenever
long-read data is unavailable for a particular gene and
short-reads are sparse (e.g. lowly expressed genes). Our
method capitalizes on the fact that these same genes
may be more highly expressed in other genotypes, thus
providing more complete evidence of the underlying
gene model. The more salient issue with long-reads (and
short-reads, for that matter) is the potential for aberrant
transcriptional readthrough events that encourage im-
proper merging of adjacent gene models [20]. Fortu-
nately, such events ought to be detected by our method,
as these merged genes will more likely show highly in-
consistent expression patterns.

In its current implementation, our method will not de-
tect all instances of split-gene misannotations. Thus, we
may underestimate the abundance of split-gene misan-
notations. The most obvious cause of non-detection
would be if the gene(s) were consistently misannotated
across all of the annotations being compared, in which
case we would identify these genes as one-to-one homo-
logs. However, by increasing the number of independent
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annotations considered, we should increase the odds
that at least one annotation possessed the correct gene
model. Additionally, our method will not identify split/
merge candidates in which the gene(s) are only anno-
tated in one of the genomes being analyzed. In the cases,
additional information such as full-length ¢cDNA se-
quences would be required to identify the split candi-
dates. We also are only considering split-gene candidates
where both of the split genes are expressed. Our at-
tempts to handle the O0-expression genes introduced
clear artifacts in our M2f metric, though an alternative
or modified metric could possibly accommodate these
scenarios. Lastly, we cannot strictly discriminate between
truly split genes and certain scenarios of a single gene
with multiple isoforms. Our simulation framework will
partly protect against M2f inflation from multiple iso-
forms, since multiple isoform genes were well-
represented in the simulated split or merged genes.
However, a multi-isoform gene in which the predomin-
ant isoform is simply a truncated version of the longest
isoform may still result in false positives via our ap-
proach. For these reasons, we view our method as a
high-throughput means of flagging potential misannota-
tions and suggesting the correct gene model, in order to
facilitate the manual curation process of the larger com-
munity [8, 9].

Conclusions

In summary, as additional de novo genome assemblies
and annotations are produced, the greater the opportun-
ity to identify and correct errors and inconsistencies. We
have described a method to facilitate this process for
split-gene misannotations, which we have demonstrated
can strongly bias a range of biological estimates. Given
that the required input (RNAseq) is readily available by
virtue of having produced an annotation, our method
could be integrated as a standard part of the annotation
process for systems in which annotations already exist
for other genotypes or individuals. Accrual of such tools
are an important step towards developing accurate and
consistent genome annotations, a foundational resource
in the age of genomics.

Methods

Maize datasets

We focused on three maize genome assemblies and cor-
responding annotations for this study: B73 (v4; AGPv4,
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/plant/Zea_
mays/latest_assembly_versions/GCA_000005005.6_B73_
RefGen_v4) [13, 17], W22 (v2, ftp://ftp.ncbinlm.nih.gov/
genomes/genbank/plant/Zea_mays/latest_assembly_ver-
sions/GCA_001644905.2_Zm-W?22-REFERENCE-
NRGENE-2.0) [12], and PH207 (v1, https://doi.org/10.
5061/dryad.8vj84) [11]. We filtered annotations for a
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single gene with multiple transcripts by filtering for the
longest coding sequence (CDS). We then converted
these representative transcripts from GFF to fasta format
and created a BLAST database [21] for each reference.

For each of the three genotypes, we collected tissue
from ten spatiotemporally diverse tissues including: (1)
primary root six days after planting, (2) shoot and cole-
optile six days after planting, (3) internode at the Vege-
tative 11 developmental stage, (4) middle of the 10th leaf
at the Vegetative 11 developmental stage, (5) middle of
the leaf from the ear bearing node at 30 days after pollin-
ation, (6) meiotic tassel at the Vegetative 18 develop-
mental stage, (7) immature ear at the Vegetative 18
developmental stage, (8) anthers at the Reproductive 1
developmental stage, (9) endosperm at 16 days after pol-
lination, and (10) embryo at 16 days after pollination.
Tissues (1) and (2) were collected from greenhouse
grown plants that were planted in Metro-Mix300 (Sun
Gro Horticulture) with no additional fertilizer and
grown at 27C/24C day/night and 16h/8h light/dark.
Plants were grown at the University of Minnesota Plant
Growth Facilities in St. Paul, MN in June of 2015. The
remaining tissues were collected from field grown plants
that were planted at approximately 52,000 plants per
hectare with 30-in. row spacing and grown under stand-
ard corn growth conditions. Seeds for field grown plants
were planted at the University of Minnesota Agricultural
Experiment Station located in St. Paul, MN in May
2015. For tissues (1) through (4) all biological replicates
for all genoyptes were collected on a single day. For the
remaining tissues the two biological replicates for a
given genotype were collected on the same date. How-
ever, the date of collection between genotypes was vari-
able and determined by the time to reach the specified
developmental stage. Tissue sampling for each of the tis-
sues was conducted using previously described methods
[22, 23]. These tissues were chosen to broadly capture
variation in the maize transcriptome based on the maize
B73 gene atlas [22]. We collected two biological repli-
cates per genotype/tissue combination and standard,
non-stranded RNAseq libraries were prepared for each
tissue sample using the Illumina TruSeq library prepar-
ation protocol-replicate.

Libraries were sequenced on an Illumina HiSeq 2500,
using 50 bp SE reads (avg. number of reads = 30.5 mil-
lion; see Additional file 1: Table S3 for total reads per
sample). We checked the quality of each file with
FASTQC (version 0.11.7) [24] and subsequently per-
formed adapter- and quality-trimming with cutadapt
(version 1.16; quality threshold of 20 and minimum
retained length of 30bp) [25]. We used STAR (version
020201 [26];) to align RNAseq reads to each of the refer-
ence genomes on a per-exon basis, allowing for 50 bp of
overhanging sequence on either side of the putative
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splice junctions (--sjdbOverhang 50). We sorted,
indexed, and filtered (MQ >2) BAM files with samtools
(version 1.6 [27];). To count RNAseq reads for each
exon, we used HTseq (version 0.10.0) [28] with the
stranded option set to ‘no’ and a minimum quality of 0
(since BAM files were pre-filtered). For each exon, we
calculated normalized expression as the number of tran-
scripts per million (TPM), which was chosen based on
its ability to compare across libraries [29]. We filtered
out any exons less than 50 bp in length as this will influ-
ence our ability to map reads to these exons with our
50 bp reads.

Expression counts are available in the supplemental ma-
terial (Additional files 4, 5 and 6) Scripts used to prepare
or generate these materials are available at https://github.
com/HirschLabUMN/Split_genes/tree/master/Per_Tran-
script_Exon_Pipeline.

Syntenic homology pipeline

Identifying syntenic homologs across each annotation
was done in two steps, which included identifying large
blocks of synteny between the genomes and comparing
specific BLAST searches within those large blocks (Fig.
1a). For the first step, we used nucmer (version 3.1) for
each pairwise combination of genomes [30], requiring
anchor matches to be unique in both reference and
query (--mum’ flag) as well as a minimum cluster length
(--c¢) of 1000bp. We used default settings for the
remaining options. We ran the delta-filter utility within
the Mummer suite to identify the longest mutually con-
sistent set of matches (-g flag) with a minimum align-
ment uniqueness of 75% (-u flag). Finally, we used the
show-coords utility to convert the output into a table set
of coordinates.

For the second step, we began by performing an all-
by-all BLAST (blastn) using the databases described in
the previous section and retaining only the matches with
an E-value <le-4. If there were multiple matches be-
tween a given query and subject gene pair, we kept only
the single best match based on E-value (length of match-
ing bases was used in case of equivalent E-values). We
then filtered matches based on whether the subject and
query CDS were within the same nucmer-established
syntenic regions (+ 500kb on each side). Lastly, we
searched for instances where proximal subject genes
(within five gene models as determined by numeric suf-
fix of gene IDs) matched the same query gene. From
this, we classified each query gene as having: 1.) no cor-
responding gene in the alternative annotation, 2.) a sin-
gle corresponding gene, or 3.) multiple corresponding
genes. We then looked for overlap among the reciprocal
BLASTSs to confirm syntenic homologous relationships.
In the case of a single gene corresponding to multiple
genes in one direction, we required that the multiple
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genes corresponded exclusively to the single gene from
the other reference. From the one-to-multiple syntenic
homologies, we isolated the potential split-gene misan-
notations by requiring that the ‘multiple’ genes are: 1.)
not annotated as overlapping, 2.) on the same strand, 3.)
not a tandem duplication based on BLAST (i.e. have less
than 10% overlapping BLAST coordinates calculated as a
percentage of total length covered by BLAST hits; L1 /
L2 <0.1, see Fig. 1b for definition of L1 and L2), and 4.)
each expressed in our dataset.

Split-gene classification

Our classification method is based on the expectation
that expression across the split genes should be less con-
sistent if the split (multiple) gene annotation is correct
than if the merged (single) gene annotation is correct.
This implies two requirements: 1.) a metric that distills
expression differences across split genes and 2.) critical
values from a null distribution that specify values too
large or small to be expected by chance.

For each gene we first calculated normalized expres-
sion (TPM) for every sequenced tissue (i.e. library) by
averaging across exons. Genes with an average transcript
per exon less than 0.01 were filtered out to remove lowly
expressed genes that cannot be accurately resolved (see
Additional file 1: Figure S6 for distribution of TPM
values). For each split-gene candidate, we then calcu-
lated the log,-fold change in expression across all split
genes within the set. We took the absolute value of this
log,-fold change to erase the dependence on what is ar-
bitrarily chosen as numerator and denominator (if we do
not take the absolute values, then the distribution is cen-
tered on 0, as expected if expression is equivalent across
split-genes; Additional file 1: Figure S10). If more than
two genes corresponded to a single, merged gene, we
then averaged across all possible fold-change values to
arrive at a single number summarizing expression differ-
ences across the split genes within a single tissue. The
final metric for the split-gene candidate set is an average
(across tissues and biological replicates) of these absolute
log,-fold changes, which we term M2f for ‘mean two-
fold expression change across tissues’.

When calculating this value, we subset the data to in-
clude only the genotype corresponding to the annotation
with the split, or multiple gene models, in order to pro-
vide the best representation of the expression patterns
used to create the annotation. If there is differential ex-
pression or differential exon usage between genotypes,
then utilizing expression data from divergent genotypes
could generate a false signal for M2f.

Next, we developed a simulation framework to gener-
ate empirical null distributions. The first distribution
that we simulated was used to identify split-gene candi-
dates whose expression differences are greater than we
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would expect by chance. For this, any split/merge candi-
date genes were first removed. Then 20% of the
remaining genes across the three genomes (17,583 total
genes) were randomly selected. These genes were then
‘split’ in two at a random position. We chose only genes
with at least 4 exons for splitting to avoid simulating an
overabundance of single-exon genes, though this mini-
mum exon criteria did not have a large effect on the
resulting distributions (Additional file 1: Figure S3). We
then calculated the M2f value across artificially split
pairs to produce a distribution. Candidates with high
M2f values relative to this distribution indicate that
these genes show larger differences than we would ex-
pect if we were to simply took a truly merged gene and
treat it as separate genes. We use the 90th percentile of
the null distribution as the threshold to classify that
split-gene candidates should in fact stay as separate
genes.

The second null distribution was created by again first
removing split/merged candidates. Then 30% of the
remaining genes across the three genomes were selected
without replacement and the adjacent upstream gene
was also selected (48,408 total genes). These pairs of
genes were artificially merging them into a single gene.
We calculate the M2f values for the original adjacent
loci and used the 10th percentile of the distribution for
all M2f values for the artificially merged distribution as
the threshold below which we classified split-gene candi-
dates as merged (i.e. the single, merged gene model is
correct). These distributions were similar across annota-
tions of the different genotypes (Additional file 1: Figure
S4), with consequently similar values for the 10th per-
centile (1.12, 1.08, and 1.13 for B73, PH207, and W22,
respectively) and 90th percentile (2.66, 2.52, and 2.79 for
B73, PH207, and W22, respectively) of the simulated
merged and simulated split distributions, respectively.
Thus, for each of these percentiles, we used a single
value (1.11 for 10th percentile and 2.66 for 90th percent-
ile) based on pooling the simulated data across the
annotations.

Input files are available in Additional files 7, 8 and 9,
output file is available in Additional file 10, and code
used to prepare output from the syntenic homology
pipeline and classify split-gene candidates is available at
https://github.com/HirschLabUMN/Split_genes/tree/
master/scripts.

B73 IsoSeq and AED analysis

The PacBio IsoSeq data for B73 was downloaded from
the SRA (BioProject # PRJNA10769; SRA Project ID:
SRP067440; SRA Sample Numbers: SRR3147022
through SRR3147057) [13]. These FASTQ files contain
intact cDNA fragments, which result from running the
raw reads through the IsoSeq processing pipeline. For
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each of the six tissues, there were six FASTQ files corre-
sponding to non-overlapping size ranges of the cDNA
fragments. We mapped each FASTQ to the B73 v4 ref-
erence genome assembly, using the splice-aware settings
in Minimap2 (‘-ax splice -uf -C5’) [31]. We then com-
bined all BAM files and filtered for cDNAs with a map-
ping quality >20. We calculated coverage of each gene
model using BEDtools [32], requiring that the IsoSeq
c¢DNAs covered 75% of the gene model (according to
the longest transcript; Additional file 11).

Annotation Edit Distance values for the B73 (v4) an-
notation were made available by the Ware lab at: ftp://
ftp.gramene.org/pub/gramene/Zea_mays/Jamboree_ma-
terials/. AED scores for the PH207 annotation are pro-
vided in Additional file 12.

Differential expression and exon usage analysis

To investigate the effect of split-gene misannotations
on differential expression and differential exon usage,
we utilized the programs DESeq2 (version 1.22.2) [33]
and DEXseq (version 1.28.3) [34], respectively. For
each of these analyses, we were interested in deter-
mining whether conflicting biological conclusions
would be drawn for one or more of the split-genes as
compared to the single, merged gene and whether
such conflicts occur at a higher rate for misannotated
split-genes. We subsetted the data to include only the
genotype that is not involved in the split-gene candi-
date set to avoid artifacts due to reference mapping
bias. For example, if we are investigating two genes
from the W22 annotation that corresponded to a sin-
gle gene in B73, then we would use only expression
data from PH207 (mapped to both W22 and B73). If
we used expression data from W22 (again, mapped to
W22 and B73) and observed conflicting DE inference
(e.g. DE for one of the W22 genes, but no DE for the
B73 gene), we would be unable to disentangle
whether the conflict was due to the misannotation or
reference bias.

Since we are only utilizing expression data from a sin-
gle genotype, we are restricted to testing for differential
expression (or exon usage) across tissues. For DESeq2,
we summed expression counts (non-normalized) across
exons, filtered genes with no expression, and tested for
differential expression with default parameters. For
DEXseq, we directly used the per-exon expression
counts from HTseq, again with default parameters. Our
exact implementation of each of these analyses can be
found at  https://github.com/HirschLabUMN/Split_
genes/blob/master/analysis/SplitGenes.Rmd.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6696-8.
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Additional file 1. Supplemental Figures 1-11 and Supplemental
Tables 1-3.

Additional file 2. One-to-one homologs identified in the syntenic hom-
ology pipeline.

Additional file 3. One-to-many homologs identified in the syntenic
homology pipeline. A filtered subset of these entries are the split-gene
candidates analyzed in this study.

Additional file 4. Expression matrix for reads mapped to B73. Sample
names have format Genotype-Tissue-Rep and correspond to the names
as defined in Table S3.

Additional file 5. Expression matrix for reads mapped to W22. Sample
names have format Genotype-Tissue-Rep and correspond to the names
as defined in Table S3.

Additional file 6. Expression matrix for reads mapped to PH207. Sample
names have format Genotype-Tissue-Rep and correspond to the names
as defined in Table S3.

Additional file 7. Formatted input containing B73 candidate and
simulated split-genes for classification via the M2f_Classify.R script.
Additional file 8. Formatted input containing W22 candidate and
simulated split-genes for classification via the M2f_Classify.R script.
Additional file 9. Formatted input containing PH207 candidate and
simulated split-genes for classification via the M2f_Classify.R script.
Additional file 10. Supported annotations according to our M2f
procedure.

Additional file 11. IsoSeq cDNA count data. See B73 IsoSeq analysis in
Methods for procedure used to generate counts.

Additional file 12. Annotation Edit Distance (AED) scores for B73 and
PH207 annotated gene models.
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