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Abstract

Purpose: To describe and evaluate a segmentation method using joint adversarial and 

segmentation convolutional neural network (CNN) to achieve accurate segmentation using 

unannotated magnetic resonance (MR) image datasets.

Methods: A segmentation pipeline was built using joint adversarial and segmentation network. A 

CNN technique called cycle-consistent generative adversarial network (CycleGAN) was applied as 

the core of the method to perform unpaired image-to-image translation between different MR 

image datasets. A joint segmentation network was incorporated into the adversarial network to 

obtain additional functionality for semantic segmentation. The fully-automated segmentation 

method termed as SUSAN was tested for segmenting bone and cartilage on two clinical knee MR 

image datasets using images and annotated segmentation masks from an online publicly available 

knee MR image dataset. The segmentation results were compared using quantitative segmentation 

metrics with the results from a supervised U-Net segmentation method and two registration 

methods. The Wilcoxon signed-rank test was used to evaluate the value difference of quantitative 

metrics between different methods.

Results: The proposed method SUSAN provided high segmentation accuracy with results 

comparable to the supervised U-Net segmentation method (most quantitative metrics having 

p>0.05) and significantly better than a multi-atlas registration method (all quantitative metrics 

having p<0.001) and a direct registration method (all quantitative metrics having p<0.0001) for the 

clinical knee image datasets. SUSAN also demonstrated the applicability for segmenting knee MR 

images with different tissue contrasts.

Conclusion: SUSAN performed rapid and accurate tissue segmentation for multiple MR image 

datasets without the need for sequence specific segmentation annotation. The joint adversarial and 

segmentation network and training strategy have promising potential applications in medical 

image segmentation.
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INTRODUCTION

Segmentation of magnetic resonance (MR) images is a fundamental step in many medical 

imaging based applications. Traditionally, image segmentation is performed by having 

experienced users scroll through stacks of two-dimensional (2D) images and manually 

segmenting regions-of-interest (ROIs) among adjacent tissues. However, manual 

segmentation is time-consuming and is influenced by the level of human expertise and errors 

due to distraction and fatigue associated with human interpretation(1–4). Therefore, manual 

segmentation is subject to inter- and intra- observer variability which likely leads to 

inconsistent segmentation results(3,4). There has been much recent interest in developing 

semi- and fully-automated techniques for segmenting MR images(5). The majority of 

recently proposed methods for fully-automated segmentation have utilized model-based and 

atlas-based approaches(5,6). Although these methods have shown promising results, both 

approaches rely on a priori knowledge of object shapes and thus might perform poorly in 

situations in which there is high subject variability and significant differences of local 

features. In addition, these methods require high computation cost which results in relatively 

long segmentation times.

Recent implementation of deep convolutional neural networks (CNNs) in image processing 

has been shown to have significant impacts on medical image segmentation (7). Deep CNN-

based methods have achieved state-of-the-art performance in many medical image 

segmentation tasks including segmenting brain tumors(8,9), tissues (10,11), and multiple 

sclerosis lesions (12), cardiac (13,14), liver(15), and lung(16) tissues, and musculoskeletal 

tissues such as bone and cartilage(17–19). On the other hand, medical image segmentation is 

typically seen as a multi-class labeling problem which is closely related to the supervised 

semantic segmentation described in most segmentation CNN studies. In particular, 

convolutional encoder-decoder (CED) networks have proven to be highly efficient in the 

medical image domain. This type of network typically consists of a paired encoder and 

decoder where the encoder performs image compression and feature extraction and the 

decoder reconstructs pixel-wise classification labels using encoder outputs. Ronneberger et 

al. (20) developed U-Net which has a 2D CED structure with skip connections between the 

encoder and decoder. The U-Net transfers feature maps from the encoder to the decoder and 

concentrates them to obtain up-sampled feature maps through deconvolution. U-Net was 

first proposed for segmenting neuronal structures in electron microscopy and was later 

adapted for many medical image segmentation tasks. Badrinarayanan et al. (21) proposed a 

2D CED called SegNet which is built upon the deep structure of the VGG16 network (22) 

and features a unique up-sampling approach in the decoder using pre-stored max-pooling 

indices from the encoder. This network offers an efficient alternative to deconvolution for 

recovering high resolution image features and achieved top performance in multiple 

segmentation challenges. Expanding on the capabilities of 2D CEDs, such as U-Net and 

SegNet, recently proposed three-dimensional (3D) CEDs extend convolutional kernels into 

the slice dimension for volumetric image data and attempt to incorporate full spatial 

information for improved segmentation performance(23,24). Other segmentation networks 

using multi-scale and multi-patch based structures have also been proposed and have proven 

to be quite useful for segmenting 3D image datasets(9,25,26). More recently, further 
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improvement for CNN-based image segmentation was achieved by using adversarial 

training, where a dedicated CNN network was introduced to correct generated segmentation 

maps from the ground truth(27). A few pilot studies demonstrated great performance using 

adversarial training for segmenting brain lesions(28), structures(29), and prostate cancer(30) 

on MR images, chest organs(31) on X-ray images, and breast cancer on histopathology 

images(32).

Network training of segmentation CNNs typically requires images and paired annotation 

data representing pixel-wise tissue labels referred to as masks. The pixel-wise correlation 

between image pixels and tissue masks is used for supervised training of the segmentation 

CNNs for learning useful image features. However, the supervised training of highly 

efficient CNNs with deeper structure and more network parameters requires a large amount 

of training images and paired tissue masks. Moreover, the creation of tissue masks typically 

requires individuals with medical expertise to annotate a large number of training image 

datasets which could be extremely expensive and time consuming(33). Although a trained 

segmentation CNN may perform well for one type of MR sequence, the applicability of the 

CNN for segmenting the same tissues on images acquired using other MR sequences is 

typically poor. Therefore, it is necessary to retrain the CNN using new annotation data 

specific to each MR sequence. Thus, there is great need to develop a generalized CNN-based 

segmentation method which would be applicable for a wide variety of MR image datasets 

with different tissue contrasts.

The purpose of our study was to develop and evaluate a generalized CNN-based method for 

fully-automated segmentation of different MR image datasets using a single set of annotated 

training data. A technique called cycle-consistent generative adversarial network 

(CycleGAN) (34) is applied as the core of the proposed method to perform image-to-image 

translation between MR image datasets with different tissue contrasts. A segmentation 

network is incorporated into the adversarial network to obtain additional segmentation 

functionality. We termed the proposed method as SUSAN standing for Segmenting 

Unannotated image Structure using Adversarial Network and evaluated SUSAN for 

segmenting bone and cartilage on two clinical knee MR image datasets acquired at our 

institution using only a single set of annotated data from a publicly available knee MR 

image dataset.

THEORY

Adversarial Network for Image-to-Image Translation

Our work is in line with the method of CycleGAN which was recently proposed for unpaired 

image-to-image translation for natural images (34). In CycleGAN, images from two image 

domains can be translated to exchange image contrasts, features and patterns (e.g. translate 

horse into zebra, apple into orange and vice versa) using two key techniques including Cycle 

Consistency and Generative Adversarial Newark (GAN). Our work is closely related to the 

basic framework of CycleGAN. The main concept of SUSAN is to translate the reference 

images which have high quality segmentation annotation into the target images which have 

no segmentation annotation. Our hypothesis is that given successful translation from the 
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reference image contrast to the target image contrast, the annotation data used to train the 

reference images can be applied to train the target images using supervised learning.

Transitivity is a useful tool for many computer science applications including human 

language translation(35,36), dense semantic alignment(37), image co-segmentation(38) and 

3D shape matching(39). In the CycleGAN setup (Figure 1a), the idea of cycle consistency is 

to apply transitivity to force forward-backward data cycle consistency between two image 

domains. Mathematically, the minimization of cycle consistency loss is to learn forward (F) 

and backward (B) CNN mapping functions

F :X Y
B:Y X [1]

between two image domains X and Y, so that if an image is translated from one domain to 

the other and back again, the image should look identical to the original image. Therefore, 

for forward cycle consistency, there should be x → F (x) → B (F(x)) ≈ x and for backward 

cycle consistency, there should be y → B (y) → F (B(y)) ≈ y. The cycle consistency loss term 

can be formulated as

Lcyc(F , B) = Ex P (x) B(F (x)) − x N + Ey − P (y) F (B(y)) − y N [2]

where Ei~P (i) [·] is the expectation of a function and the data distribution of image i in 

domain I is denoted as i ~ P (i). The ⋅ N is typically chosen to be l1 norm for image-to-

image translation (34).

GAN is another key concept for CycleGAN. Many recent GAN studies have achieved 

impressive results in a variety of image subspecialties including image inpainting (40), text 

to image synthesis(41), and image generation(42,43). The idea of GAN is to use an 

adversarial loss to force CNN mapping function generating synthetic images that are 

indistinguishable from the real images. In the current study, adversarial loss can be 

incorporated into the CNN training as a joint loss term. For example, for the CNN mapping 

function F : X→ Y, a multiple layer CNN discriminator DY (y) is defined to identify real 

versus synthetic images. Mathematically, this discriminator outputs a scalar representing the 

probability that y comes from the real domain Y rather than the forward mapping output 

F(x). The adversarial loss term is thus formatted as

Lgan
f F , DY = Ey ∼ P (y) logDY (y) + Ex ∼ P (x) log 1 − DY (F (x)) [3]

In addition, the CycleGAN also introduced a CNN discriminator DX (x) for the backward 

mapping with adversarial loss as:

Lgan
b B, DX = Ex ∼ P (x) logDX(x) + Ey ∼ P (y) log 1 − DX(B(y)) [4]

The full objective function for CycleGAN is given as:
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L F , B, DX, DY = λσxL∞(F , B) + λgan Lgan
f F , DY + Lgan

b B, DX [5]

where λcyc and λgan are weight factors for the cycle consistency loss and adversarial loss 

term, respectively, to balance the data fidelity of image translation and the GAN quality. The 

full objective function is trained in a two-player minimax game, namely F and B aim to 

minimize this loss function against the adversary DX and DY that try to maximize it as

F , B = argmin
F , B

max
DX, DY

L F , B, DX, DY [6]

In other words, F and B try to generate synthetic images that look similar to real images, 

while discriminator DX and DY try to distinguish synthetic images from real images. In 

theory, successful training of this network can result in mapping CNNs capable of 

generating synthetic images indistinguishable from real images in the original 

domain(34,44). Namely, the translated images in each image domain just look like real 

images from that domain.

Joint Segmentation Network

To make use of image-to-image translation, SUSAN incorporates additional segmentation 

networks into the CycleGAN structure for jointly training image translation and 

segmentation (Figure 1b). Our hypothesis is that the image translation can be augmented by 

adding supervised segmentation information and that jointly training image translation and 

segmentation can produce improved results. To formulate the problem, the CNN mapping 

function is modified to create a dual-output network. Namely, the mapping function is 

designed to not only output translated images but also full size tissue segmentation masks. 

Therefore, Eq. [1] can be rewritten as

F :X Y , Mf
B:Y X, Mb

[7]

where Mf and Mb are output segmentation masks for the forward and backward CNN, 

respectively. It is assumed that all the images in image domain X have high quality 

segmentation masks Mx which can be used for supervised training. The segmentation loss is 

incorporated into the full objective function as

Lseg(F , B) = Ex ∼ P (x) l F (x), Mx + Ex ∼ P (x) l B(F (x)), Mx [8]

where l(·) is a loss metric for evaluating pixel-wise similarity between the output mask and 

the ground truth mask, e.g. multi-class cross entropy (45). According to Eq. [8], supervised 

segmentation training is performed for all image x in domain X and all translated synthetic 

image F (x) which have origins from image domain X. The full objective function 

incorporating segmentation loss can be extended from Eq. [5] into
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L F , B, DX, DY = λcycLcyc(F , B) + λsegLseg(F , B)
+ λgan Lgan

f F , DY + Lgan
b B, DX

[9]

where λseg is a weight factor for the segmentation term. Note that once the joint training 

process is complete, for image domain X, the final segmentation CNN is simply given by the 

forward CNN as

Mf = F (x), x ∈ X [10]

Likewise, for image domain Y which has no explicit annotated segmentation mask, the final 

segmentation result is given by the backward CNN output as

Mb = B(y), y ∈ Y [11]

METHODS

Network Implementation

A U-Net architecture (20) was adapted from a GAN-based image-to-image translation study 

(46) for performing the CNN mapping functions (i.e. F and B) between the two image 

domains. This U-Net structure is composed of an encoder network and a decoder network. 

The encoder is used to achieve efficient data compression while probing robust and spatial 

invariant image features. A decoder network with a mirrored structure of the encoder is 

applied following the encoder network output for restoring desirable image features. 

Multiple symmetric shortcut connections are added to transfer features from the encoder to 

the decoder to enhance mapping performance. Such a CNN structure has shown impressive 

results for image translation and segmentation in many recent studies(20,46,47). In the 

current study, the U-Net structure is modified to enable dual outputs, and this new design is 

referred to as R-Net. Namely, the network is bifurcated following the last up-sampling layer 

in the decoder. One segmentation branch of R-Net uses a multi-class soft-max classification 

layer as the final layer (48) which produces class probabilities for each individual pixel at 

the same image resolution as the input image. The image translation branch of R-Net uses a 

convolution layer as the last layer to generate gray scale image also matching the input 

image resolution. An illustration of the R-Net is shown in Figure 2a.

Similar to the original CycleGAN work, the network architecture developed in PatchGAN 

(46) is used for discriminator networks (i.e. DX and DY ), which aim to classify whether 

overlapping image patches are real or fake in the adversarial process. An illustration of 

PatchGAN is shown in Figure 2b. Such a patch-level discriminator architecture has the 

advantage of fewer parameters allowing for more efficient network training and has been 

shown in many recent GAN studies to have impressive results for differentiating real versus 

synthetic images(46,49,50).
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Image Datasets

Three knee MR image datasets were used to evaluate SUSAN. The reference image dataset 

consisted of the online knee MR images available from The Segmentation of Knee Images 

2010 (SKI10, www.ski10.org) workshop competition hosted by the Medical Image 

Computing and Computer Assisted Intervention (MICCAI) conference in 2010 (51). The 

image dataset in SKI10 consisted of 60 sagittal fat-suppressed T1-weighted spoiled gradient-

echo (T1-SPGR) knee images, all of which had high quality multi-class tissue masks 

manually generated by segmentation experts with the following values: 0=background, 

1=femur, 2=femoral cartilage, 3=tibia, and 4=tibial cartilage.

Two clinical knee MR image datasets acquired at our institution were used as target images. 

The study was performed in compliance with Health Insurance Portability and 

Accountability Act (HIPAA) regulations, with approval from our Institutional Review 

Board, and with a waiver of written informed consent. Sagittal knee image datasets acquired 

with two MR sequences were retrospectively obtained on patients undergoing a clinical knee 

MR examination at our institution using a 3T scanner (Discovery MR750, GE Healthcare) 

and 8-channel phased-array extremity coil. The first image dataset consisted of a sagittal fat-

suppressed T2weighted fast spin-echo (T2-FSE) sequence acquired on 60 patients. The 

second image dataset consisted of a sagittal proton density-weighted fast spin-echo (PD-

FSE) sequence acquired on 60 patients. The imaging parameters for both MR sequences are 

summarized in Table 1. Manual bone and cartilage segmentation of the clinical knee images 

was performed by a musculoskeletal research scientist with 8 years of segmentation 

experience. Note that the manual segmentation for the clinical image datasets was used only 

for ground truth comparison and was not included in the network training for SUSAN. 

Multi-class tissue masks were created for the clinical knee image datasets using the same 

labelling values as used for the SKI10 image dataset.

Network Training

All the input 2D images from the clinical knee MR image datasets were first cropped to 

enclose as much of the knee joint as possible while removing excessive image background, 

leading to an approximate 512 × 400 image matrix size. Due to the GPU global memory 

limit, all the images were further resampled to 256 × 256 matrix size using bilinear 

interpolation before they were sent to the network for training and evaluation. Image 

normalization was also performed for each subject by subtracting the mean value of the 

entire image and then normalizing by the standard deviation of the image signal intensity. 

When training the network, the network weights were initialized using the initialization 

scheme of He et al. (52) and updated using Adam algorithm (53) with a fixed learning rate 

of 0.0002 and trained in a mini-batch manner with three image slices in a single mini-batch. 

Multi-class cross entropy loss was applied for the segmentation branch (in Eq. [8]) and the l1 

loss for the image translation branch (in Eq. [2]) in the R-Net. During training iteration, a 

two-step training strategy was applied where CNN mapping functions (i.e. F and B) and 

adversarial discriminators (i.e. DX and DY) were updated separately in an alternating 

manner. A default set of parameters for the weight factors in the full objective function was 

empirically selected and included λcyc = 10, λgan =1 and λseg = 5 in the Eq. [9] for the 

clinical knee image datasets. To investigate the influence of different weights for the 
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segmentation branch on the performance of image translation and subsequent segmentation, 

the experiments were also performed for λseg = 0.5 and 10, respectively, while maintaining 

other parameters the same.

For the network training of SUSAN, a split of 50/10 subjects (5506/1083 slices) in the 

SKI10 image dataset and a split of 35/5 randomly selected subjects in the PD-FSE 

(1343/201 slices) and T2-FSE (937/146 slices) image datasets were used for training and 

validation, respectively, while the remaining 20 subjects in the PD-FSE and T2-FSE image 

datasets were used for hold-out evaluation. A total iteration steps corresponding to 20 

epochs for the SKI10 image dataset were carried out for training convergence. The best 

model was selected in which the calculated loss was the lowest for the set of validation 

images. To compare SUSAN with a standard supervised method, direct U-Net training for 

tissue segmentation was performed using the clinical knee image datasets, and the 

corresponding multi-class tissue masks created using manual segmentation. The supervised 

learning was performed by removing the image translation branch from the RNet while 

keeping the aforementioned training procedure the same. To compare SUSAN with state-of-

the-art conventional segmentation methods, a multi-atlas registration algorithm from the 

Knee Segmentation and Registration Toolkit (KSRT, https://bitbucket.org/marcniethammer/

ksrt)(54) was evaluated. Multiple atlases were built from all 60 subjects in SKI10 image 

dataset and the registration workflow and parameters were kept the same as the default 

setting implemented in the source code and stated in the original paper(54). In addition, to 

compare SUSAN with direct registration approach between different image contrasts, a 

registration algorithm using Elastix software and registration parameters (http://

elastix.isi.uu.nl/wiki.php) as described in (55) was also evaluated. The segmentation of bone 

and cartilage was obtained for the clinical datasets by directly registering the images into 

each individual SKI10 subject image as one template. The segmentation accuracy of 

SUSAN, the supervised U-Net method, the multi-atlas registration and the direct registration 

method (value reported using the best segmentation from all templates in SKI10 datasets) 

was evaluated on the 20 hold-out test subjects in the PD-FSE and T2-FSE image datasets.

SUSAN was implemented in Python language (v2.7, Python Software Foundation, 

Wilmington, Del). The CNNs were designed using the Keras package (56) running 

Tensorflow computing backend (57) at a 64-bit Ubuntu Linux system. All training and 

evaluation were performed on a computer server with an Intel Xeon W3520 quad-core CPU, 

32 GB DDR3 RAM, and one Nvidia GeForce GTX 1080Ti graphic card with total 3584 

CUDA cores, and 11GB GDDR5 RAM.

Evaluation of Synthetic Images

To evaluate the quality of synthetic images, the FCN-score, a quantitative metric used in the 

original CycleGAN paper (34) was implemented for image assessment. While direct 

evaluation of the generative model is challenging, the idea is to use a pre-trained semantic 

segmentation classifier to measure the discriminability of synthetic images against the 

ground truth images. The assumption is that the segmentation classifier trained on the 

ground truth images should be able to segment synthetic images at a high accuracy if the 

synthetic images are realistic(34,46). More specifically, a FCN-8s network (45) was adapted 
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for the segmentation classifier, and was trained on the real PD-FSE and T2-FSE dataset, 

respectively, using the same aforementioned training procedure. The trained model was then 

applied to segment 20 synthetic PD-FSE and T2-FSE images and 20 real hold-out clinical 

knee images for comparison, respectively. The Per-pixel accuracy was reported as FCN-

score with the definition as follows

ACC =
∑i nii
∑i ti

[12]

where nii is the number of pixels of class i correctly predicted to belong to class i, and ti is 

the total number of pixels of class i. The FCN-score implementation in this study was 

adapted from the online code at https://github.com/phillipi/pix2pix/tree/master/scripts/

eval_cityscapes.

Evaluation of Segmentation Accuracy

Quantitative metrics were used to evaluate the accuracy of the segmentation methods on the 

different clinical knee MR image datasets. To evaluate the volumetric segmentation 

accuracy, the Dice coefficient (DC) was used for bone and cartilage and was defined as

DC = 2 S ∩ R
S + R [13]

where S and R represented the CNN segmentation and the manual segmentation ground 

truth, respectively. The Dice coefficient ranges between 0 and 1 with a value of 1 indicating 

a perfect segmentation and a value of 0 indicating no overlap at all. The volumetric overlap 

error (VOE) was also calculated to evaluate the accuracy of cartilage segmentation. The 

VOE was defined as

VOE = 1 − S ∩ R
S ∪ R [14]

with a smaller VOE value indicating a more accurate segmentation. The VOE values were 

calculated within a ROI drawn in each of three consecutive central slices on the medial and 

lateral tibial plateau, and medial and lateral femoral condyles. To evaluate the surface 

overlap between the segmented masks and the ground truth, the Average Symmetric Surface 

Distance (ASSD) was calculated for bone and cartilage. The ASSD was defined as

ASSD =
∑s ∈ ∂(S)min min

r ∈ ∂(R)
s − r + ∑r ∈ ∂(R) min

s ∈ ∂(S)
r − s

∂(S) + ∂(R)
[15]

where ∂(·) means the boundary of the segmentation set. A small ASSD value typically 

indicates similar surface boundaries and great surface overlap, thereby reflecting a more 

accurate segmentation. For statistical analysis, a paired non-parametric Wilcoxon signed-

rank test was used to compare the DC, VOE and ASSD values between SUSAN, the 

supervised U-Net method, and two registration methods at a pre-defined significance level of 

p<0.05.
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RESULTS

The overall training time required for SUSAN was approximate 6.7 hours for each clinical 

knee MR image dataset given the computing hardware in the current study. However, once 

the training was complete, fully-automated segmentation was rapid with a mean computing 

time of 0.2 min for all image slices in the PD-FSE and T2-FSE image datasets. In contrast, 

the multi-atlas registration method took a mean computing time of 5.2 hours for all image 

slices in the PD-FSE and T2-FSE image datasets. The direct registration method took less 

time with a mean computing time of 0.5 hours for all image slices in the PD-FSE and T2-

FSE image datasets using one template.

Figure 3 and 4 show an example of unpaired image-to-image translation for converting the 

SKI10 T1-SPGR image contrast to the PD-FSE and T2-FSE image contrasts (denoted as 

synthetic PD-FSE and T2-FSE) and vice versa. Note that in Figure 3 and 4, the subject was 

randomly selected from the individual image datasets for demonstration. The T1-SPGR 

images had low fat signal in bone and subcutaneous soft tissue due to fat suppression and 

bright cartilage and muscle signal. The PD-FSE images had high fat signal in bone and 

subcutaneous soft tissue and low cartilage and muscle signal. The T2-FSE images had low 

signal for all tissues except synovial fluid which was bright. Despite the dramatic differences 

in tissue contrasts between the three image datasets, SUSAN was capable of translating the 

varying MR contrasts with a good visual appearance as a result of the incorporated 

CycleGAN functionality. The qualitative observation was supported by the quantitative 

evaluation. Figure 5 further demonstrated an example of synthetic PD-FSE and T2-FSE 

images from a T1-SPGR image at different epochs with different FCN-scores calculated 

using ACC metric. In addition, there were FCN-scores (mean ± standard deviation) of 0.73 ± 

0.03 and 0.79 ± 0.05 for all the synthetic PD-FSE and T2-FSE images, and 0.78 ± 0.02 and 

0.83 ± 0.04 for all the real hold-out PDFSE and T2-FSE images, respectively, indicating a 

high similarity between the real images and the synthetic images from SUSAN. The 

influence of different weights of the segmentation branch on the image translation and 

segmentation accuracy are shown in Table 2. Although a large weight (λseg =10) on the 

segmentation branch was not significantly different than the default moderate weight (λseg 

=5) for translating and segmenting the PD-FSE and T2-FSE images, it was evident that a 

substantially reduced weight (λseg =0.5) for the segmentation branch performed noticeably 

worse for the image translation and segmentation on both the PD-FSE and T2-FSE images.

The averaged values (mean ± standard deviation) of DC, VOE and ASSD are shown in Table 

3 for bone and cartilage segmentation for the 20 hold-out test subjects in the PD-FSE and 

T2-FSE image datasets. Although the segmentation accuracy was significantly higher for the 

supervised U-Net method than SUSAN for femoral cartilage (DC: p=0.008, VOE: p=0.008) 

on PD-FSE images and for tibia bone (DC: p=0.008, ASSD: p=0.002) on T2-FSE images. 

SUSAN provided overall comparable segmentation performance to the supervised U-Net 

method for the PD-FSE and T2-FSE image datasets while requiring no sequence specific 

annotated training data. The multi-atlas registration method performed significantly worse 

(p<0.001 for all bone and cartilage) than both SUSAN and the supervised U-Net method. 

The direct registration method also performed significantly worse (p<0.0001 for all bone 

and cartilage) than deep learning methods.
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Figure 6 shows examples of bone and cartilage segmentation performed on sagittal PD-FSE 

images of the knee in a 56 year old male subject with mild knee osteoarthritis The 

segmentation results from SUSAN demonstrated good agreement with the overall contours 

of the ground truth. There was also good agreement of the overall shape between SUSAN 

and supervised U-Net method. For SUSAN, there was a bone segmentation accuracy of DC 

0.94 and 0.95 for the femur and tibia respectively indicating small deviations from the 

ground truth. There was a cartilage segmentation accuracy of ASSD 0.84mm and 0.70mm 

for femoral and tibial cartilage respectively indicating good cartilage segmentation. For the 

supervised U-Net method, there was a bone segmentation accuracy of DC 0.94 and 0.96 for 

the femur and tibia respectively; there was a cartilage segmentation accuracy of ASSD 

0.75mm and 0.65mm for femoral and tibial cartilage respectively. The deep learning 

methods outperformed the multi-atlas registration method. Although the multi-atlas method 

provided a similar bone shape to the ground truth for femur and tibia, the cartilage 

segmentation using the atlases built from SKI10 images failed on the PD-FSE images. For 

the direct registration, the segmentation result for both bone and cartilage was even worse 

than the multi-atlas registration and thus not shown in this figure.

Figure 7 shows examples of segmentation performed on sagittal T2-FSE images of the knee 

in a 64 year old male subject with knee osteoarthritis. Tissue segmentation was challenging 

for this subject due to the thin articular cartilage on the femur and tibia. The segmentation 

results from SUSAN demonstrated good agreement with the overall contours of the ground 

truth although a few small clusters of misclassification in bone and cartilage (white arrows) 

were observed due to ambiguous tissue contrast and low signal-to-noise ratio. For SUSAN, 

there was a bone segmentation accuracy of DC 0.96 and 0.93 for the femur and tibia 

respectively indicating small differences from the ground truth. There was a cartilage 

segmentation accuracy of ASSD 0.59mm and 0.71mm for femoral and tibial cartilage 

respectively indicating good cartilage segmentation. For the supervised U-Net method, there 

was a bone segmentation accuracy of DC 0.96 and 0.96 for the femur and tibia respectively; 

there was a cartilage segmentation accuracy of ASSD 0.46mm and 0.54mm for femoral and 

tibial cartilage respectively. The deep learning methods also substantially outperformed the 

multi-atlas registration method for bone and cartilage segmentation on T2-FSE images. The 

direct registration method failed to provide reasonable segmentation for both bone and 

cartilage for this subject thus not shown in this figure.

DISCUSSION

Our study described a novel adversarial CNN-based segmentation method that provided 

rapid and accurate segmentation for multiple MR image datasets using only a single set of 

annotated training data. This technique eliminates the need to retrain the segmentation 

CNNs using new annotation data specific to each MR sequence. The approach integrates the 

basic functions of the CycleGAN technique for image-to-image translation and utilizes an 

additional semantic segmentation network for joint image translation and segmentation. The 

segmentation results for segmenting two clinical knee MR image datasets suggested that this 

proposed method SUSAN utilizing joint adversarial and segmentation network can achieve 

high accuracy with performance comparable to a state-of-the-art supervised CNN method 

and better than registration methods. SUSAN was also highly time efficient with an average 
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segmentation time less than one minute which is much shorter than the segmentation times 

of currently used fully-automated atlas-based and model-based segmentation methods.

A limitation of CNN-based segmentation methods is the need for adequate training data 

which may often be difficult to acquire. Many recent deep learning studies have 

demonstrated continuously increasing segmentation performance with increasing training 

dataset size(58,59). Since large training datasets are difficult to collect, several methods have 

been proposed to alleviate the problem. One approach is to implement data augmentation 

techniques where the size of the training data could be efficiently increased by applying 

random geometrical transformation to the original image data such as rotation, translation 

and deformation. These data augmentation techniques have become useful techniques in 

many recent deep learning medical image studies to overcome small dataset size problem 

and to reduce the training overfitting(8,60). Transfer learning and fine-tuning techniques are 

other popular solutions to small training dataset size problem. Instead of initializing the 

network with random weights during training, the pre-trained weight values from the same 

image domain, different medical image domains, or even natural image datasets can be used 

to initiate the training process. Then, the training can be conducted in a supervised manner 

for the entire network or a few network layers using new annotated training data specific to 

the segmentation task. Many recent studies have shown that fine-tuning can improve 

performance and reduce requirement for training data and this performance improvement 

increases with reducing training dataset size(61,62). However, in both data augmentation 

and transfer learning techniques, annotated training data for the specific image dataset is still 

required, regardless of its size. We proposed a new approach to alleviate the problem by 

utilizing image translation to create domain specific training data. Our results suggest that a 

joint adversarial and segmentation network can be used for rapid and accurate segmentation 

for multiple MR image datasets using only a single set of annotated training data. Our 

method provides an alternative approach to perform medical image segmentation in 

circumstances in which collecting annotated training data is challenging, expensive, or not 

possible.

Although SUSAN was only evaluated for image translation for knee MR image datasets, 

there is no inherent limitation preventing this approach from translating images for other 

anatomic structures and for other imaging modalities. For example, it would be useful to 

translate knee joint cartilage segmentation into cartilage segmentation of the hip joint since 

annotating hip joint cartilage is extremely difficult due to the thin cartilage and closely 

opposing articular surfaces. One concern for such image translation is the significant 

geometric difference between image domains. Although the applied U-Net is widely 

accepted for mapping image contrast and texture as a results of efficient convolutional 

encoding and decoding design (46,47), successfully translation among different anatomy 

might still require further design of the generator architecture tailored for handling both 

contrast translation and geometric transformation. In addition, translating image contrasts 

among different imaging modalities would be useful in applications such as positron 

emission tomography (PET)/MR attenuation correction, where there is the need to generate 

synthetic computed tomography (CT) images from MR images for photon attenuation 

calculation (63,64). In current study, the use of adversarial training and cycle consistency 

regularization as key techniques in the CycleGAN framework was proven to be effective to 
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learn mutually correlated image features with unpaired data in medical image domain. The 

adversarial learning ensures the translated images falling into the same data distribution of 

the target images; the cycle consistency prevents the degeneracy of the adversarial process 

from generating hallucinated image features (34). This cross domain adaptation in 

CycleGAN imposes both shared-latent space constraints and information consistency to 

encourage CNNs to learn mutually correlated image features in different data distribution. 

Although current method achieves compelling results for translating MR images between 

different contrasts, the interpretation of the translated image contrast requires careful 

attentions in clinical practice. It should be noted that a typical assumption about high 

similarity of data characteristics in high dimensional feature space between training datasets 

might fail when pathology occurs in one contrast but not the other. Therefore, the synthetic 

images cannot be used as reliable diagnostic replacements for real images. Although the 

synthetic images in SUSAN provide sufficient information for image segmentation, they 

may not reflect true tissue contrasts for pathological conditions. Comprehensive assessment 

for the effectiveness and applicability of MR image translation using large prospective 

image datasets is needed for various diseases and tissue structures. In addition, SUSAN uses 

entirely unpaired image data thus might suffer from model collapse in adversarial training 

(34). Future comparison between current unpaired translation and the paired image-to-image 

translation which has stronger constraints in supervised learning is of great interests. Given a 

fraction of annotated data at minimal cost, a certain form of weakly supervised image-to-

image translation incorporating both paired and unpaired information might provide further 

performance improvement.

Current SUSAN used 2D CNNs which can potentially limit image features within a single 

slice and may cause segmentation bias when contrast is inconsistent across slices in an 

image volume. This was the likely causes of the tissue misclassification noted in our results 

for the clinical knee MR images in Figure 7 where tissue contrast was contaminated by the 

large noise level. Incorporating 3D information could be helpful for image translation to a 

target image with ambiguous tissue contrast. Multi-planner CNN methods, usually referred 

to as 2.5D methods, and fully 3D CNN methods have been shown in many studies to 

improve segmentation accuracy and efficiency (9,23,24). However, high dimensional CNN 

methods typically require extensive computing resources, such as abundant GPU memory, 

which is a prohibitively limiting factor in many studies. In our network configuration, the 

requirement for hardware resources when running high dimensional CNNs was even more 

severe since we implemented both forward and backward CNNs, which doubled the total 

network size. Alternatively, implementing suitable post-processing methods to adjust the 

segmentation results from a 2D CNN output is also applicable to take into account the 3D 

contextual relationships of the full image volume. Recent studies have demonstrated the 

successful use of fully-connected 3D conditional random field (CRF) to regularize 

segmentation boundaries at tissue interfaces (9,11,18). The 3D surface shape-based 

morphological deformable approach has also proven to be highly efficient to maintain 

desirable geometrical shape for segmented objects in combination with CNN-based 

segmentation method (17,18). Since these post-processing steps typical require no GPU 

computation, they could be very efficient and require little computational costs.

Liu Page 13

Magn Reson Med. Author manuscript; available in PMC 2020 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our study has several limitations. First, the current study adapted the U-Net and PatchGAN 

structures and did not compare other CNN structures. Newly developed CNNs (65,66) will 

be explored in future studies. Second, the network training parameters were selected based 

on heuristic information. Tuning the weighting factors in the objective function is important 

to control the balance between image translation and structure segmentation, and is likely 

dependent of specific studies. Although the results from this study demonstrated that a 

moderately weighted segmentation branch improved the image translation (Table 2), 

comprehensive parameter optimization would be necessary in future studies to investigate 

further improvement for the performance. Third, future studies investigating the influence of 

imaging parameters on the image translation and segmentation accuracy are also needed. 

Finally, the current method did not compare other methods which use adversarial networks 

for image segmentation.

CONCLUSIONS

In conclusion, our study described a new fully-automated CNN-based segmentation method 

which integrates joint adversarial and segmentation CNNs to segment MR images with 

different tissue contrasts using a single set of annotated training data. Our method was 

shown to provide rapid and accurate segmentation of bone and cartilage for clinical knee 

MR image datasets comparable to a state-of-the-art supervised CNN method. Additional 

studies are needed to evaluate potential applications of SUSAN for other anatomical 

structures and for other imaging modalities. The new technique may further improve the 

applicability and efficiency of CNN-based segmentation of medical images while 

eliminating the need for large amounts of annotated training data.
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Figure 1. 
a) The CycleGAN model contains two CNNs, F and B, for forward and backward mapping 

between image domain X (with annotation) and Y (without annotation), and associated 

adversarial discriminators DX and DY. DY encourage F to translate images from domain X 
into outputs indistinguishable from domain Y, and vice versa for DX and B. The cycle 

consistency loss is used to enforce the idea that if an image is translated from one domain to 

the other and back again, the image should look identical to its original version. b) SUSAN: 

the proposed joint CycleGAN and segmentation model incorporates an additional 

segmentation branch from the mapping CNNs. Joint training is performed for image 

translation between X and Y, and image segmentation for all image x from domain X and 

synthetic F (x) which have origins from domain X using segmentation loss.
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Figure 2. 
A schematic illustration of the CNN architectures used in current SUSAN. a) The R-Net 

modified from standard U-Net structure is used for the CNN mapping function F and B. The 

R-Net allows two outputs each of which performs image segmentation and image 

translation, separately. The joint portion of the R-Net for segmentation and translation 

branch enables sharing image features during network training. b) The discriminator CNN 

designed in PatchGAN is used for DX and DY. This network outputs image patches with 

reduced image size which will be used for differentiating real versus synthetic images in the 

adversarial training process. (Abbreviation: Conv: Convolution Layer; BN: Batch 
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Normalization; ReLU: Rectified Linear Unit; LeakyReLU: Leaky Rectified Linear Unit; 

Deconv: Transpose Convolution Layer; Softmax: Softmax Layer)
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Figure 3. 
Example of unpaired image-to-image translation for converting SKI10 T1-SPGR image 

contrast to the PD-FSE and T2-FSE image contrasts (denoted as synthetic PD-FSE and T2-

FSE). Note that the subject was randomly selected for demonstration. Despite the dramatic 

differences in tissue contrasts between the three image datasets, SUSAN was capable of 

successfully translating the varying MR contrasts.
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Figure 4. 
Example of unpaired image-to-image translation for converting the PD-FSE and T2-FSE 

image contrasts to SKI10 T1-SPGR image contrast (denoted as synthetic T1-SPGR). Note 

that the subject was randomly selected from the individual image datasets for demonstration. 

Despite the dramatic differences in tissue contrasts between the three image datasets, 

SUSAN was capable of successfully translating the varying MR contrasts.
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Figure 5. 
Example of synthetic PD-FSE and T2-FSE images from a SKI10 T1-SPGR image at 

different epochs. The FCN-scores were calculated using ACC metric to illustrate 

quantitative assessment of the image quality.
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Figure 6. 
Example of bone and cartilage segmentation for a 56 year old male subject with mild knee 

osteoarthritis performed on the PD-FSE image dataset. SUSAN provided accurate 

segmentation relative to the ground truth with segmentation performance comparable to the 

supervised U-Net method. Both deep learning methods outperformed the multi-atlas 

registration method.
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Figure 7. 
Example of bone and cartilage segmentation for a 64 year old male subject with severe knee 

osteoarthritis performed on the T2-FSE image dataset. Despite a few clusters of 

misclassification for bone and cartilage (white arrows), SUSAN provided good overall 

contours relative to the ground truth with segmentation performance comparable to the 

supervised U-Net method. Both deep learning methods outperformed the multi-atlas 

registration method.
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Table 1:

Imaging parameters for the sagittal fat-suppressed T1-weighted spoiled gradient-echo (T1-SPGR) sequence in 

the SKI10 image dataset and the two clinical MR sequences including sagittal fat-suppressed T2-weighted fast 

spin-echo (T2-FSE) and sagittal proton density-weighted fast spin-echo (PD-FSE).

Sequence T2-FSE PD-FSE T1-SPGR

Field Strength (T) 3.0 3.0 1, 1.5, 3.0

TR [ms] 4680 1900 Unavailable

TE [ms] 80 19 Unavailable

Flip Angle [degree] 90 90 Unavailable

Pixel Bandwidth [Hz] 163 122 Unavailable

Echo Train Length 20 4 N/A

Field of View [cm] 14 14 14†

Slice Thickness [mm] 3 2 1

Slice Gap [mm] 0.5 0.5 N/A

Number of Slices 23~30 32~42 90~120

Matrix Size 512×512 512×512 360×300†

†
Approximate values as actual matrix size and field of view vary with the size of the knee joint in the SKI10 image dataset
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Table 2.

Comparison of image translation and segmentation accuracy (average value ± standard deviation) of DC for 

SUSAN at different weights of the segmentation branch for the two clinical MR image datasets.

Dataset Weight of Segmentation Branch FCN-Score
Dice Coefficient

Femur Bone Tibia Bone Femoral Cartilage Tibial Cartilage

PD-FSE

0.5 0.71 ± 0.02 0.93 ± 0.01 0.93 ± 0.01 0.63 ± 0.02 0.62 ± 0.05

5 0.74 ± 0.03 0.97 ± 0.01 0.95 ± 0.00 0.66 ± 0.03 0.65 ± 0.06

10 0.73 ± 0.03 0.97 ± 0.01 0.93 ± 0.01 0.65 ± 0.03 0.64 ± 0.05

T2-FSE

0.5 0.75 ± 0.03 0.92 ± 0.01 0.90 ± 0.02 0.79 ± 0.02 0.71 ± 0.05

5 0.80 ± 0.05 0.95 ± 0.01 0.93 ± 0.02 0.81 ± 0.02 0.75 ± 0.06

10 0.78 ± 0.05 0.94 ± 0.00 0.93 ± 0.03 0.82 ± 0.02 0.75 ± 0.04
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Table 3.

Comparison of segmentation accuracy (average value ± standard deviation) of DC, VOE and ASSD for 

SUSAN, the supervised U-Net method, and two registration methods for the two clinical MR image datasets. 

The asterisks were used to indicate the significant differences (p<0.05) of segmentation accuracy between the 

supervised U-Net method and SUSAN. The multi-atlas registration method performed significantly worse 

(p<0.001) than both SUSAN and the supervised U-Net method for all measures. The direct registration 

method also performed significantly worse (p<0.0001) than both SUSAN and the supervised U-Net method 

for all measures.

Femur Bone Tibia Bone Femoral Cartilage Tibial Cartilage

Dataset Method DC ASSD 
[mm] DC ASSD 

[mm] DC VOE ASSD 
[mm] DC VOE ASSD 

[mm]

PD-FSE

Supervised 
U-Net

0.96 ± 
0.01

1.29 ± 
0.31

0.96 ± 
0.01

0.83 ± 
0.43

*0.77 ± 
0.01

*0.32 ± 
0.03

0.50 ± 
0.07

0.70 ± 
0.04

0.36 ± 
0.06

0.92 ± 
0.21

SUSAN 0.97 ± 
0.01

1.32 ± 
0.25

0.95 ± 
0.00

0.90 ± 
0.16

*0.66 ± 
0.03

*0.38± 
0.05

0.57 ± 
0.08

0.65 ± 
0.06

0.38 ± 
0.05

1.23 ± 
0.32

Multi-Atlas 
Registration

0.86 ± 
0.10

5.11 ± 
2.11

0.80 ± 
0.15

4.63 ± 
3.15

0.25 ± 
0.13

0.85 ± 
0.11

5.16 ± 
3.07

0.36 ± 
0.21

0.82 ± 
0.15

6.32 ± 
2.46

Direct 
Registration

0.71 ± 
0.31

9.53 ± 
3.0

0.65 ± 
0.20

10.73 ± 
5.32

0.15 ± 
0.24

0.90 ± 
0.10

10.2 ± 
3.21

0.28 ± 
0.15

0.85 ± 
0.15

8.46 ± 
6.22

T2-FSE

Supervised 
U-Net

0.96 ± 
0.01

0.55 ± 
0.27

*0.96 ± 
0.02

*0.48 ± 
0.24

0.82 ± 
0.02

0.34 ± 
0.03

0.59 ± 
0.31

0.76 ± 
0.03

0.31 ± 
0.06

0.69 ± 
0.43

SUSAN 0.95 ± 
0.01

0.65 ± 
0.20

*0.93 ± 
0.02

*1.1 ± 
0.28

0.81 ± 
0.02

0.35 ± 
0.04

0.65 ± 
0.31

0.75 ± 
0.06

0.33 ± 
0.06

0.73 ± 
0.36

Multi-Atlas 
Registration

0.75 ± 
0.21

6.18 ± 
3.31

0.70 ± 
0.17

5.39 ± 
4.09

0.31 ± 
0.24

0.87 ± 
0.17

7.18 ± 
5.22

0.27 ± 
0.16

0.89 ± 
0.09

9.24 ± 
4.93

Direct 
Registration

0.65 ± 
0.18

8.92 ± 
4.46

0.53 ± 
0.21

8.15 ± 
4.39

0.26 ± 
0.15

0.88 ± 
0.18

8.29 ± 
3.13

0.25 ± 
0.14

0.89 ± 
0.13

10.16 ± 
4.52
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