Skip to main content
. 2020 Feb 13;7(7):1903077. doi: 10.1002/advs.201903077

Table 1.

The Electrochemical Performance of MXene Assemblies in Different Energy Storage Devices

Material Assembled structure Device Cs a) Rate capability Cycling stability Ref.
C‐V2CTx (C = Li, Na or Mg) 2D assembly SCsb) 420 F g−1 (5 mV s−1) 100 F g−1 (10 A g−1) 77% (100 A g−1, 1 000 000 cycles) [qv: 33]
Hydrazine/Ti3C2Tx 2D assembly SCs 250 F g−1 (2 mV s−1) 210 F g−1 (100 mV s−1) 100% (5 A g−1, 1000 cycles) [qv: 46]
MXene/SWCNT 2D assembly SCs 390 F cm−3 (2 mV s−1) 350 F cm−3 (5 A g−1) ≈100% (5 A g−1, 10 000 cycles) [qv: 43]
PPy/Ti3C2Tx 2D assembly SCs 417 F g−1 (5 mV s−1) 256 F g−1 (100 mV s−1) 92% (100 mV s−1, 25 000 cycles) [qv: 42]
Ti3C2Tx/PVA‐KOH 2D assembly SCs 528 F cm−3 (2 mV s−1) over 300 F cm−3 (100 mV s−1) ≈85% (5 A g−1, 10 000 cycles) [qv: 56]
400‐KOH‐Ti3C2Tx 2D assembly SCs 517 F g−1 (1 A g−1) 210 F g−1 (100 mV s−1) 99% (1 A g−1, 10 000 cycles) [qv: 57]
Ti3C2Tx/PANI 2D assembly SCs 371 F g−1 (2 mV s−1) 287 F g−1 (20 mV s−1) 98% (20 mV s−1, 10 000 cycles) [qv: 58]
Ti3C2Tx ionogel 2D assembly SCs 70 F g−1 (20 mV s−1) 63 F g−1 (500 mV s−1) 80% (1 A g−1, 1000 cycles) [qv: 75]
Ti3C2Tx/rGO 2D assembly SCs 1040 F cm−3 (2 mV s−1) 634 F cm−3 (1 V s−1) 100% (5 A g−1, 20 000 cycles) [qv: 76]
Ti3C2Tx hydrogel 2D assembly SCs 1500 F cm−3 (2 mV s−1) 570 F cm−3 (2000 mV s−1) 90% (10 A g−1, 10 000 cycles) [qv: 108]
Activated carbon/MXene film 2D assembly SCs 126 F g−1 (0.1 A g−1) 71 F g−1 (100 A g−1) 92.4% (10 A g−1, 10 000 cycles) [qv: 109]
V2C@Co 2D assembly LICsc) 1117.3 mAh g−1 (0.1 A g−1) 199.9 mAh g−1 (20 A g−1) 100% (8 A g−1, 15 000 cycles) [qv: 67]
CTAB‐Sn (IV)@Ti3C2 2D assembly LICs 268 F g−1 (0.2 A g−1) 132 F g−1 (5 A g−1) 71.1% (2 A g−1, 4000 cycles) [qv: 70]
PVP‐Sn (IV)@Ti3C2 2D assembly LIBsd) 1375 mAh cm−3 (100 mA g−1) 504.5 mAh cm−3 (3000 mA g−1) 94.3% (500 mA g−1, 200 cycles) [qv: 69]
Ti3C2Tx/PEDOT 2D assembly LIBs 307 mAh g−1 (100 mA g−1) 71 mAh g−1 (1000 mA g−1) 83% (100 mA g−1, 100 cycles) [qv: 81]
Ti3C2Tx/CNTs 2D assembly SIBse) 421 mAh cm−3 (20 mA g−1) 89 mAh cm−3 (5000 mA g−1) 242 mAh cm−3 (50 mA g−1, 60 cycles) [qv: 79]
MXene lamellar liquid crystal 2D macroassembly with micro 3D structures SCs 270 F g−1 (10 mV s−1) 206 F g−1 (2000 mV s−1) 100% (20 A g−1, 20 000 cycles) [qv: 87]
Ti3C2Tx/rGO 2D macroassembly with micro 3D structures LIBs 335.5 mAh g−1 (0.05 A g−1) 100.7 mAh g−1 (4 A g−1) 100% (1 A g−1, 1000 cycles) [qv: 86]
Macroporous V2CTx 2D macroassembly with micro 3D structures SIBs 470 mAh g−1 (2.5 C) 170 mAh cm−3 (25 C) 260 mAh g−1 (2.5 C, 1000 cycles) [qv: 34]
MXene monolith 3D macroassembly SCs 272 F g−1 (2 mV s−1) 226 F g−1 (1000 mV s−1) 97.1% (1 V s−1, 10 000 cycles) [qv: 44]
3D MXene hydrogel 3D macroassembly SCs 370 F g−1 (5 A g−1) 165 F g−1 (1000 A g−1) 98% (1000 mV s−1, 10 000 cycles) [qv: 37]
Ti3C2Tx aerogel 3D macroassembly SCs 438 F g−1 (10 mV s−1) 349 F g−1 (2000 mV s−1) 90% (20 A g−1, 20 000 cycles) [qv: 94]
Ti3C2Tx /rGO aerogel 3D macroassembly MSCsf) 34.6 mF cm−2 (1 mV s−1) 9.2 mF cm−2 (100 mV s−1) 91% (2 mA cm−2, 15 000 cycles) [qv: 103]
a)

Specific capacitance for SCs or capacity for LICs, LIBs, and SIBs

b)

Supercapacitors

c)

Lithium‐ion capacitors

d)

Lithium‐ion batteries

e)

Sodium‐ion batteries

f)

Micro‐supercapacitors.