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A B S T R A C T

The purpose of this paper is to reveal the spread rules of the three pneumonia: COVID-19, SARS and MERS. We
compare the new spread characteristics of COVID-19 with those of SARS and MERS. By considering the growth
rate and inhibition constant of infectious diseases, their propagation growth model is established. The para-
meters of the three coronavirus transmission growth models are obtained by nonlinear fitting. Parametric
analysis shows that the growth rate of COVID-19 is about twice that of the SARS and MERS, and the COVID-19
doubling cycle is two to three days, suggesting that the number of COVID-19 patients would double in two to
three days without human intervention. The infection inhibition constant in Hubei is two orders of magnitude
lower than in other regions, which reasonably explains the situation of the COVID-19 outbreak in Hubei.

1. Introduction

In December 2019, patients with pneumonia of unknown cause
appeared in some medical institutions in Hubei province, China. A new
coronavirus, initially named 2019-ncov, was identified as the causative
agent of pneumonia. The World Health Organization (WHO) named the
pneumonia caused by the new coronavirus “COVID-19.” At the same
time, the International Committee on Taxonomy of Viruses announced
that it was calling the new coronavirus severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). Medical researchers believe that
SARS-CoV-2 is probably closely related to the coronavirus carried by
the Chinese horseshoe bat, but the intermediate host has not been
confirmed.

SARS-CoV-2 is a coronavirus similar to SARS-CoV and MERS-CoV.
SARS-CoV first occurred from November 2002 to June 2003 in
Guangdong, China, and spread to many parts of the world. MERS-CoV
was found in 2012 in Saudi Arabia. Its main outbreak areas were in the
Middle East and South Korea, and it occurred occasionally elsewhere.

The dynamics of SARS and MERS have made some progress. At
present, there are two main mathematical models of epidemiological
dynamics: the deterministic model and the stochastic model. Donnelly
et al. (2003) measured associations between the estimated case fatality
rate and patients'age and the time from onset to admission. They esti-
mated that the mean incubation period of the disease was 6.4 days, and
that the mean time from onset of clinical symptoms to admission to
hospital varied between 3 and 5 days, with longer times earlier in the
epidemic. Lipsitch et al. (2003) estimated that a single infectious case of

SARS would infect about three secondary cases in a population that had
not yet instituted control measures. Public-health efforts to reduce
transmission were expected to have a substantial impact on reducing
the size of the epidemic. Riley et al. (2003) analyzed the first 10 weeks
of the severe acute respiratory syndrome (SARS) epidemic in Hong
Kong, and presented that the epidemic was characterized by two large
clusters initiated by two separate super-spread events (SSEs) and by
ongoing community transmission. Excluding SSEs, they also estimated
that 2.7 secondary infections were generated per case on average at the
start of the epidemic, with a substantial contribution from hospital
transmission. Li et al. (2004) used a logistic deterministic growth model
to fit the data of some countries and regions, and some provinces and
cities in mainland China, revealing the uneven infectious force of SARS
in various regions, along with differences in prevention and control
measures. Tan et al. (2003) established the SEIR epidemic model of
SARS and a parameter identification system with incubation period and
lifelong immunity, and demonstrated the main mathematical properties
of the control model and the flow invariance and weak invariance of the
system. Li et al. (2013) researched the problem of epidemic spreading
dynamics on a multi-relationship network, proposed a kind of dual
relationship network model (work-friends network), and studied the
effect of multi-relationships on epidemic spread dynamics behavior.
They also studied the outbreak threshold of epidemic spreading dy-
namics on complex networks (Li et al., 2016), and summarized the si-
milarities and differences of outbreak thresholds between the suscep-
tible–infected–recovered (SIR) and susceptible-infected-susceptible
(SIS) models. Kim and Jung (2018)) studied the dynamic development
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of MERS in the inter-organizational public health emergency manage-
ment network, and mapped the communication and response network
patterns during the outbreak of MERS. Through retrospective epide-
miological analysis, Nishiura et al. (2016)) studied the determinants of
the heterogeneous transmission dynamics of the MERS outbreak in
South Korea in 2015. They used the transmission tree to identify the
super spenders and estimated the reproduction number of different
types of hosts, i.e., the average number of secondary cases generated by
a single major case, and its changes over time. To identify super
spreaders in a complex network, Chen et al. (2019)) proposed a fusion
index, called the degree of extension center, by extracting and syn-
thesizing topology feature information of traditional centrality indices
and spreading influence to identify nodes, and conducted simulation
experiments on four real networks and node removal to verify the ac-
curacy of the proposed centricity. The classical SIR model describes the
transmission of infection. People's response to epidemics affects trans-
mission, thus information transmission is also considered often in the
literature. Lu and Liu (2019)) analyzed how the operation of informa-
tion transmission affects infected individuals and the transmission
conditions of epidemics and proposed a susceptibility-recovery-activity
(SIR-A) model that maps infection and information transmission to a
two-layer network based on the hypothesis that community size and
individual consciousness may have an impact on infection rates. Ning
et al. (2020)) used an evolutionary game model of complex networks to
study the process of epidemic transmission. Ning et al. selected strate-
gies by assuming that individuals would compare their own benefits
with those of neighboring individuals in the process of disease trans-
mission, updated strategies using four simulation principles, analyzed
counterintuitive phenomena, and found that simulation principles will
affect the scope and severity of counterintuitive phenomena. Through
epidemiological SIS investigation involving independent disseminators,
Ding et al. (2019)) explained that complex systems in which the dy-
namics of diffusion occur often have many underlying relationships that
can facilitate the process of infectious disease transmission. Huang et al.
(2019)) studied the impact of human behavior and contact hetero-
geneity on the spread of infectious diseases. Based on the consideration
of fear levels of individuals with different potential contact times with
others, a network-based SIRS epidemic model with a general feedback
mechanism was proposed. Zhang et al. (2018)) proposed a novel sus-
ceptible–infected–susceptible–recovered–susceptible virus transmission
model based on partial immunity and immune inefficiency in complex
networks and studied the epidemic dynamics behavior of this model in
unified networks and scale-free networks based on mean field theory.
Liu et al. (2018)) simulated an infection transmission process on mul-
tiplex contact networks accounting for the natural history of influenza
and found that the classical concept of the basic reproduction number
was untenable in realistic populations, and it did not provide any
conceptual understanding of the epidemic evolution. Based on the
complex network theory, Fan et al. (2020)) established the SEIR dy-
namic model of 2019-ncov epidemic with incubation period, and pre-
dicted the epidemic inflection point through model parameter simula-
tion.Based on Wuhan migration data, Yang et al. (2020)) estimated the
number of people infected with SARS-CoV-2 in Wuhan by the number
of confirmed people and found that the rate of confirmed patients in 15
cities in Hubei province was lower than that in 35 cities outside the
province in terms of the mean and median. Lombardi et al.'s research
(Lombardi et al., 2020) showed that isolation of those affected and the
use of personal protective equipment (PPE) were the mainstay to block
transmission of this pathogen, which was presumed through respiratory
droplets. A 14 days quarantine was applied to subjects coming from
endemic areas or who had contact with confirmed cases. Fanelli and
Piazza (2020)) analyze the temporal dynamics of the coronavirus dis-
ease 2019 outbreak in China, Italy and France in the time window 22/
01–15/03/2020. A first analysis of simple day-lag maps points to some
universality in the epidemic spreading, suggesting that simple mean-
field models can be meaningfully used to gather a quantitative picture

of the epidemic spreading, and notably the height and time of the peak
of confirmed infected individuals. These scholars studied the propaga-
tion rules of SARS and MERS from the aspects of deterministic models,
stochastic models, and complex network propagation dynamics, but the
propagation research of COVID-19 is just beginning.

As a new infectious disease, the transmission mechanism of COVID-
19 is not yet clear. Although SARS-CoV-2 is a kind of coronavirus si-
milar to SARS-CoV and MERS-CoV, there are still many questions to be
studied about its infectious characteristics.

2. Propagation process modelling

2.1. Model hypothesis

We analyze the number of people infected with infectious diseases.
The number of infectious cases is a function of time, expressed as N(t) at
time t. When a new coronavirus occurs, people lack full understanding
of its origin and route of transmission, which may lead to insufficient
recognition of its prevention and control. Therefore, at the beginning,
the growth rate of infections can be regarded as a constant r0. However,
when the number of infected cases reaches a certain level, people will
gradually devote increased attention to the epidemic disease and take
measures such as disinfection and isolation. At this point, the growth
rate of infected people decreases with the increase of their number N,
i.e., the growth rate can be expressed as a monotonically decreasing
function r(N). For simplicity, let us assume the growth rate r(N) is a
linear function of the number of infected people N, r(N) = r0 − sN,
where r0 is a constant indicating the growth rate of people doing
nothing and letting the virus spread at will, and s is the infection in-
hibition constant, which reflects the effect of prevention and control
measures taken to suppress infectious diseases. The larger s is, the more
effective the prevention and control measures are. Moreover, it is as-
sumed that under the combined effect of viral infectivity and preven-
tion and control measures, the maximum number of infected cases is
Nmax, i.e., when N = Nmax, the growth rate r(Nmax) = 0. At this point,
the infection inhibition constant s = r0/Nmax can be obtained.

Notations: N(t) or N denotes the number of infectious cases at time t,
while Nmax is the maximum number of N(t), i.e., the limit of N(t). r(N) is
the growth rate of infected cases with N, and r0 is the growth rate at the
beginning with no measure taken. s denotes the infection inhibition
constant. The multiplication cycle with no measure taken is denoted by
T0 and T denotes the multiplication cycle varied with the number of
infected cases N, which has measures taken with N increasing.

2.2. Mathematical modelling of infected cases

According to the hypothesis of the model, under the continuous
setting, the number of newly infected persons ΔN within the time Δt can
be expressed as the product of the growth rate r(N) and N, and the
number of infected persons at t0 is N0, so we can obtain the initial value
problem of the differential equation of infected persons,

⎜ ⎟
⎧

⎨
⎩

= ⎛
⎝

− ⎞
⎠

=

dN
dt

r N
N

N

N t N
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( ) .

0
max

0 0 (1)

The first term, r0N, of differential equation (1) expresses the natural
epidemic trend of infectious diseases in the absence of any prevention
and control measures, while the second term, −r0N2/Nmax, shows the
effect of prevention and control measures for communicable diseases.
At the beginning of an epidemic of an infectious disease, due to the lack
of strong prevention and control measures, the evolution of the epi-
demic law is mainly affected by the spreading characteristics of the
virus itself, and the first term plays a leading role. At this moment, one
can consider that −r0N2/Nmax = 0, and in this setting, the solution of
the differential equation is
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This solution implies that the virus can spread freely without human
intervention, and the number of infected people increases exponentially
over multiple generations. In the outbreak of an infectious disease, the
role of the second term gradually begins to assume a dominant position,
the number of new cases gradually decreases and approaches zero, and
the disease is finally under control.

Eq. (1) is an initial-value problem of variable-separable differential
equations, which can be solved by
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According to differential equation (1), the second derivative of N(t)
is
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From the second derivative (4), it can be known that the change rate
of infected persons dN/dt reaches its maximum when N = Nmax/2, i.e.,
the period of accelerated growth occurs when the number of infected
persons reaches half of the limit value. Therefore, the moment corre-
sponding to N = Nmax/2 can be called the inflection point of the
number of new infections.

2.3. Multiplication cycle

The time span in which the number of infections increases from N to
2N is called a multiplication cycle. If there is no human intervention, it
can be obtained from Eq. (2) that the multiplication cycle is T0 = ln 2/
r0. The multiplication cycle depends only on the rate of infection r0
without human intervention.

With human intervention, such as protective measures, the multi-
plication cycle will not depend only on r0. From Eq. (3), we can obtain

⎜ ⎟=
−

⎛
⎝

− − ⎞
⎠

+t
r

N N
N

N N
N

t1 ln / .
0

max max 0

0
0

(5)

Suppose that the number of infections is N at moment t1 and 2N at
moment t2. Then, the multiplication cycle can be obtained as
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T is a function of the number of infected people N, with
Nmax − 2N > 0. This inequality holds because when N approaches
Nmax/2, the multiplication cycle will approach to infinity. The deriva-
tive of T is

=
− −
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N
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Thus, we know that T is a monotonically increasing function, T→ T0
when N → 0, while T→ +∞ when N → Nmax/2. This shows that when
the inflection point occurs, the doubling of the number of infected
people no longer occurs.

3. Data and mathematical methods

The data used in this paper are from the WHO (http://www.who.
int) and the National Health Commission of the People's Republic of
China (http://www.nhc.gov.cn/). The National Health Commission
publishes data of accumulated and newly confirmed cases of COVID-19
from January 20, 2020, from which the data from January 21 to March
18 were selected. The regions selected were Hubei (HB), Guangdong
(GD), Zhejiang (ZJ), and Henan (HN). The data of confirmed SARS
cases were selected from April 21, 2003, to June 30, 2003. The selected
countries or regions were China (excluding Hong Kong, Macau, and
Taiwan) (Nat), Guangdong (GD), Beijing (BJ), and Hong Kong (HK).
Saudi Arabia's MERS case data were selected for analysis. Fig. 1 shows
the number of weekly infections in Saudi Arabia from the 12th week of
2012 to the 24th week of 2019. As can be seen from Fig. 1, Saudi Arabia
experienced four significant MERS outbreaks, from week 7 to week 23
in 2014, week 1 to week 12 in 2015, week 15 to week 26 in 2015, and
week 28 to week 39 in 2015. These four outbreak cycles are recorded as
C#1, C#2, C#3, and C#4, respectively. We selected these four cycles of
MERS cases for analysis. The software 1stOpt and its Levenberg-Mar-
quardt optimization algorithm (Bi and Liang, 2018; Liang and Clay,
2019) were used to fit Eq. (3).

4. Analysis and discussion of parameters

4.1. Fitting results

The number of cases of COVID-19, SARS, and MERS in each region
was fitted using model (3), and the fitting effect was significant. Table 1
shows the results, where the correlation coefficient measures the degree
of linear correlation between N and t, and the determination coefficient
reflects the reliability of the regression function N(t). The values of the
correlation coefficient and the determination coefficient both go from 0
to 1. According to Table 1, the minimum values of the correlation
coefficient and determination coefficient are 0.9822 and 0.9647, re-
spectively. For the number of COVID-19 cases of Hubei, the values of
Nmax are fairly close to the real cases, and the absolute value of the
average relative error is less than 3%. The true number of confirmed
COVID-19 cases on March 18, 2020, is 67,800, close to its simulation
value 67,680.39 (Table 1).

To fit the model for COVID-19, we selected four provinces with
severe epidemics: Hubei, Guangdong, Zhejiang, and Henan. The sta-
tistical profile changed on February 13 when the method of establishing
confirmed cases was changed from diagnosis of COVID-19 by nucleic

Fig. 1. Cases of MERS in Saudi Arabia.
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acid test to clinical diagnosis, which resulted in a jump in the number of
confirmed cases. A total of 14,840 new cases were confirmed in Hubei
on February 13. Therefore, Fig. 2 shows a jump in the cumulative
number of cases on February 13. In general, the model fitting effect of
the four provinces is significant.

The incidence of SARS cases in China is different from that of
COVID-19. By March 18, 2020, a total of 80,894 cases of COVID-19 had
occurred in China (data exclude Hong Kong, Macau, and Taiwan), in-
cluding 67,800 cases in Hubei, whose cumulative cases account for the
majority of those in China. In 2003, SARS occurred in China, and there
was no significant difference in the number of cases among the most
severely affected provinces. Therefore, on a regional basis, we selected
the number of cases in China (national data), Guangdong, Beijing, and
Hong Kong. The fitting results are shown in Fig. 3, and the fitting effect
is also significant.

Saudi Arabia experienced four distinct cycles of MERS outbreaks.
The model fitting of MERS cases in these four cycles is shown in Fig. 4.
The largest average relative error of the four cycles is in the second
cycle (3.07%), and the overall fitting effect is reasonable.

5. Growth rate and multiplication cycle

The growth rate r0 mainly reflects the natural transmission of an
infectious disease, which is affected by a number of factors, including
the infectivity of the virus itself, population flow, and public health
quality. Although population density can also affect the spread of in-
fectious diseases, its influence is not very obvious. For the growth rate
r0 of COVID-19, it can be seen from the first graph of Fig. 5 that the
growth rates of Hubei, Guangdong, Zhejiang, and Henan are between
0.2 and 0.32, with an average of 0.281. The differences among them are
not very obvious. In the case of SARS, the second graph of Fig. 5 shows
that the growth rate of Beijing is about twice that of Hong Kong. The
growth rates of the MERS virus in the four cycles in Saudi Arabia were
not significantly different, with an average of 0.106, as shown in the
third graph of Fig. 5. The fourth graph of Fig. 5 compares the trans-
missibility of the three coronaviruses. The growth rate of COVID-19 is
significantly higher than those of SARS and MERS, and is about twice
that of SARS, indicating that SARS-CoV-2 is much more infectious than
SARS-CoV and MERS-CoV. That is why the COVID-19 outbreak is
growing much faster than the SARS and MERS outbreaks.

It can be seen from Fig. 6 that the multiplication cycles of SARS and
MERS are similar, ranging from 5 to 10 days. For SARS, this is

Table 1
Simulation result.

Disease Region Correlation coefficient Determination coefficient Nmax/cases Real cases/cases Average relative error (%)

COVID-19 HB 0.9981 0.9962 67,680.395 67,800 −0.18
GD 0.9995 0.9988 1347.647 1369 −1.56
ZJ 0.9982 0.9960 1203.305 1232 −2.33
HN 0.9996 0.9990 1270.729 1272 −0.10

SARS Nat 0.9984 0.9967 5355.991 5327 0.54
GD 0.9822 0.9647 1516.151 1512 0.27
BJ 0.9997 0.9994 2520.522 2521 −0.02
HK 0.9986 0.9972 1755.788 1755 0.04

MERS C#1 0.9996 0.9992 632.762 629 0.6
C#2 0.9997 0.9994 161.823 157 3.07
C#3 0.9981 0.9957 269.475 267 0.93
C#4 0.9997 0.9994 228.499 227 0.66

Fig. 2. Real cases and simulation result for COVID-19. The sample sizes for Hubei, Guangdong, Zhejiang and Henan are all 58, Chi-Squares are 3158.95, 36.94,
110.97, 135.22, and F-Statistics are 14525.04, 54763.65, 15502.61, 69710.64, respectively.
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consistent with a culture cycle of 2 to 7 days for the SARS. The multi-
plication cycle of COVID-19 is only two to three days, and the number
of cases of COVID-19 will increase rapidly under the effect of ex-
ponential growth.

5.1. Infection inhibition constant

The infection inhibition constant s is related to some human inter-
vention factors, mainly including the isolation of infected people, the
isolation of confirmed and suspected cases, the public's attention to

infectious diseases, and the cleaning and disinfection of epidemic areas.
These human intervention measures are closely related to the measures
taken by local governments and medical institutions after the outbreak,
and they reflect the emergency management capabilities of government
departments and medical and health departments. In principle, vac-
cines are part of the human intervention, but there is no vaccine for any
of the three coronaviruses. The larger the infection suppression con-
stant s, the timelier and more effective are human intervention mea-
sures, and the easier it is to control the outbreak in a short time.
Otherwise, the outbreak is more likely to get out of control.

Fig. 3. Real cases and simulation result for SARS. The sample sizes for national, Guangdong, Beijing and Hong Kong are all 71, Chi-Squares are 30.92, 2.38, 5.72,
0.47, and F-Statistics are 21136.76, 1883.17, 124221.70, 24350.03, respectively.

Fig. 4. Real cases and simulation result for MERS.The sample sizes for C#1, C#2, C#3, and C#4 are 17ï¼Œ 13ï¼Œ 12ï¼Œ 12ï¼Œ Chi-Squares are 7.52, 0.28,
10.74, 0.26, and F-Statistics are 19345.43, 17782.60, 2624.14, 18312.06, respectively.
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The three pneumonias, COVID-19, SARS, and MERS, show sig-
nificant differences in infection inhibition constants (Fig. 7). For SARS,
the differences of the infection inhibition constants among the Chinese
mainland, Guangdong, Beijing, and Hong Kong are not significant, and
their infection inhibition constants are all on the order of 10−5. The
constants of Guangdong and Beijing are almost the same, about twice
that of mainland China. The infectious inhibition constant of MERS is
an order of magnitude higher than that of SARS, at 10−4, and the
constants for the first to fourth cycle are almost gradually increasing,
indicating that Saudi Arabia took stronger emergency intervention
measures in subsequent outbreak cycles to stop the transmission of the
MERS virus. In Guangdong, Zhejiang, and Henan, the infection inhibi-
tion constants of COVID-19 have the same order of magnitude as those
of MERS. In Hubei, however, the infection inhibition constant of
COVID-19 is 3.58 × 10−6, two orders of magnitude lower than in
Guangdong, Zhejiang, and Henan. That is why COVID-19 grew out of
control in Hubei in the early stage. Of course, Guangdong, Zhejiang,
and Henan have much higher infection inhibition constants than Hubei,
thanks to the strong closure measures taken by Hubei. At the beginning
of 2020, Guangdong, Zhejiang, and Henan launched a first-level

response to public health emergencies, causing government authorities,
health authorities, and the public to take more active measures. The
vast majority of Chinese provinces and cities finally started the first-
level response to public health emergencies, requiring people to stay in
quarantine at home, to wear masks outside, and to improve personal
hygiene. As for Hubei province, due to the large number of patients in
the early stage, medical institutions could not cope with the shortage of
hospital beds, equipment, medicine, masks, protective clothing, and
other materials, resulting in the inability to effectively isolate patients,
which led to a significantly higher infection inhibition constant in
Hubei province. Later, Hubei province adopted more stringent control
measures, such as that two AD hoc hospitals were established for the
treatment of COVID-19, several cabin hospitals were established for the
treatment of mild or asymptomatic patients, and communities were
closed.

6. Conclusion

In this paper, a dynamic mathematical model of infectious diseases
was established, and the model was used to analyze the epidemic

Fig. 5. Growth rate for COVID-19, SARS and MERS.

Fig. 6. Multiplication cycle for COVID-19, SARS and MERS.
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characteristics of COVID-19, SARS, and MERS. The growth rate of in-
fectious diseases determines their prevalence in the early stage, and the
infection inhibition constant depends on the prevention and control
measures adopted by different regions. The parameter analysis of the
three coronavirus dynamics models reasonably explains the character-
istics of their transmission and the measures taken in different places
during the outbreak. The growth rate of COVID-19 is much higher than
that of SARS and MERS, with a doubling period about half of theirs. The
infection inhibition constant of COVID-19 in Hubei is two orders of
magnitude lower than in other regions, making the outbreak situation
of Hubei much more severe.
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