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Abstract

Purpose of review: Primary central nervous system lymphoma (PCNSL) is a rare but 

aggressive variant of non-Hodgkin lymphoma. The diagnostic gold standard remains the 

pathologic review of tumor tissue, mainly collected though biopsies. The majority of PCNSL are 

diffuse large B cell lymphoma (DLBCL). Biopsies are invasive procedures, and there have been 

efforts to develop minimally invasive diagnostic testing using serum and cerebral spinal fluid 

(CSF). This article reviews multiple markers that potentially could serve as future diagnosis tools 

and predictors of treatment response.

Recent findings: Many studies have attempted to classify DLBCL into different subtypes for 

prognostic purposes using methods such as immunohistochemistry. PCNSL often falls under the 

activated B-cell-like subgroup, and further genomic sequencing has identified genomic alterations 

in genes within the B-cell receptor signaling axis, e.g. MYD88 or CD79B, at increased 

frequencies in PCNSL. MYD88 and CD79B implicate the involvement of the NF-kB pathway, and 

targeted agents to this pathway are currently being used in the treatment of relapsed/refractory 

PCNSL.

Summary: Although recent genomic profiling of PCNSL has increased the understanding of 

drivers in this disease and has also led to the introduction of targeted inhibitors, these markers have 

not yet been used for diagnostic and/or prognostic purposes. Further studies will need to evaluate 

if they hold great diagnostic potential.
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Introduction

Primary central nervous system lymphoma (PCNSL) is a rare but aggressive type of 

extranodal non-Hodgkin lymphoma found only in the central nervous system. Treatment 

regimens vary according to geographic location and physician practice, but all include the 
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use of high-dose methotrexate. Despite this, the rate of relapse is high, and there are ongoing 

studies as to which treatment regimen is best for this patient population. The gold standard 

for diagnosis is the pathologic review of biopsy material. Stereotactic biopsies are an 

invasive procedure with multiple associated risks such as brain edema, hemorrhage and 

permanent neurologic deficits. With the advent of genomic sequencing and other technology, 

efforts have been made to identify additional biomarkers for diagnosis and their prognostic 

and predictive value. This review aims to identify current work on these potential markers.

Background

PCNSL is found only in the central nervous system, which includes the brain, spine, 

cerebrospinal fluid (CSF), and eyes [1]. It represents 3% to 4% of all newly diagnosed 

intracranial neoplasms with an overall incidence rate of 0.5 per 100,000-person years. 

PCNSL represent 4% to 6% of all extranodal lymphomas. [2].

PCNSL presents as solitary or multiple intracranial lesions, diffuse leptomeningeal or 

periventricular lesions, vitreous/uveal deposits, and rarely as intradural spinal cord lesions 

[3-7]. The clinical presentation varies depending on the location of the lesion. Patients may 

develop mental status and behavioral changes (32% to 43%), seizures (11% to 14%), and 

signs of elevated intracranial pressure such as headache, nausea, vomiting, and papilledema 

(32% to 33%) [1, 8, 9].

To diagnose and assess the extent of disease, the International PCNSL Collaborative Group 

(IPCG) recommends baseline staging to include magnetic resonance imaging of the brain 

and spine (if symptoms localizing to the spine are present), an ophthalmologic examination 

to evaluate for intraocular lymphoma, and CSF evaluation to determine the presence of 

lymphoma in the CSF [10]. A body positron emission tomography/computed tomography 

scan and bone marrow biopsy should also be performed to detect the presence of non-CNS 

disease as this would change management strategies. To establish a tissue diagnosis of 

PCNSL, the diagnostic procedure of choice is a stereotactic biopsy. If ocular or CSF 

involvement is present, then a vitrectomy or CSF cytology may be collected instead. 

Molecular markers have not been included in the diagnostic recommendations.

There is currently no standard of care treatment for PCNSL, but expert consensus 

recommends treating patients with a high-dose methotrexate-based multimodal regimen. 

Methotrexate was initially added to whole brain radiation therapy, but there was significant 

long-term neurotoxicity from chemoradiation [11, 12]. This led to the development of 

chemotherapy-only regimens such as rituximab, methotrexate, vincristine, and procarbazine 

[13, 14]; rituximab, methotrexate, and temozolomide [15]; methotrexate, cytarabine, 

thiotepa, and rituximab [16]; and rituximab, methotrexate, carmustine, teniposide, and 

prednisone [17]. No head-to-head comparisons have been conducted to determine which 

regimen is the most efficacious; thus, the regimen used often depends on geographic location 

and physician preference. Ongoing trials will hopefully add to this literature and provide 

further evidence for the optimal first line treatment. Agents targeting tumor specific 

alterations have not been introduced into the first-line setting.
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Pathology, Pathophysiology and the Tumor Microenvironment

Approximately 90% of PCNSL are diffuse large B cell lymphomas (DLBCL) with a small 

subset of patients diagnosed with T cell, Burkitt, lymphoblastic, and marginal zone 

lymphomas [18]. DLBCL are characterized by diffuse proliferation of mature B cells that 

are usually larger than twice the normal size of macrophages or lymphocytes [19]. It is 

thought that B-cell lymphomas arise from B cells that arrest at specific stages of 

differentiation when malignant transformation takes place [20].

Expression profiling data [21] was used to establish three major DLBCL subtypes: 1) 

germinal center B-cell-like (GCB), 2) activated B-cell-like (ABC), and 3) type 3. The type 3 

subgroup is not well defined, but both the type 3 and ABC subtypes appear to have a poor 

outcome and are often grouped together. For easier clinical application, an 

immunohistochemical classification scheme for systemic DLBCL was developed by Hans et 

al subdividing tumors into germinal center B-cell-like (GCB) and non-germinal center like 

(non-GC) based on the expression pattern for CD10, BCL6, and MUM1 [22].

Further genomic sequencing revealed that the pattern of somatic mutations in DLBCL varies 

depending on the cell of origin: GCB tumors were more likely to have mutations in EZH2, 
GNA13, and translocations in BCL2, whereas ABC tumors were associated with mutations 

in MYD88, CD79A, CARD 11, and TNFAIP3, all of which are involved in B-cell receptor 

signaling activating NF-kB [23].

The majority of PCNSL are of the non-GC subtype [24-26]. In comparison to the ABC 

subtype in systemic DLBCL, mutations in MYD88 and CD79B are identified in higher 

frequencies [26-32] (Figure 1) and even found in tumors of the GC subtype in PCNSL, 

which is not typically observed in systemic DLBCL [26, 33, 34].

The NF-kB pathway plays a key role in DNA transcription and cell survival. Constitutively 

active NF-kB leads to cell proliferation and prevention of cellular apoptosis and sustains the 

viability of ABC subtype DLBCL [33, 35]. Bruton tyrosine kinase (BTK) links B-cell 

receptor (BCR) and toll-like receptor (TLR) signaling pathways to downstream NF-kB 

activation. In over 90% of PCNSL tissue samples, BCR, TLR, or NF-kB pathways are 

altered [28]. Fifty-five percent of PCNSL patients have mutations identified within the Toll/

IL-1 receptor domain of MYD88, an adaptor protein that activates the exchange of leucine to 

proline at position 265 leading to the development of DLBCL [36]. In addition, 40% of 

PCNSL cases have mutations in the immunoreceptor tyrosine-based activation motif of 

CD79B located at Y196, which leads to chronic activation of BCR signaling and subsequent 

activation of the NF-kB pathway [37]. This is in contrast to systemic DLBCL cases where 

MYD88 and CD79B mutations are seen less frequently in ABC subtypes (8-37% MYD88 

and 12-22% CD79B) [38-41]. NF-kB activity can also be further amplified through deletions 

or mutations in tumor necrosis factor alpha induced protein 3 (TNFAIP3) [42].

The BCL6 gene is a proto-oncogene expressed on normal B-cells in the germinal center that 

produces the transcriptional repressor protein BCL6, which regulates its own expression by 

binding to its promotor. BCL6 has many functions, one of which is to represses microRNA 

expression (ie miR155) leading to increased expression of genes needed for germinal center 
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reactions to produce antibody diversity [43]. BCL6 also allows for the rapid proliferation of 

germinal center B-cells in response to T-cell dependent antigens without inducing a p53/

TP53-dependent apoptotic response to the physiologic DNA breaks needed for 

immunoglobulin class switch recombination and somatic hypermutation [44]. Chromosomal 

translocations of BCL6 occurring in 30% to 40% of DLBCL or acquired mutations in the 

BCL6 promotor occurring in 73% of DLBCL lead to overexpression of BCL6 and 

subsequent downregulation of the TP53 tumor suppression gene, resulting in continuous 

activation and cell proliferation [19, 45]. A subset of ABC DLBCL activates the 

transcription factor STAT3 (a BCL-6 target) through JAK kinase signaling, which synergizes 

with NF-kB and promotes cell survival [46, 47]. JAK/STAT signaling pathway activators 

such as interleukin-4 (IL-4) and IL-10 were found to be upregulated in the PCNSL 

microvascular environment and in the vitreous and CSF [48].

Given that the CNS is a site that does not have resident lymphoid tissue, it is unknown which 

cell of origin PCNSL arise from. The brain is immunologically quiet under physiologic 

conditions, but biopsies from PCNSL patients show an inflammatory response with reactive 

T cells and infiltrating activated macrophages. In addition, there are highly proliferative 

tumor cells that diffusely infiltrate the CNS in an angiographic growth pattern migrating in 

the perivascular space [18, 49]. The tumor microenvironment is not fully characterized, but 

in vitro studies have found that large B-cell lymphomas respond to chemokines CXCL12 

and CXCL13 [50]. The presence of tumor-infiltrating CD14+ macrophages may portend a 

better treatment response as they provide complement and Fc receptors needed for rituximab 

to be effective [51]. Macrophages in the PCNSL tumor environment were also found to 

overexpress programmed death-1 (PD-1), indoleamine 2,3-dioxygenase (IDO1), and several 

other cytokines in response to in vitro PCNSL cell-line derived soluble factors [52]. 

Genomic studies of PCNSL samples have identified a frequent 9p24.1/PDL1/PDL-2 copy 

number gain that is associated with increased PDL1/PDL2 protein. Taken together, this 

suggests that the expression of immunosuppressive molecules like PD-1 may be involved in 

immune evasion of lymphoma cells [53].

Another transcription factor that is often upregulated in DLBCL due to translocation is 

MYC, which drives cell proliferation, regulates cell growth and differential, and apoptosis 

through downregulation of BCL2 [54, 55]. MicroRNAs associated with the MYC pathway 

have been identified in PCNSL patients where putative tumor-suppressor microRNAs such 

as miR-199a, miR-214, miR-193b, and miR-145 were downregulated [56].

Diagnostic Markers

Diagnostic delay is often an issue for PCNSLs given the rapidly progressive nature of the 

disease, and the gold standard for diagnosis involves a stereotactic biopsy of the lesion [57]. 

This is invasive and is associated with a complication rate of 8.5% including brain edema, 

hematomas, or seizures [58]. To minimize this risk, efforts have been made to identify other 

less invasive methods for diagnosis. Cytology and flow cytometry from the CSF or vitreous 

fluid are often tested, however the diagnostic yield is low and often only positive when there 

is significant leptomeningeal or vitreal involvement. Moreover, conventional CSF cytology 

and flow cytometry testing often does not produce corresponding results. A prospective 
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study of 123 B-cell lymphoma patients reports that flow cytometry identified neoplastic B 

cells in 27 patients (22%) while conventional cytology was only positive or suspicious in 10 

patients [59].

Additional CSF markers have been assessed. On a systematic review performed by van 

Westrhenen et al, CXCL-13, B2M, and neopterin isolated from the CSF appear to have the 

most potential to become a diagnostic marker in PCNSL [60]. Table 1 lists additional CSF 

markers investigated as potential diagnostic markers for PCNSL [50, 61-77]. To date, none 

of these markers has been established in the clinical routine diagnostic use.

The identification of circulating tumor DNA (ctDNA) in the CSF and/or blood might be a 

possibly more promising diagnostic biomarker for PCNSL. Fontanilles et al investigated 

ctDNA changes in serum and primary tumors in 25 PCNSL. Eight patients (32%) had 

detectable somatic mutations in the blood. The sensitivity was determined as 24%, with a 

specificity of 100% [63]. In a study of 9 relapsed/refractory PCNSL patients, tumor specific 

ctDNA was found in the CSF in all patients [78]. Of note, in 3 patients, no CSF involvement 

could be detected using conventional MRI or CSF cytology and flow cytometry. At the time 

of tumor recurrence, between 11%-37% of single nucleotide variants found in the CSF were 

shared with the original tumor. The frequency of shared mutations (60%) was higher for 

mutations belonging to BCR pathway participants (e.g. MYD88 L265P, CD79B Y196, 

CARD11). CSF was also collected through the course of treatment for ctDNA testing, and 7 

out of 9 patients with repeated collections were observed to clear their CSF of ctDNA, 

which corresponded to response on brain imaging. One patient with early disease 

progression after initial tumor response had persistence of ctDNA in the CSF suggesting that 

ctDNA in the CSF may be a potential marker for minimal residual disease [78]. 1/3 cases 

with CD79B

Prognostic Markers

Two prognostic scoring systems have been used: 1) Memorial Sloan Kettering Cancer 

Center (MSKCC) prognostic score and 2) International Extranodal Lymphoma Study Group 

(IELSG) score. The MSKCC score separates patients into 3 groups stratified by age and 

Karnofsky performance status (KPS). Age ≤50 years correlated with a median overall 

survival (OS) of 8.5 years, age >50 years plus KPS ≥70 correlated with OS of 3.2 years, and 

age >50 years plus KPS <70 correlated with OS 0.9 years [79]. The IELSG score, on the 

other hand, scores patients based on age, Eastern Cooperative Oncology Group (ECOG) 

performance score, lactase dehydrogenase level, CSF protein concentration, and deep brain 

involvement. A score of 0-1 corresponds to a 2-year survival rate of 80%. A score of 2-3 

corresponds to a 2-year survival rate of 48%, and a score of 4-5 corresponds to a 2-year 

survival rate of 15% [80].

In systemic DLBCL, the ABC (or non-GC) subtype has been associated with poor clinical 

outcome. Multiple studies have suggested that classifying PCNSL into GCB or non-GC does 

not predict a survival benefit. Raoux et al determined no significant survival difference 

between GCB and non-GC patients in 39 cases where 13 tumors were classified as GCB and 

26 patients as non-GCB [81]. Similarly, Liu et al analyzed 89 cases with 18 tumors 
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classified as GCB and 71 as non-GCB without a difference in overall survival or PFS 

between the two groups [82]. Table 2 delineates multiple other studies that have examined 

survival difference between GCB and non-GC groups in PCNSL, all of which did not report 

a significant difference in overall survival [24, 81-86]. Limitations of these studies include 

small sample sizes, retrospective nature, and incomplete treatment information that could 

impact overall survival.

There has also been conflicting evidence regarding the prognostic significance of BCL6 

protein detection by immunohistochemistry. A recent metanalysis of 22 studies involving 

3037 DLBCL patients suggested that BCL6 rearrangement portends a worse overall survival 

but does not seem to affect progression free survival (PFS) [87]. For PCNSL, the CALGB 

50202 trial suggested that high BCL6 expression correlated with shorter PFS, which was 

supported by a post-hoc analysis of the G-PCNSL-SG1 prospective trial [15, 88]. Other 

smaller studies, however, have suggested that BCL6 expression is associated with a better 

survival [89, 90].

CXCL13 has also been implicated as a poor prognostic marker in PCNSL patients perhaps 

due to its function of mediating pro-survival signals through B cell activation [91]. 

Rubenstein et al noticed that newly diagnosed patients with low CXCL13 levels in the CSF 

at time of diagnosis had a longer progression free survival with standard treatment compared 

to patients with high levels of CXCL13 [50]. CXCL13 has often been studied with IL-10 

where the combination of elevated CXCL13 levels and IL-10 levels in the CSF provided 

increased specificity but decreased sensitivity for PCNSL detection. Nguyen-Them et al 

showed that serial CSF IL-10 measurements during treatment correlated with the course of 

the disease where the patients with a detectable level of IL-10 at the end of treatment despite 

imaging response were more likely to relapse in the first year compared to patients who had 

undetectable levels [68].

The recent genomic sequencing data has also not significantly contributed to novel 

prognostic biomarkers. Frequently mutated genes, like MYD88 or CD79B do not have 

prognostic value yet in PCNSL in contrast to systemic DLBCL where response to ibrutinib, 

a selective Bruton tyrosine kinase inhibitor, depends on the mutational status of these two 

genes. In systemic DLBCL, an overall response rate to ibrutinib was seen in 37% of ABC 

DLBCL and only 5% of GCB DLBCL, but the response was particularly high in those ABC 

DLBCL with a mutation in the BCR signaling pathway (55%) and coexisting mutations in 

both MYD88 and CD79B (80%). Those with MYD88 mutations but wild-type CD79b were 

unresponsive to ibrutinib [33]. These results however were not observed in PCNSL patients. 

Responses to ibrutinib were seen in both GCB and ABC PCNSL and also in tumors without 

mutations in the BCR pathway. Incomplete tumor responses were associated with mutations 

in the B-cell antigen receptor-associated protein CD79B. Based on the current data, only 

PCNSL patients with CARD11 mutations, which confer upfront resistance to BTK 

inhibition, should not be treated with ibrutinib [26].
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Conclusion

There has been significant progress made in understanding the molecular pathogenesis of 

PCNSL leading to the use of targeted agents such as ibrutinib, a BTK inhibitor, for the 

treatment of PCNSL as well as agents targeting the activation of NF-kB, e.g. 

immunomodulatory drugs such as lenalidomide or pomalidomide [92]. A stereotactic biopsy 

and pathologic review will represent the diagnostic gold standard in PCNSL. Different 

markers have been evaluated, particularly in the CSF but have not yet been evaluated 

rigorously to warrant routine clinical use. Next generation sequencing of ctDNA isolated 

from CSF samples might represent a promising diagnostic biomarker but need to be 

evaluated in a more stringent setting.
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Key Points

• Stereotactic biopsy and pathologic review remain the diagnostic gold standard 

in PCNSL

• Clinical parameters (mainly age and performance status) are still the most 

significant prognostic parameters in PCNSL

• Subgroups as defined by the Hans immunohistochemical staining algorithm 

no not have a different clinical outcome in PCNSL

• Different CSF markers have been evaluated but not yet applied to routine 

clinical use

• Next generation sequencing of ctDNA isolated from CSF samples might 

represent a promising diagnostic biomarker
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Figure 1. Frequent Mutations affecting the B-cell receptor signaling axis in PCNSL.
Mutations in MYD88, CD79B, CARD11, and TNFAIP3 were found to be present in cases 

of PCNSL. The percentage of cases with mutations in these genes is delineated here with the 

majority of case studies reporting the presence of mutations within MYD88.
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