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E P I D E M I O L O G Y

Metabolic maturation in the first 2 years of life 
in resource-constrained settings and its association 
with postnatal growths
N. Giallourou1*, F. Fardus-Reid1*, G. Panic1, K. Veselkov1, B. J. J. McCormick2, M. P. Olortegui3, 
T. Ahmed4, E. Mduma5, P. P. Yori3,6, M. Mahfuz4, E. Svensen5,7, M. M. M. Ahmed4, J. M. Colston6,8, 
M. N. Kosek3,6†, J. R. Swann1,9

Malnutrition continues to affect the growth and development of millions of children worldwide, and chronic under-
nutrition has proven to be largely refractory to interventions. Improved understanding of metabolic develop-
ment in infancy and how it differs in growth-constrained children may provide insights to inform more timely, 
targeted, and effective interventions. Here, the metabolome of healthy infants was compared to that of growth- 
constrained infants from three continents over the first 2 years of life to identify metabolic signatures of aging. 
Predictive models demonstrated that growth-constrained children lag in their metabolic maturity relative to their 
healthier peers and that metabolic maturity can predict growth 6 months into the future. Our results provide a 
metabolic framework from which future nutritional programs may be more precisely constructed and evaluated.

INTRODUCTION
Infants who experience stunting are likely to undergo poorer phys-
ical and cognitive development throughout childhood, placing them 
on an early path to lost human potential (1). Stunting, a consequence 
of impaired linear growth, is determined by the World Health Orga-
nization (WHO) as a length-for-age Z score (LAZ) of two or more 
SDs below the WHO median (2). The causes of stunting are diverse 
and include intrauterine growth retardation, restriction in dietary 
intake, infections, social status, and maternal factors such as age, 
stature, and nutritional status (3). While nutritional interventions, 
especially in the first 2 years of life, have helped to reduce the num-
ber of stunted infants by 50 million since 2000, the progress toward 
reducing the prevalence of stunting has been notably recalcitrant to 
interventions (4). It has been estimated that even if current nutri-
tional interventions were scaled up to 90% coverage, the prevalence 
of stunting would only be reduced by 20% (5). This lack of effective-
ness may be explained by the myriad of interacting contributing 
factors (6) as well as a misalignment between nutritional inter-
ventions and the demands of the developing biochemical system 
under challenging environmental conditions, particularly in the 
setting of multiple infections.

We and others have measured the metabolic phenotypes, or 
phenomes, of stunted infants and have shown that a number of 
metabolic pathways are modulated compared to children who are 
not stunted (7). In a Brazilian infant case-control study, betaine and 
tryptophan metabolism, as well as microbial-host cometabolism, 
was found to be altered in stunted infants (8). Moreover, in a popu-

lation of severely acutely malnourished infants from Zambia, various 
metabolic derangements were observed with gut pathology associ-
ated with environmental enteric dysfunction (9). Although these 
studies were cross-sectional, we have also shown in longitudinal 
studies that plasma citrulline and tryptophan were associated with 
linear growth for the 6 months following their assessment in early 
life in children from Peru and Tanzania (10). A more comprehen-
sive understanding of early longitudinal biochemical development 
and the changing demands of the maturing metabolic system across 
the first 1000 days of life is critical to improving the impact of nutri-
tional interventions. Previous work has explored the age-dependent 
evolution of the gut microbial community structure in infants from 
resource-constrained settings (11, 12). Defined as the microbiota- 
for-age Z score (MAZ), this metric was used to assess relative gut 
microbial maturity and its relationship with nutritional interven-
tion responses and provided a target against which novel interven-
tions could be developed.

In this work, we define the development of the infant metabolic 
system and its relationship with growth faltering in resource- 
constrained settings by analyzing samples from infants in the Peru, 
Bangladesh, and Tanzania sites of the MAL-ED birth cohort (13–16). 
Defining age-related biochemical maturation provides a normative 
reference for healthy metabolic age-specific profiles in children from 
low-income settings and identifies pathways that are perturbed and 
vulnerable windows to permit for more focused nutritional inter-
ventions to optimize growth in early childhood.

RESULTS
Urine samples were collected at 3, 6, 9, 15, and 24 months of age for 
Peru (n = 281 infants, N = 1057 samples) and at 3, 6, 9, and 15 months 
for Bangladesh (n = 249 infants, N = 860 samples). Infants from 
Tanzania were sampled at 6, 15, and 24 months of age (n = 249 infants, 
N = 506 samples). Plasma samples were collected from infants in 
Peru and Bangladesh at 7 and 15 months of age (Peru, n = 230 infants; 
Bangladesh, n = 223 infants). Anthropometry was recorded every 
month from birth to 24 months of age (13). Infants with an LAZ 
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score of ≥−0.75 at birth and ≥−1.25 at 24 months of age (Peru, 
n = 22; Bangladesh, n = 28; Tanzania, n = 13; total infants, n = 63) 
were classified as an internal “healthy” reference group (details pro-
vided in table S1). Although their attained height and growth is below 
the median of populations of well-nourished children in resource- 
rich environments, this group was considered to be more metabol-
ically optimized, as their LAZ at both birth and 24 months of age 
represented the highest decile in their context. Infants below these 
thresholds at either or both time points were categorized as “growth 
constrained” (Peru, n = 259; Bangladesh, n = 221; Tanzania, n = 236).

Age-associated metabolic variation in healthy and  
growth-constrained infants
Untargeted 1H nuclear magnetic resonance (NMR) spectroscopy 
was used to comprehensively characterize the metabolic profiles of the 
urine samples [estimated coverage, ~400 metabolites (17)]. To iden-
tify age-related biochemical variation in infants of different growth 
trajectories, projection to latent structures (PLS) models were con-
structed using the full unannotated urinary 1H NMR spectral profiles 
from all sampling points. In these models, all spectral features were 
included as the descriptor variables and the age of the infant at the 
time of sampling was used as the response variable. Significant PLS 
predictive models were built for both healthy and growth-constrained 
infants from all sites (table S2). Significant covariate adjusted–PLS 
(CA-PLS) models were also obtained combining the healthy infants 
from all three cohorts and growth-constrained infants from all co-
horts, separately, adjusting for site (annotated CA-PLS coefficient plots 
for healthy and growth-constrained infants shown in figs. S1 and 
S2, respectively). Additional covariates were assessed for their ability 
to affect the urinary metabolic profile using PLS models. This in-
cluded sex, breast-feeding, diarrhea, WAMI [a socioeconomic status 
index (18)], acute lower respiratory infections, and objective fever at 
the time of sampling. However, none of these covariates were found 
to consistently alter the biochemical profile across the sites (table S3). 
From the significant site-adjusted models, the discriminatory spec-
tral features covarying with age were identified. In total, 32 metab-
olites were identified to be significantly associated with age in either 
healthy or growth-constrained infants (Fig. 1A). Several bio-
chemical pathways were altered in an age- dependent manner con-
sistently across the sites. In both healthy and growth-constrained 
infants, 12 metabolites were excreted in higher amounts early in life 
and their excretion decreased with age: this included choline/betaine- 
related metabolites [betaine, dimethylglycine (DMG), and glycine], 
tricarboxylic acid (TCA) cycle intermediates (citrate, fumarate, and 
succinate), amino acids alanine and taurine, sugars (galactose 
and mannitol), the niacin catabolite N-methylnicotinamide 
(NMND), and N-acetylglycoprotein (NAG), a biomarker of general 
inflammation. In contrast, metabolites arising from microbial- host 
cometabolism were found to increase with infant age indicative of the 
dynamic maturation of the gut microbiome. This included 3-indoxyl 
sulfate (3-IS; from tryptophan), 4-cresol sulfate (from tyrosine), phenyl-
acetylglutamine (PAG; from phenylalanine), and 2- hydroxyisobutyrate 
(2-HIB; protein degradation). 4-Hydroxyphenylacetate (4-HPA; from 
tyrosine), hippurate (from polyphenols), and 4-hydroxyhippurate 
(from polyphenols) also increased with age. These metabolites 
can be derived from the biochemical interactions between the gut 
microbiota and the host and can also be obtained from dietary 
sources or the host processing of dietary precursors. Dietary su-
crose and creatine were also positively correlated with aging, and 

excretion of N-methylnicotinic acid (NMNA; trigonelline), a marker 
of niacin deficiency (19), also exhibited a strong positive association 
to infant aging.

A targeted ultraperformance liquid chromatography–mass 
spectrometry (UPLC-MS) approach was used to measure the con-
centrations of 24 plasma amino acids and related metabolites in the 
infants from Peru and Bangladesh at 7 and 15 months of age (table 
S4 lists amino acids measured). Significant age-related PLS models 
were obtained from the plasma amino acid signatures from the 
healthy and growth-constrained infants (model diagnostics in table 
S2). In total, four plasma metabolites were significantly correlated 
with age in infants from both Peru and Bangladesh irrespective of 
growth status (Fig. 1B). Plasma ethanolamine, glutamine, and tryp-
tophan declined with age, while citrulline was positively associated 
with age.

Phenome-for-age Z score—A metric for biochemical maturity
The existence of age-discriminatory metabolites common across 
the cohorts indicates that the infant metabolic maturation is consist-
ent across these highly diverse epidemiologic settings. As such, we 
sought to identify core urinary metabolites that could be used to 
calculate a “phenome age” (PA) to describe metabolic maturity. 
Urine was selected over plasma because of the diversity of metabol-
ic changes observed with aging and its ease of collection facilitating 
the potential implementation of this metric in the field. To calculate 
the PA of an infant, a PLS model (Q2Ŷ = 0.46) was built on the in-
ternal healthy reference population (n = 63 infants) using the metab-
olites significantly associated with chronological age in these infants 
(Fig. 1A). This included betaine, DMG, citrate, fumarate, succinate, 
alanine, taurine, creatine, galactose, sucrose, NMNA, 3-IS, 4-cresyl 
sulfate (4-CS), hippurate, PAG, 4-HPA, 4-hydroxyhippurate, 
2-HIB, and NAG.

To facilitate the use of metabolic age as a potential diagnostic 
tool in the field, the metabolites used to calculate PA were further 
refined. Linear mixed-effects models (to account for repeated mea-
sures) were constructed to estimate the mean effect of each metab-
olite, normalized to mean zero and unit SD, on PA (fig. S3). The 
variance in PA explained by each biochemical feature was calculated 
from the type II sum of squares from the models. Betaine, DMG, 
citrate, succinate, creatine, hippurate, PAG, and 4-CS had the stron-
gest effect on PA (Fig. 1C). In Peru, these eight metabolites explained 
98.8% of variance in PA, 99.1% in Bangladesh, and 96.8% in Tanzania. 
These eight metabolites were subsequently used to recalculate the 
PA of both healthy and growth-constrained infants. The time- 
dependent variation in the excretion of these metabolites is shown 
in Fig. 2 (fig. S4 shows the excretion trajectories by cohort). Refer-
ence concentrations of the eight urinary metabolites used for the 
calculation of PA are presented in tables S5 and S6 for healthy and 
growth-constrained infants, respectively. Citrate had the largest in-
fluence on PA, with a one-SD increase in citrate excretion resulting 
in a 2.92-month younger PA. Citrate was excreted in relatively high 
amounts in the healthy children at 3 and 6 months of age before 
excretion sharply reduced at 9 months. In the growth-constrained 
children, citrate excretion was significantly lower than healthy chil-
dren at 6 months, and the age-related decline in citrate excretion 
was more gradual. Succinate, another TCA cycle intermediate, fol-
lowed a similar but less pronounced trend. As with citrate, betaine 
was excreted in high amounts at 3 months of age before sharply re-
ducing at 6 months before plateauing from 9 months onward. 
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DMG, a catabolite of betaine, followed a similar, albeit less pro-
nounced, age-related decline in excretion. Conversely, the excretion 
of creatine and the gut microbial-host cometabolites 4-CS, hippurate, 
and PAG gradually increased with age.

Following the strategy of Subramanian et al. (11) who produced 
microbiome-for-age measures, the PA of each child was compared 
to the median PA of the healthy reference population at the same 
chronological age (fig. S5) and converted into a Z score [phenome-
for-age Z score (PAZ); Eq. 2] to standardize values for comparison 
across the three sites. By definition, the PAZ scores of the children 
following healthy growth trajectories were approximately constant 
(mean PAZ, −0.06 ± 0.99) through time, representing stable meta-
bolic maturation (Fig. 3). In contrast, growth-constrained children 
from the three sites consistently had lower PAZ scores than their 
healthy growing equivalents (Fig. 3). This indicates that growth- 
constrained infants consistently lag in their metabolic maturity 
compared to their healthier peers. For Peru and Bangladesh, the 
difference in PAZ between the two groups is apparent at 3 months 

of age (Mann-Whitney U: Peru, P = 9.67 × 10−6; Bangladesh, 
P = 9.97 × 10−9) and progressively widens until 15 months of age 
(Peru, P = 1.68 × 10−10; Bangladesh, P = 3.88 × 10−13), where approx-
imately two SDs of difference exist. Urine samples were not available 
for Tanzanian infants at 3 months of age, but at 6 months, lower 
PAZ scores were apparent in the growth-constrained individuals 
compared to the healthy infants (P = 0.0019). This difference was 
exaggerated at 15 months (P = 0.018) before narrowing at 24 months 
of age (Tanzania, P = 0.019). By 24 months of age, the gap had also 
reduced for Peru (P = 3.79 × 10−9).

PAZ as a predictor of linear growth
To investigate whether there was any relationship between PAZ and 
future linear growth, linear mixed-effects models were constructed, 
pooling all ages and including random intercepts for child nested in 
their respective site. Figure 4 shows the mean effect of PAZ on the 
LAZ between 1 and 6 months after the urine sample, adjusting for 
the LAZ at the time of the urine sample. The PAZ has a consistently 

Fig. 1. Biochemical variation associated with aging. (A) urinary and (B) plasma metabolic profiles of infants from Peru (PE), Bangladesh (BG), and Tanzania (TZ). The 
heat map presents the correlation coefficient (r) obtained from PLS models: Blue colors indicate a negative association with age, and reds represent metabolic shifts 
positively associated with infant aging. (C) Mean effect size of age-discriminatory urinary metabolites on the PA based on children with healthy growth trajectories. The 
effect size is depicted as the estimated change in PA for each SD change in a metabolite concentration. Color indicates cohort site, and the size of the symbols indicates 
the percentage PA variance explained.
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statistically significant positive association with the LAZ in future 
months, increasing from 1 to 3 months and then stabilizing at ap-
proximately 0.04 SD of LAZ for every increase SD in PAZ by one 
(the mean effect of a 1-month increase in PAZ is 0.038; 95% confi-
dence interval, 0.017 to 0.058 on the LAZ 3 months later). Similarly, 
PAZ was associated with markers of wasting (weight-for-length) 
and underweight (weight-for-age Z score) up to 6 months in the 
future (see fig. S6).

DISCUSSION
Comprehensive metabolic phenotyping was used to study the mat-
uration of the phenome of infants from resource-constrained settings 
spanning three continents over the first 2 years of life, a period of 
time critical for normal human development. An age-dependent 
metabolic signature was identified in both urine and plasma samples, 
with a selection of core urinary metabolites changing consistently 
with age across the cohorts despite different staples and dietary 
practices. The existence of a common maturation process in children 
from these settings enabled a model to be constructed to compute 
the PA of an infant. The urinary metabolites used to predict the PA 
were refined to the eight most influential age-discriminatory metab-
olites, increasing its potential for implementation in field settings, 
via noninvasive sampling. On the basis of these metabolites, early life 
PAZ was found to be significantly associated with linear and ponderal 
growth. Furthermore, biochemical immaturity was linked to poor 
growth attainment, with this immaturity evident as early as 3 months 
of age persisting until at least the second year of life. Metabolic maturity 

evolves over different time frames between individuals and influ-
ences the needs of the developing infant. PAZ enables an infant’s 
position along this biochemical maturation continuum to be deter-
mined in real time and provides a flexible, sensitive, and noninvasive 
measure against which the effectiveness of interventions can be 
measured. These succinct signatures may also enable interventions 
to be targeted to an individual’s specific PA rather than their chrono-
logical age, allowing more precise interventions along the spectrum 
of infancy and early childhood.

Energy requirements of healthy well-nourished children are 
known to decline with age. Reduction in growth velocity over the 
first 12 months of life accounts for this change. Growth is an energy- 
demanding process representing approximately 35% of the total 
energy requirements during the first 3 months of life, falling 
to 17.5% at 6 months, and only 3% at 12 months of age (20). The 
TCA cycle is key for energy production, and the excretion of import-
ant TCA cycle intermediates declined with age in these infants. 
This included citrate and succinate, which were used to define PA, 
and fumarate, which declined with age in children from Peru and 
Bangladesh. Complementary to these findings, urinary NMND, a 
biomarker of nicotinamide and NAD+ (nicotinamide adenine di-
nucleotide) (TCA cycle cofactor) availability, also diminished with 
age in the study children. Consistent with this finding, we have pre-
viously observed urinary NMND to be positively associated with 
future growth in Brazilian children (8). Tryptophan is an essential 
amino acid that provides 90% of NAD+ via the de novo synthesis 
pathway and is also important for growth in infants (10, 21). As with 
the TCA cycle intermediates and NMND, this circulating amino 

Fig. 2. Time-dependent variation in the eight urinary metabolites used to calculate the PA of the study children. Relative concentrations of metabolites were obtained 
by measuring the area under selected spectral regions corresponding to betaine, DMG, citrate, succinate, hippurate, PAG, 4-CS, and creatine. Shaded area represents 95% CI.



Giallourou et al., Sci. Adv. 2020; 6 : eaay5969     8 April 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 10

Fig. 3. PAZ of growth-constrained and healthy infants relative to their chronological age across the three sites. The PAZ score of healthy and growth-constrained 
infants from each site was calculated from eight age-discriminatory urinary metabolites. Significant differences were observed between healthy and growth-constrained 
children at all sampling points in all cohorts. Mann-Whitney U test, *P < 0.01, **P < 0.001, and ***P < 0.0001 (Healthy Peru: N3 months = 21, N6 months = 19, N9 months = 20, 
N15 months = 20, N24 months = 18; Growth constrained Peru: N3 months = 220, N6 months = 214, N9 months = 197, N15 months = 183, N24 months = 141; Healthy Bangladesh: N3 months = 25, 
N6 months = 27, N9 months = 24, N15 months = 26; Growth constrained Bangladesh: N3 months = 196, N6 months = 197, N9 months = 181, N15 months = 184; Healthy Tanzania: N6 months = 11, 
N15 months = 7, N24 months = 7; Growth constrained Tanzania: N6 months = 209, N15 months = 129, N24 months = 122).
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acid was observed to decrease with age. These observations illumi-
nate the critical need for substrate availability during this energeti-
cally costly growth phase.

Age-related depletion of plasma glutamine and rises in circulat-
ing citrulline and urinary creatine similarly reflect growth and de-
velopment. Creatine had a substantial positive contribution to PA 
and most likely reflects increasing muscle mass with age (22). Most 
creatine is stored in skeletal muscle as free creatine or phospho-
creatine, which provides a major energy source for the body. Al-
though breast milk contains creatine, most of an infant’s creatine is 
obtained from endogenous synthesis from glycine, arginine, and 
methionine, and is a major burden on amino acid metabolism (23). 
Similarly, plasma citrulline, a proposed biomarker of functional 
enterocyte mass, increased with age (24). Citrulline is mainly pro-
duced by enterocytes in the small intestine and, as it is not incorpo-
rated into proteins, reflects small intestinal development. Despite 
mixed reports regarding age dependence, it seems clear from this 
large data set that citrulline is age dependent. Conversely, plasma 
glutamine, a nonessential amino acid abundant in the muscles of 
humans, was observed to decline with age. Glutamine provides ni-
trogen for protein synthesis, is a precursor for nucleic acids, and is 
an important substrate for rapidly proliferating cells of the immune 
system (25) and gastrointestinal tract (26). It also acts as a gluco-
neogenic substrate in the liver and intestine and follows the same 
trend for age-associated depletion as the TCA cycle intermediate. 
Glutamine has previously been observed to be lower in the plasma 
of stunted children from Malawi compared to their nonstunted 
comparators (27).

S-adenosylmethionine (SAMe) is the sole methyl donor for a va-
riety of cellular methylation reactions including DNA and histone 
methylation, which are major epigenetic events important in the 
process of metabolic programming. SAMe is generated from the 
homocysteine-methionine pathway using methyl groups from be-
taine, demethylating it to DMG. The excretions of betaine and DMG 

were important determinants of PA declining sharply with age. This 
indicates a higher consumption of betaine in the homocysteine- 
methionine pathway early in life compared to the later sampling 
points possibly reflecting the higher demands for SAMe during 
this developmental phase (28). Betaine can be obtained directly 
from the diet or via its precursor choline. Breast milk is a rich 
source of choline being present at relatively constant amounts (70 to 
200 nmol/ml) after the first week of lactation. In this study, infants 
were breast-fed until 18 months of age, so these changes are unlikely 
to be driven by the weaning process. The abundance of choline and 
betaine is high in neonates compared to adults (29) and both have 
been seen to decrease in the sera of Malawian children with age over 
the first 5 years of life (30). Choline is an essential nutrient import-
ant for growth and development (31) including the linear growth of 
bone (32). The progressive loss of DNA methylation has been im-
plicated in the slowing of bone growth (33). The age-associated de-
cline in betaine and DMG, in parallel with the diminishing energy 
and growth-related metabolites, is consistent with a period of rapid 
growth in the first 6 months of life followed by a relative slowing of 
growth 12 to 18 months later. Consistently, we have previously ob-
served betaine and DMG excretion to be positively associated with 
growth in Brazilian children (8), while stunted children from Malawi 
had lower circulating amounts of choline compared to nonstunted 
children (27). On the basis of these observations, betaine demand is 
particularly high during the first 6 months of life, diminishing at 
subsequent time points. This suggests a potential critical window 
for supplementation that may influence epigenetic programming 
and subsequent long-term health effects (34, 35).

The microbiota has an important role in digestion and gut health, 
shaping the bioavailability of certain nutritional components. Several 
metabolites arising from the combined metabolism of the intestinal 
microbiota and the host were noted to increase with age, reflecting 
the functional maturation of the microbiome and an expansion of 
the nutritional inputs they receive. For example, hippurate and 

Fig. 4. Mean effect of each additional month of the PAZ on the LAZ 1 to 6 months after the urine sample, adjusting for LAZ at the time of the PAZ estimate 
and site. 
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4-hydroxyhippurate arise from the bacterial breakdown of plant- 
derived polyphenols (36). Hippurate has been previously correlated 
with Faecalibacterium prausnitzii and Clostridiales sp., both of 
which were found to establish in the weaning phase of a healthy 
Bangladeshi infant cohort (11, 37). 4-CS was another microbial- 
host cometabolite observed to increase with age. This is produced 
from the progressive bacterial metabolism of tyrosine to 4-HPA 
(also found to increase with age) and then 4-cresol, which is absorbed 
and undergoes hepatic sulfation to form 4-CS. Similarly, phenyl-
alanine can be degraded to phenylacetate by the intestinal bacteria 
before host conjugation with glutamine and excretion as PAG. Both 
4-CS and PAG have been positively associated with a number of 
infections endemic in these settings. As such, increases in their ex-
cretion with age may also relate to the increasing burden of infec-
tions in these infants (38, 39).

Age-related increases in the excretion of hippurate, PAG, and 
4-CS indicate the greater functionality of the microbiome with age 
and have been found to be positively associated with microbiome 
diversity (37). All these microbial-derived metabolites contributed 
to the calculation of PA across all cohorts. The assembly of the fecal 
microbiota in healthy children from Bangladesh has been previously 
described (11). In this work, the authors used compositional data to 
compute a MAZ to measure the relative maturity of the microbiota. 
Severely acutely malnourished infants had a lower MAZ than the 
healthy infants, reflecting an immature microbiota following severe 
nutritional deficiency (40). As PAZ partly reflects the functional 
maturity of the microbiome and its biochemical cross-talk with the 
host, it complements the idea of composite maturity provided by 
MAZ. This maturation of the microbiome and its influence on nutrient 
flow to the host emphasizes the need to consider the overall supra- 
organism, with its multidimensional interactions, when study-
ing human development and designing and implementing novel 
therapeutics with the goal of optimizing early childhood nutrition.

Here, we report metabolic signatures of infant aging and how 
they diverge between infants on different growth trajectories, across 
three distinct geographical locations of similar socioeconomic pro-
files. A PAZ score computed on a simplified battery of urinary me-
tabolites provides an index of the dynamic biochemical maturity of 
a child at a given age and is effective in predicting future linear 
growth. Windows of intervention defined by chronological age may 
eventually be replaced with more dynamic individualized measures 
of maturity such as the PA.

MATERIALS AND METHODS
Study design
The Etiology, Risk Factors, and Interactions of Enteric Infections 
and Malnutrition and the Consequences for Child Health (MAL-ED) 
Study uses a prospective longitudinal design to investigate how under-
nutrition and repeated enteric infections reinforce one another and 
affect growth and cognitive development, as well as other health or 
illness indicators, in infant cohorts across eight countries with high 
incidence of diarrheal disease and undernutrition (13). The detailed 
study design and methods of data collection have been outlined in 
the inaugural study manuscript (13). Because of the large scope of 
the study, detailed information on data and sample collection— 
pertaining to common infant and childhood illnesses, medication 
usage, administered vaccines, growth measurements, breastfeeding 
and dietary intake assessments, stool collections for microbiological 

and gut functional assays and antigen detection, blood collections 
for micronutrients, serological responses to vaccines, urine collec-
tions for micronutrients and gut functional assays, and cognitive 
testing at various ages—has been separately published, as listed in 
the introductory MAL-ED study design paper (13).

Sample collection
Urine and plasma samples were collected from three cohorts in 
Peru, Bangladesh, and Tanzania, with anthropometric measures re-
corded every month from birth (13). Urine samples (5-hour collec-
tions) were collected at 3, 6, 9, 15, and 24 months for Peru (n = 273) 
and at 3, 6, 9, and 15 for Bangladesh (n = 249). The collection time 
points for Tanzania (n = 249) were at 6, 15, and 24 months. Plasma 
samples were collected from fasted infants in Peru and Bangladesh 
at 7 and 15 months of age. Samples were stored at −80°C and 
shipped in dry ice to Imperial College London for analysis. The 
urine sample set for Peru included 1057 samples, 860 for Bangladesh, 
and 506 for Tanzania.

1H NMR spectroscopy and UPLC-MS–based metabolic profiling
Urinary metabolic profiles were measured by 1H NMR spectroscopy 
using the protocols described by Dona et al. (41) and Beckonert et al. 
(42). Briefly, 630 l of urine sample was combined with 70 l of 
phosphate buffer solution (pH 7.4, 100% D2O) containing 1 mM of 
the internal standard 3-trimethylsilyl-1-[2,2,3,3-2H4] propionate 
(TSP). Samples were then vortexed and spun (12,000g) for 10 min at 
4°C before transfer to 5-mm NMR tubes. A pooled urine quality 
control sample was prepared by combining 5 l of each individual 
sample of the study and was used to monitor variability of the ana-
lytical platform. One-dimensional 600-MHz 1H NMR spectra were 
acquired on a Bruker NMR spectrometer (Bruker BioSpin GmbH, 
Rheinstetten, Germany), equipped with a SampleJet system and a 
cooling rack of refrigerated tubes at 6°C. 1H NMR spectra acquisi-
tion was achieved using a standard one-dimensional solvent sup-
pression pulse sequence (relaxation delay, 90° pulse, 4-s delay, 
90° pulse, mixing time, 90° pulse, acquire free induction decay). For 
each sample, 32 transients were collected in 64,000 frequency domain 
points with a spectral window set to 20 ppm (parts per million). A 
relaxation delay of 4 s, a mixing time of 10 ms, an acquisition time 
of 2.73 s, and 0.3-Hz line broadening were used. Spectra were refer-
enced to the TSP resonance at  0.0. Spectral phasing and baseline 
correction were automatically performed using Topspin 3.2 (Bruker 
Biospin GmbH, Rheinstetten, Germany). The resulting raw NMR 
spectra were digitized, aligned, and normalized using the Imperial 
Metabolic Profiling and Chemometrics Toolbox (https://github.com/
csmsoftware/IMPaCTS) in MATLAB (version 2018a, MathWorks 
Inc.). Briefly, after digitization of the spectra, redundant peaks 
(TSP, H2O, and urea) were removed and the resulting spectra were 
manually aligned to reference peaks using recursive segment-wise 
peak alignment (43). The aligned spectra were normalized using 
probabilistic quotient normalization (44). This approach adjusts 
the metabolite concentrations for differences in sample dilution as 
a result of differences in liquid and food intakes between infants, 
offsetting any potential confounding effect from these factors (45).

A targeted amino acid and tryptophan metabolite assay was car-
ried out using UPLC-MS for the plasma samples using a Waters 
Acquity UPLC coupled to a Xevo TQ-XS mass spectrometer follow-
ing the method published by Gray et al. (46). For the plasma sam-
ples, data were acquired and processed using Waters MassLynx 

https://github.com/csmsoftware/IMPaCTS
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(version 4.2) followed by multivariate analysis using SIMCA (version 15, 
Sartorius Stedim Biotech).

Data analysis
PLS regression models were constructed to identify urinary meta-
bolic features associated with infant aging, where the 1H NMR meta-
bolic profiles served as the descriptor matrix and chronological age 
of the infants was the response variable. Age discriminant features 
were then identified using in-house databases and the Human Meta-
bolome Database (http://www.hmdb.ca/). The predictive power of 
each model was calculated using sevenfold cross-validation approach, 
and model validity (given as P value) was calculated by permutation 
testing (1000 permutations; significance for Pper ≤ 0.05). All model 
diagnostics are presented in table S2.

To adjust for potential confounders, CA-PLS models were also 
constructed using 1H NMR metabolic profiles of healthy and growth- 
constrained infants (47). Model robustness was assessed using 
Monte-Carlo cross-validation using a total of 100 models for the 
24,706 centered and scaled spectral variables. A P value was calculated 
for each variable on the basis of 25 bootstrap resamplings of the data 
in each of the 100 models to estimate the variance and the mean 
coefficient across the 100 models. Spectral variable importance was 
assessed with the false discovery rate Q value, with a value of ≤0.05.

The relative concentrations of all age-associated metabolites 
were calculated from the spectral data using trapezoidal numerical 
integration, and the correlation coefficients (rho) between each of 
these features to age were extracted from the PLS models and plotted 
as a heat map to demonstrate positive and negative correlations of 
metabolites to infant aging.

Estimated reference concentrations for metabolites were calcu-
lated from the individual metabolite integrals relative to the TSP 
integral. The area under the 9-proton TSP signal corresponds to 
0.11 mM in each sample. For metabolites with more than one reso-
nance, the resonance in a nonoverlapping spectral region was used. 
Concentrations of the metabolites were calculated using the follow-
ing equation (Eq. 1)

    M ─ S   =    I  M   ─  I  s  
   ×    N  s   ─  N  M      

where M corresponds to the unknown concentration of the me-
tabolite, S is the known concentration of the internal standard 
(TSP), IM and IS are the integrals of the metabolite and TSP, and NS 
and NM correspond to the number of protons of the metabolite and 
TSP. Concentrations of the eight metabolites used for the calcula-
tion of PA are expressed as ratios relative to urinary creatinine. It 
should be noted that creatinine is known to change with age and 
growth and across different sites.

PAZ calculation
A PA score was calculated to assess biochemical maturity relative to 
chronological age. An in-sample reference population of infants on 
a healthy growth trajectory was created based on a LAZ score of 
≥−0.75 at birth and ≥−1.25 at 24 months of age (Peru, n = 22; 
Bangladesh, n = 28; Tanzania, n = 13), while children below these 
thresholds were categorized as “growth constrained” (Peru, n = 259; 
Bangladesh, n = 221; Tanzania, n = 236). Significant age-associated 
metabolites were determined in the group of children on the healthy 
growth trajectory from the three sites combined using PLS regres-
sion modeling. Linear regression was used to model the relationship 

between the true chronological age of the healthy infants and the 
calculated scores from the PLS model. Similarly, a PLS regression 
model was built using the metabolic profiles and the true chrono-
logical age of the growth-constrained infants. The scores from the 
growth-constrained PLS model, together with the linear model pre-
dictor variables from the healthy infants, were used to predict the 
PA of growth-constrained infants. This predicted value therefore 
reflected the biochemical or PA of all infants—healthy and growth 
constrained. The predictive capacity of the regression strategy was 
assessed using a sevenfold cross-validation approach represented as 
the Q2Ŷ value.

The list of urinary metabolites used in the calculation of PA was 
refined by calculating the magnitude of influence of each of the bio-
chemical features on the PA. The estimated effect size, as well as the 
PA variance explained by each metabolite, was calculated using a 
linear mixed-effects model (accounting for repeated measures of 
each child at different ages) for each of the three sites separately. 
Metabolites were ranked on the basis of their contribution to PA 
(type II sum of squares), and a refined list of urinary metabolic fea-
tures was taken forward to recalculate the PA of each child.

On the basis of a similar approach used by Subramanian et al. 
(11) studying microbiome-for-age measures, a predicted PAZ mea-
sure was calculated using Eq. 2

  PAZ =   
PA of child − Median PA of healthy of same chronological age

     ────────────────────────────────────     
Standard deviation of healthy of same chronological age

    

Models were constructed to examine the association between PAZ 
and future LAZ. PAZ was pooled by age and site, and linear mixed- 
effects models were constructed to estimate the LAZ 1 to 6 months 
after urine samples were taken. The models adjusted for the LAZ at 
the time of the urine sample (and thereby when the PAZ was calcu-
lated) and random intercepts were included for each child nested 
in their respective site to account for repeated observations. The 
models yield the average SD change in LAZ for each additional 
month change in PAZ.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/15/eaay5969/DC1

View/request a protocol for this paper from Bio-protocol.
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