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Abstract

Motivation: Many important cellular processes involve physical interactions of proteins. Therefore, determining
protein quaternary structures provide critical insights for understanding molecular mechanisms of functions of the
complexes. To complement experimental methods, many computational methods have been developed to predict
structures of protein complexes. One of the challenges in computational protein complex structure prediction is to
identify near-native models from a large pool of generated models.

Results: We developed a convolutional deep neural network-based approach named DOcking decoy selection with
Voxel-based deep neural nEtwork (DOVE) for evaluating protein docking models. To evaluate a protein docking
model, DOVE scans the protein–protein interface of the model with a 3D voxel and considers atomic interaction
types and their energetic contributions as input features applied to the neural network. The deep learning models
were trained and validated on docking models available in the ZDock and DockGround databases. Among the
different combinations of features tested, almost all outperformed existing scoring functions.

Availability and implementation: Codes available at http://github.com/kiharalab/DOVE, http://kiharalab.org/dove/.

Contact: dkihara@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The three-dimensional (3D) structure of a protein complex provides
fundamental information about the physicochemical nature of
the protein complex, which facilitates a better understanding of the
molecular mechanisms of its biological function in a biological
pathway. Although the experimental structural biology community,
now with increasingly powerful techniques in cryo-electron micros-
copy (cryo-EM), has determined protein complex structures at a
steady pace, the structures of many important protein interactions
have not yet been determined. To aid the experimental efforts, com-
putational modeling approaches for protein complex structures,
often called protein docking methods, have been actively developed
over the past two decades.

Protein docking methods are roughly classified into two catego-
ries, template-based modeling methods, which use known global
(Anishchenko et al., 2015) or local (Tuncbag et al., 2011) complex
structures, and ab initio methods, which assemble two individual
protein structures without referring to known complex structures.
Many ab initio methods exist, the details of which vary greatly:
Protein structure representations used include molecular surface-
based (Venkatraman et al., 2009) and voxel-based (Pierce et al.,
2011). For docking pose search, Fast Fourier Transform

(Katchalski-Katzir et al., 1992; Padhorny et al., 2016) is a popular
choice; other methods, e.g. geometric hashing (Fischer et al., 1995;
Venkatraman et al., 2009) and particle swarm optimization (Moal
and Bates, 2010) have also been successful. To take protein flexibil-
ity into account, normal mode analysis (Oliwa and Shen, 2015) and
protein dynamics simulation (Gray et al., 2003) have been applied.
Methods have also been developed that extend conventional pair-
wise docking, such as multiple-chain docking (Esquivel-Rodriguez
et al., 2012; Ritchie and Grudinin, 2016; Schneidman-Duhovny
et al., 2005), peptide-protein docking (Alam et al., 2017; Kurcinski
et al., 2015), docking with disordered proteins (Peterson et al.,
2017), docking order prediction (Peterson et al., 2018a, b) and
docking modeling for cryo-EM maps (Esquivel-Rodriguez and
Kihara, 2012; van Zundert et al., 2015).

Although substantial improvements have been achieved in ab ini-
tio protein docking, there are still unsolved shortcomings in existing
methods. One of the foremost shortcomings is the scoring of dock-
ing models (decoys) (Moal et al., 2013). Since a typical ab initio
method produces a large decoy set that only includes a small
number of near-native models (hits), an accurate scoring function
for selecting hits critically influences the performance of docking.
Recognizing the importance of the scoring, the Critical Assessment
of Prediction of Interactions (CAPRI), the community-wide docking
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prediction experiment (Lensink et al., 2018), has a specific category
for evaluating scoring methods, where participants are asked to se-
lect 10 plausible decoys from over thousands of decoys provided by
the organizers.

Approaches that have been applied for scoring decoys include
physics-based potentials (Gray et al., 2003; Kingsley et al., 2016),
interface shape-based scores (Venkatraman et al., 2009),
knowledge-based statistical potentials (Huang and Zou, 2008; Lu
et al., 2003) and machine learning methods (Fink et al., 2011) and
evolutionary profiles of interface residues (Nadaradjane et al.,
2018).

In this work, we applied a 3D convolutional neural network
(CNN) to the problem of distinguishing near-native decoys from in-
correct decoys. CNNs have been very successful in 2D (Krizhevsky
et al., 2012) and 3D (Maturana and Scherer, 2015; Subramaniya
et al., 2019) image recognition tasks (LeCun et al., 2015), which
motivated us to apply it to docking decoy hit recognition. In the bio-
informatics field, 3D CNNs have been applied to drug-protein inter-
action scoring (Ragoza et al., 2017), protein functional site analysis
(Torng and Altman, 2017), quality assessment of single protein
structure models (Derevyanko et al., 2018; Pages et al., 2019) and
secondary structure detection in cryo-EM maps (Subramaniya et al.,
2019). To the best of our knowledge, this is the first work to apply
CNNs to the protein docking problem. Our method, DOcking
decoy selection with Voxel-based deep neural nEtwork (DOVE),
takes a docking decoy structure as input, maps the structure into a
3D grid, scans the protein–protein interface with a 3D cube, exam-
ines inter-atom interaction patterns and their energetic contribu-
tions, and judges if the decoy is close to the native structure or not.
Compared to popular scoring functions used for selecting docking
decoys, DOVE showed substantially better performance.

2 Materials and methods

We first explain the datasets used for training and testing DOVE, as
well as the statistical potentials used as input features of DOVE.
Subsequently, we describe the network architecture and the training
process of DOVE.

2.1 Datasets
The primary dataset used was based on the ZDOCK benchmark
dataset ver. 4.0 (Hwang et al., 2010). For each of the 178 protein
complexes in the dataset, there are on average 53 999 decoys (min-
imum: 53 962; maximum: 54 000). For each decoy, we computed
the root-mean square deviation (RMSD) of the interface residues
(iRMSD, interface residues are defined as those within 10.0 Å of any
residue of the other protein), ligand RMSD (lRMSD, RMSD of
ligands when receptors are superimposed) and the fraction of the na-
tive contacting residue pairs (fnat; residue pairs with any heavy
atom within 5.0 Å) to the native structure as well as two statistical
potential values, GOAP (Zhou and Skolnick, 2011) and ITScore
(Huang and Zou, 2008), both of which were used as features to
characterize decoys. A protein complex and all its decoys were dis-
carded if computing GOAP or ITScore failed or iRMSD, lRMSD or
fnat could not be computed due to inconsistency of the sequence in
the structures provided in the ZDOCK dataset from the native com-
plex structure in PDB (Berman et al., 2000), or if. After the removal
of complexes, 120 complexes remained.

For each protein complex in ZDOCK benchmark, the numbers
of correct decoys, defined as decoys of acceptable quality or better
as defined by the CAPRI criteria using iRMSD, fnat and lRMSD of
decoys (Lensink et al., 2018) and incorrect decoys are highly imbal-
anced, which makes training the network model difficult. Thus, we
augmented the number of correct decoys by placing each of them in
24 orientations on a grid with 90 degree rotations around the Z-axis
of the original coordinates in the PDB file (thus 4 orientations) and
with each of the 6 faces that was put upwards. With this augmenta-
tion, each of 120 complexes has now on average 8909.4 correct
decoys with the minimum 264 and the maximum 60 192. Then, we
sampled an equal number of incorrect models to the correct models

for each complex. This augmented decoy set was only used in the
training. For testing, we report the accuracy using the original num-
ber of correct models with the same number of incorrect models as
used in the training. In total, the training dataset of the 120 com-
plexes include 1 069 128 correct and incorrect decoys, respectively.
For testing, the number of correct decoys was 44 547.

To remove redundancy, we grouped the 120 complexes using
TM-Score (Zhang and Skolnick, 2004). Two complexes were put in
the same group if at least 1 pair of proteins from the 2 complexes
had a TM-score of over 0.5 and sequence identity of 30% or higher.
This resulted in 63 groups (Supplementary Table S1). These groups
were split into four subgroups to perform 4-fold cross validation
(Supplementary Table S2). Three subsets were used for training
while remaining one subset was used for testing. Thus, for each fea-
ture combination, we have four different models. Of the training set,
80% of the decoys were used for training parameters under a given
hyper-parameter setting and the remaining 20% were used as the
validation set, which was used to determine the best hyper-
parameter set for the training set.

In addition to the ZDOCK dataset, we also used the
DockGround benchmark dataset (Liu et al., 2008) for testing. Since
we found decoys in the dataset often have residue pairs that are too
close, we relaxed all the structures by Rosetta (Conway et al.,
2014). DockGround includes 58 target complexes each with on
average 9.83 correct and 98.5 incorrect decoys.

2.2 Knowledge-based statistical contact potentials
We used two distance-dependent contact potentials, GOAP and
ITScore, to characterize energetic contributions of atoms at the
docking interfaces of decoys. Both potentials were derived from sta-
tistics of atom pairs in known protein structures but using different
ideas. GOAP considers angles as well as the distances of side-chains
of interacting residues while ITScore was numerically optimized to
be able to distinguish native structures from incorrect decoys. We
chose these two potentials because they perform well in selecting
docking decoys (Peterson et al., 2018a, b).

We modified the original codes of GOAP and ITScore so that
they output the binding energy of each atom, which is the sum of
the interaction energy between the atom and all other atoms within
30 Å in the decoy. Using this modified output, we mapped the atom-
wise interaction energy to each position of interface atoms of a
decoy. Interface atoms are defined as those in residues which locate
within 10 Å of any residues of the other protein in the complex.

2.3 Network architecture of DOVE
DOVE uses the CNNs to capture features of protein interactions in
decoys. Figure 1 shows the architecture of the network.

DOVE takes a docking decoy as an input and judges if the decoy
has an acceptable quality or not based on the CAPRI criteria
(Lensink et al., 2018). The actual input data for a decoy is atom
positions and atom-wise statistical potential values within a 203 Å3

or 403 Å3 size cube that is placed at the protein–protein docking
interface. The cubes are centered on the interface, where the inter-
face is defined as the set of heavy atoms that locate within 10.0 Å to
any heavy atoms of the other protein in the complex. We considered
positions of carbon, oxygen, nitrogen and other atoms at the

Fig. 1. The network architecture of DOVE. DOVE takes atom positions and poten-

tials in a 20*20*20 input cube that is placed at the docking interface of a decoy and

predicts if the decoy is in the CAPRI acceptable quality or not. The number of filters

in each layer were 100, 200, 200, 400, 400; 20, 18, 16, 8, 6, 3 are the output cube

size of each layer; 10 800, 1000, 100 denotes the number of neurons for FC layer.

Block means 3D convolutional operation block that outputs data in 3D cube; Flat is

to make a 1D vector from a 3D cube; Pool is a max-pooling operation and FC is

fully-connected network. Dropout of 0.3 was applied to FC
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interface separately in four different channels (the left part of the
network in Fig. 1). For a channel of an atom type, the number of the
atoms of the type is counted and stored in each voxel of a size of 13

Å3 within the cube of 203 Å3 or voxels of 23 Å3 within the cube of
403 Å3 (thus the input data size is always 203). The deep learning
models that use the 203 Å3 or the 403 Å3 cube are referred as
DOVE-Atom20 or -Atom40, respectively.

Furthermore, as described in the previous section, we used the
contact potentials, GOAP and ITScore, as input features. Figure 2
illustrates how the GOAP potential mapped to atoms distribute on a
protein surface. We visualized GOAP mapped on atoms in a ligand
protein in the correct (the pose on the left in Fig. 2A and B) and in
an incorrect pose (the pose on the right in Fig. 2A and C). As shown
in the color scale, in the correct bound form binding energies of
atoms at the interface become more favorable upon docking (blue),
while interface atoms in the incorrect pose have more unfavorable
energy.

Similar to how the atom-based features were represented, the
atom-wise energy of atoms within each voxel are summed and
assigned as a feature value of the voxel in the cube. The deep learn-
ing models using GOAP and ITScore are referred to as DOVE-
GOAP and DOVE-ITScore, respectively. For using the contact
potentials, we used the cube of 403 Å3. We also tested models with
two features, a combination of Atom40 and GOAP (DOVE-
Atom40þGOAP), Atom40 and ITScore (DOVE-Atom40þITScore)
and GOAP and ITScore (DOVE-GOAPþITScore). Finally, we also
tested with all the features, DOVE-Atom40þGOAPþITScore.
Values of a feature (i.e. channel) are normalized so that the distribu-
tion is zero-centered by considering maximum and minimum values
of the feature in the training dataset.

As shown in Figure 1, the input channels are connected to two
convolutional layers with the output size of 183 and 163, respective-
ly, each of which has 100 and 200 filters of the size of 3*3*3. The
CNN layers were connected to a max pooling layer, followed by an-
other set of convolutional layers followed by a max pooling layer.
Then, the outputs from these layers are fed to fully connected (FC)
layers followed by a sigmoid function, which finally outputs the
probability that the input decoy has an acceptable model quality.
The overall architecture is similar to the one used in an earlier work
of local protein structure analysis by Torng and Altman (2017).
DOVE was implemented using the Keras (Chollet, 2018) and
Tensorflow (Abadi et al., 2016) packages.

2.4 Training the deep learning models
For training, we used cross entropy (Goodman, 2001) as the loss
function. Nadam (Dozat, 2016) with an adaptive learning rate and
the default decay rate of 0.004 was used for optimizing the weights.

Weights were initialized using the glorot-uniform (Glorot and
Bengio, 2010) to have a zero-centered distribution for each network
layer. Bias was initialized to 0 for all layers (Glorot and Bengio,
2010). Dropout (Srivastava et al., 2014) of 0.3 and L2 regulariza-
tion was used for the FC layers.

As described in the Section 2.1, we performed 4-fold cross valid-
ation. The resulting hyper-parameter combinations are provided in
Supplementary Table S3. Since a decoy set of a protein complex con-
tains many more incorrect models than acceptable models, we bal-
anced the data of the two classes by choosing the same number of
acceptable quality models as incorrect models in every batch for
training. The batch size was set to 128. Usually the training con-
verged in around 10 epochs.

3 Results

We tested DOVE first on the ZDOCK benchmark dataset with the
4-fold cross validation. Then, the trained model was further tested
on the DockGround benchmark dataset.

3.1 Performance on the ZDOCK benchmark dataset
We compared the performance of DOVE with eight different feature
combinations on the test set in comparison with five existing scoring
functions, GOAP, ITScore, ZRANK (Pierce and Weng, 2007),
ZRANK2 (Pierce and Weng, 2008) and IRAD (Vreven et al., 2011).
During the cross-validation process, DOVE’ accuracies were consist-
ent over the four training and validation subsets (Supplementary
Fig. S1). The average SD of the accuracy of the four training sets
and the validation sets were 0.0298 and 0.0300, respectively.
Determined hyper-parameter values were also very consistent across
the 4-fold validation (Supplementary Table S3). Thus, throughout
the training process results of accuracy and identified parameters
were very consistent and stable.

Figure 3 shows the fraction of target complexes in the ZDOCK
dataset for which a method produced at least one correct (i.e.
CAPRI acceptable) model within top k rank. GOAP and ITScore
were run in two different ways; one as originally designed and the
other by taking interaction scores only from interface regions that
are within 10.0 Å of interacting protein (GOAP/ITScore-Interface).
Thus, in total there were seven existing reference methods DOVE
was compared against.

Overall, DOVE (dashed lines) was more successful than the exist-
ing methods in ranking correct models within earlier ranks in many
target complexes. For example, at the top 10 (x¼10), 6 out of 8 fea-
ture combinations of DOVE had a higher hit rate than any of the
existing scores (Fig. 3A). The remaining two combinations (DOVE-
Atom40-ITScore and DOVE-GOAP-ITScore) were better than all the
existing scores except IRAD. The results were almost the same when
the 63 groups of target complexes rather than individual 120 com-
plexes were considered to compute the hit rate (Fig. 3B). In general,
the DOVE variations showed higher hit rate than existing scoring
functions. DOVE-Atom20 and DOVE-Atom40 were consistently the
two best scores in both Figure 3A and B. Among the existing scores,
IRAD performed the best and GOAP showed the lowest accuracy.

We also examined the hit rates of models of medium quality, a
better quality class than the acceptable quality in the CAPRI criteria
(Supplementary Fig. S2). An issue when using medium quality mod-
els is that they constitute a small fraction, 11.3% (5046 out of
44 547), of acceptable quality models. Among the 120 complexes in
the dataset, 21 of them had 0 medium quality models; these targets
were excluded in the evaluation. Overall hit rate of medium models
(Supplementary Fig. S2) was lower than the hit rate for acceptable
models, which probably occurred due to the small number of me-
dium quality models in decoy sets. Relative performance of the
methods were similar with Figure 3 except that IRAD, ZRANK and
ITScore came among top in performance. When top 10 models were
considered, the highest hit rate was marked by DOVE-ITScore, fol-
lowed by IRAD, DOVE-ATOM40, DOVE-ATOM20 and ZRANK
in this order. Results for DOVE would improve if it is trained to dis-
tinguish medium quality models from incorrect models, but the

Fig. 2. Example of atom-wise contact potential mapped on protein surface. GOAP

was mapped to a ligand protein (ones with the surface representation) when it is in

the isolated state and in a bound state, and the difference between the two states

was visualized in a color scale. Blue shows the atoms have more preferable binding

energy in the bound form relative to the isolated form while red shows the binding

energy went worse in the bound form. The complex used is pancreatic a-amylase

complexed with an inhibitor, tendamistat (PDB ID: 1bvn). (A) The receptor,

a-amylase, is shown in the ribbon representation in gray. The inhibitor is shown in

the surface representation in two poses: On the left, the inhibitor in the acceptable

bound pose (iRMSD: 1.27 Å; fnat: 0.71); right, in an incorrect pose (iRMSD:

20.6 Å; fnat: 0.0). (B) The binding interface surface (facing toward us) of the inhibi-

tor in the acceptable pose. (C) The interface in the incorrect pose
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current dataset includes a too small number of medium quality mod-
els for training.

We have also computed the enrichment factor (EF) as the evalu-
ation measure of decoy selection (Fig. 4). The EF is defined as the
fraction of correct hits within the models up to the score rank x that
is currently considered relative to the total fraction of the correct
models in the entire decoys of the target complex. Thus, the EF
reduces the bias to the evaluation by using the hit rate (Fig. 3) that is
caused by the difference of the number of correct decoys in the
decoy set of each target. As shown by the plots (Figs 3 and 4), essen-
tially the consistent results in the relative performance of the scoring
functions was observed in terms of the EF. Quantitatively, the mar-
gin actually increased between the top feature combinations,
DOVE-Atom40, DOVE-Atom20 and DOVE-ITScore and scores
that follow them.

To illustrate how DOVE classifies decoys, we used t-SNE to visu-
alize DOVE’s encoding of decoys (Fig. 5). Two features, DOVE-
Atom40 and DOVE-GOAP, which performed relatively well among
other feature sets (Figs 2 and 3) were used for this illustration. In both
plots, most of the acceptable models (black circles) are clearly sepa-
rated from a large cluster of incorrect models (crosses), indicating that
the networks have successfully distinguished the two decoy groups.

Since GOAP and ITScore were used as original independent
scores and also as atom-based features of DOVE, we compared per-
formance of these two schemes in Figure 6. For each target complex,
the fraction of correct models within the top 20 models ranked by
GOAP/ITscore and Dove-GOAP/DOVE-ITScore were plotted on
the x- and y-axis, respectively. DOVE selected more correct models

than GOAP and ITScore for 93 and 85 targets, respectively, out of
120 target complexes. Both GOAP and ITScore evaluate a structure
model by the sum of pairwise interaction energies of atoms while
DOVE convolves atom-wise energy mapped at the docking interface

Fig. 4. Comparison of the EF on the ZDOCK Benchmark dataset. (A) For each

method, the average EF over the 120 complexes in the benchmark set were plotted

considering the top x ranks. (B) The EFs of complexes in the same group was aver-

aged, which was further averaged over the 63 groups

Fig. 5. t-SNE plots of decoy selection. Decoys from five target complexes, 1US7,

1BKD, 1HE1, 2OT3, 2CFH, which include 817 acceptable models (solid circles)

and 1087 incorrect models (crosses) were used. Encoded features of the decoys

taken from the output of the FC network (a vector of 100 elements) in Figure 1

were projected into a 2D space using t-SNE. (A) DOVE-Atom40 was used for the

feature set. (B) DOVE-GOAP

Fig. 3. Comparison on the ZDOCK Benchmark dataset. (A) The fraction complexes

among the 120 complexes in the benchmark set for which each method selected at

least 1 acceptable model (within top x scored models) was shown. Results shown

are from test sets. In addition to DOVE with eight different feature combinations,

performance of GOAP, GOAP-Interface, ITScore, ITScore-Interface, ZRANK,

ZRANK2 and IRAD are shown. (B) Considering the similar complexes that were

grouped into 63 groups (Supplementary Table S1), the hit rates for complexes in

each group were averaged and re-averaged over the 63 groups for each x
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by CNNs. Therefore, the results imply that DOVE is capturing
multi-body interaction energy patterns at the interfaces of correct
and incorrect decoys.

On the other hand, there are cases where DOVE made results
worse than GOAP and ITscore (data points at bottom right of
Fig. 6A and B). Although it is not easy to understand why a deep
learning method worked or did not work on particular input data,
we observed that DOVE scores for the top 20 scoring decoys were
higher and more consistent for cases that DOVE-GOAP/-ITscore
showed better performance (i.e. top left in the plots) than cases
where DOVE deteriorated (bottom right). The average and the SD
of the top 20 scores by DOVE-GOAP/-ITscore when DOVE showed
substantial improvement (x�0.3 and y�0.7) were avg: 0.78/0.79,
std: 0.04/0.04 (Fig. 6A and B) whereas the values were avg: 0.72/
0.69, std: 0.11/0.06 (Fig. 6A and B) when DOVE did not work
(x�0.7 and y�0.3). Thus, DOVE was less confident (smaller
average) and less consistent (larger SD) when it did not work well.

3.2 Testing on the DockGround benchmark dataset
We further tested DOVE on another dataset, DockGround (Liu
et al., 2008). From the 4-fold cross validation on the ZDOCK data-
set, we have four deep learning models for each feature combin-
ation. Thus, here, for evaluating a decoy we considered the average
probability of the four models. The accuracies of the four models do
not vary much as shown in Supplementary Figure S3. The average
SD of the top 10 hit rates by the 8 feature combinations was 0.03.

In Figure 7, the hit rate results were shown in two panels, panel
A reporting results for 33 target complexes which are independent
from the ZDOCK set while panel B shows results on the remaining
25 targets that are grouped to at least 1 target in the ZDOCK set
(i.e. at least 1 pair of proteins from the 2 complexes had a TM-score
of over 0.5 and sequence identity of 30% or higher). In both panels,
DOVE performed consistently better than the existing scores as we
observed on the ZDOCK benchmark dataset. Particularly, consistent
with the results on the ZDOCK dataset (Figs 2 and 3), DOVE with
Atom40 showed the top performance on the independent dataset
(Fig. 7A). On this dataset, DOVE-Atom40 showed an outstanding hit
rate at early ranks relative to other scoring functions (Fig. 7A). At the
rank 5, DOVE-Atom40 had a hit rate of 66.7%, and reached a 1.0
rate at the rank of 7. On the dataset of complexes that are similar to
ZDOCK, Atom40 was among top performing feature combinations
together with DOVE-GOAP and DOVE-Atom20.

4 Discussion

In this work, we developed DOVE for docking decoy selection,
which uses CNN to capture multi-body physical and energetic

interactions patterns that are observed at protein docking interface.
In protein structure prediction, the importance of considering multi-
body (atom or residues) interactions has been long discussed and
often actually shown to be effective in selecting native-like protein
structure models (Gniewek et al., 2011; Kim and Kihara, 2014,
2016; Olechnovic and Venclovas, 2017). Each such method used an
original idea to capture multiplicity of interactions. When it comes
to capturing interaction multiplicity in molecular structures, 3D
CNN is very natural and easy to use as we did in this work.
Therefore, 3D CNN will continue to be actively applied to various
tasks of protein structural bioinformatics for several more years.
We have made the source code available on GitHub (https://
github.com/kiharalab/DOVE), and a webserver of DOVE is
available at http://kiharalab.org/dove/. Among the feature combi-
nations we tested, we recommend users to use the top-performing
features in Figures 3–5, which include DOVE-Atom20 and
DOVE-Atom40. The source code also allows users to add new
input features of decoys.

The current version of DOVE uses essentially two types of fea-
tures, atom types and their locations and the atom-wise statistical
potentials. It is expected that other structural features, such as
sequence conservation and flexibility of atoms from molecular dy-
namics simulation etc. can further improve the performance. Also, a
different network architecture, such as ResNet (He et al., 2016),
may also contribute to exhibit a higher accuracy.
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Fig. 6. Comparison of the fraction of correct models within top 20 ranked models

by GOAP/ITScore and DOVE-GOAP/DOVE-ITScore. Each data point represents a

target complex from the 120 complexes in the ZDOCK dataset. Since top 20 models

were considered, the fractions of correct models have discrete values from 0 to 1.0

with 0.05 ¼ 1/20 as a scale interval (A) Comparison between GOAP (x-axis) and

DOVE-GOAP (y-axis). DOVE-GOAP was better than GOAP for 93 cases, tied for

5 cases and worse in 22 cases. (B) Comparison between ITScore (x-axis) and

DOVE-ITScore (y-axis). DOVE-ITScore was better than ITScore for 85 cases, tied

for 14 cases and worse for 21 cases. Comparison on top 10 and top 50 ranked

decoys are shown in Supplementary Figure S3

Fig. 7. Decoy selection performance on the DockGround dataset. (A) Thirty-three

target complexes that are independent from the ZDOCK benchmark dataset.

(B) Twenty-five targets that have structural similarity to any of the complexes in

ZDOCK set
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