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Abstract

The vasopressin system has been implicated in the regulation of social behavior and cognition in 

humans, nonhuman primates and other social mammals. In chimpanzees, polymorphisms in the 

vasopressin V1a receptor gene (AVPR1A) have been associated with social dimensions of 

personality, as well as to responses to sociocommunicative cues and mirror self-recognition. 

Despite evidence of this association with social cognition and behavior, there is little research on 

the neuroanatomical correlates of AVPR1A variation. In the current study, we tested the 

association between AVPR1A polymorphisms in the RS3 promotor region and gray matter 

covariation in chimpanzees using magnetic resonance imaging and source-based morphometry. 

The analysis identified 13 independent brain components, three of which differed significantly in 

covariation between the two AVPR1A genotypes (DupB−/− and DupB+/−; P < .05). DupB+/− 

chimpanzees showed greater covariation in gray matter in the premotor and prefrontal cortex, 

basal forebrain, lunate and cingulate cortex, and lesser gray matter covariation in the superior 

temporal sulcus and postcentral sulcus. Some of these regions were previously found to differ in 

vasopressin and oxytocin neural fibers between nonhuman primates, and in AVPR1A gene 

expression in humans with different RS3 alleles. This is the first report of an association between 

AVPR1A and gray matter covariation in nonhuman primates, and specifically links an AVPR1A 
polymorphism to structural variation in the social brain network. These results further affirm the 

value of chimpanzees as a model species for investigating the relationship between genetic 

variation, brain structure and social cognition with relevance to psychiatric disorders, including 

autism.
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1 | INTRODUCTION

Vasopressin is a neuropeptide implicated in the development and maintenance of social 

relationships, social cognition and social communication in mammals.1–4 For example, in 

voles, species differences and individual variation in brain regions specific to vasopressin 

receptor gene (AVPR1A) expression are associated with pair bonding, social monogamy and 

other dimensions of social behavior.3,5–9 Less is known about the functional role of 

vasopressin in social behavior and cognition of primates, including humans. Like voles, 

there is some evidence of taxonomic differences in AVPR1A polymorphisms among primate 

species10 but, unlike voles, they do not appear to be as closely related to pair bonding and 

mating systems (ie, social monogomy1,11–13).

Links between vasopressin and other aspects of social behavior, on the other hand, have 

been demonstrated in both apes and monkeys. In rhesus macaques, variation in sociability is 

associated with measures of vasopressin in cerebral spinal fluid,14 despite no significant 

associations between AVPR1A alleles and social behaviors, such as grooming, passive 

contact, approaches and aggression.15 In chimpanzees, several studies have shown that 

polymorphisms in AVPR1A are associated with individual variation in different dimensions 

of personality, including social “smarts” (using coalitions and engaging in reciprocal 

grooming and play) and sociability.16–20 Additional studies have shown that chimpanzee 

AVPR1A polymorphisms are associated with responses to sociocommunicative cues,21,22 

videos and sounds of unfamiliar individuals23 and mirror self-recognition.24 Also, there is 

one report of an association between AVPR1A variation and the neuroticism dimension of 

personality in marmosets.25

In humans, AVPR1A polymorphic variation in the microsatellite element RS3 (a repetitive 

sequence element in the 5′ flanking region) is linked to variation in social behavior, 

including empathy and altruistic behavior, as well as pair bonding in males but not females.
26–30 AVPR1A has also been proposed as a candidate susceptibility gene for autism 

spectrum disorder (ASD), a neurodevelopmental disorder that is marked by atypical 

development of social relationships and sociocognitive abilities.31 Indeed, several studies 

have reported that AVPR1A polymorphic variation is associated with scores on ASD 

diagnostic questionnaires, such as the Autism Diagnostic Observation Scale-Generic, 

Autism Diagnostic Interview-Revised32 and Autism Quotient.33

Despite the evidence implicating polymorphisms in the AVPR1A gene in different 

dimensions of social behavior and cognition, there is remarkably little data on the 

neuroanatomical or neurofunctional correlates that may link genetic variation and behavior 

in primates. In humans, variation in RS3 is related to activation of the amygdala during a 

face recognition task,34,35 an observation that supports the amygdala theory of autism.36,37 

Immunohistochemistry analyses have revealed species similarities and differences in both 

oxytocin and vasopressin fibers in regions of the human, chimpanzee and rhesus macaque 
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cortex.38 With respect to vasopressin, fibers were found in the anterior olfactory nucleus, 

primary olfactory cortex and subgenual region of the anterior cingulate cortex of all three 

species. However, vasopressin fibers were present in the agranular insula cortex and 

orbitofrontal cortex of humans and chimpanzees, but were absent in rhesus monkeys, and 

were found in the dysgranular insula and frontal operculum in humans only.38 Species 

differences have also been found in AVPR1A expression, with receptor binding in the 

amygdala, stria terminalis, lateral septum, hypothalamus and brainstem of rhesus macaques 

(similar to rodents), but spread throughout the cortex of titi monkeys (particularly in the 

insula, cingulate and occipital cortex).39–41

Here, we tested for associations between polymorphic variation in the RS3 portion of 

AVPR1A and gray matter covariation in chimpanzees (Pan troglodytes). RS3 is composed of 

two related repetitive sequence elements referred to as DupA and DupB.10 Interestingly, 

chimpanzees are polymorphic at the same AVPR1A locus as humans; however, chimpanzee 

alleles include either both DupA and DupB in RS3 microsatellite element in the 5′ flanking 

region (DupB+), like humans, or completely lack the DupB (DupB-).10 This creates two 

populations of chimpanzees that are either (a) homozygous for alleles lacking DupB (DupB

−/−) or (b) heterozygous with one allele having both repetitive sequences (DupB+/−), as 

very few chimpanzees are DupB+/+. In the current study, we compared gray matter 

covariation between these two populations of chimpanzees, using source-based 

morphometry (SBM).42 SBM is a relatively new method that characterizes gray and white 

matter structural covariation in samples of magnetic resonance imaging (MRI) scans.43,44 

Unlike univariate analytic methods, such as voxel-based morphometry (VBM), SBM is a 

multivariate, data-driven analytic approach that utilizes information about relationships 

among voxels and groups those carrying similar information across the brain. Without 

requiring prior determination of regions of interest, the resulting components, or sources, are 

identified based on the spatial information between voxels grouped in a natural manner and 

represent similar covariation networks between subjects. This approach has been described 

as a multivariate version of VBM.45 At the individual level, SBM produces a weighted score 

that reflects each subject’s relative contribution to the creation of each spatial component. 

Therefore, we compared DupB+/− and DupB−/− chimpanzees on these weighted scores for 

each of the components derived from the SBM analysis. Structures having high covariation 

scores vary together more strongly and the gray matter volume of one region can be used to 

predict the other. We hypothesized that DupB+/− and DupB−/− chimpanzees would differ 

on one or more of the SBM components. Given the function of vasopressin in social 

relationships and cognition, we further hypothesized that any differences in component 

scores between DupB+/− and Dup−/− chimpanzees would include brain regions comprising 

the social brain network (eg, prefrontal cortex, insula, cingulate and superior temporal 

sulcus).46–48

2 | MATERIALS AND METHODS

2.1 | Subjects

In the current study, we used 142 structural T1-weighted MRI scans obtained from captive 

chimpanzees (82 females and 60 males). The subjects were socially housed at either the 
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Yerkes National Primate Research Center (YNPRC, n = 54) or the National Center for 

Chimpanzee Care at The University of Texas MD Anderson Cancer Center (NCCC, n = 88). 

The chimpanzees ranged in age from 12 to 51 years (M = 26.32, SD = 9.70). We used a 

matched-subjects design in this study. For this analysis, we included 71 DupB+/− and 71 

DupB−/− chimpanzees (see below) that were matched on scanner magnet (1.5 and 3.0 

Tesla), sex, rearing history and age. All work was carried out in accordance with the 

guidelines laid out by the National Institutes of Health in the USA, and were approved by 

the Institutional Animal Care and Use Committees at both NCCC and YNPRC.

2.2 | DNA extraction, sequencing and genotyping

Prior to this study, all subjects were previously genotyped for the AVPR1A gene (see 

detailed methods21), and were classified as either homozygous (DupB−/−) or heterozygous 

(DupB+/−) for the RS3 microsatellite deletion. Briefly, DNA samples were isolated from 

buccal swabs or blood samples using Puregene DNA Purification system (Gentra, 

Minneapolis, MN) and stored at −80 °C until genotyping. Each individual was genotyped for 

the AVPR1A DupA/B polymorphism by polymerase chain reaction (PCR) using the 

extracted DNA and a forward primer 5′ GCATGGTAGCCTCTCTTTAAT and a reverse 

primer of 5′ CATACACATGGAAAGCACCTAA with an annealing temperature of 57°C for 

30 cycles: 95°C, 5 minutes; 30 × (95°C, 30 seconds; 57°C, 30 seconds; 72°C, 3 minutes; 

72°C, 10 minutes; 4°C, hold). PCR amplification was performed using the Epicenter 

Failsafe kit using premix H (Illumina Inc., Madison, WI) according to the manufacturer’s 

instructions. PCR products (20 μL) were resolved on a 2% agarose gel (SeaKem Agarose 

LE, Lonza, Basel, Switzerland) at 100 V for 45 minutes with a 100 bp DNA ladder (New 

England Biolabs, Ipswich, MA) in tris-borate-EDTA (TBE) buffer. The DupB+ allele 

resulted in a band of ~900 bp, while the DupB– allele was ~570 bp long, and genotypes 

were visually assigned. All genotyping was run in duplicate and confirmed in both analyses.

2.3 | MRI acquisition

We obtained MRI scans using techniques previously described.44,49 Briefly, subjects were 

initially immobilized by injection of ketamine (10 mg/kg) or telazol (2–6 mg/kg) and 

subsequently anesthetized with propofol (40–60 mg/kg) per standard institutional guidelines. 

The subjects were then transported to the imaging facility and remained anesthetized for the 

duration of the scan (40–60 minutes depending on brain size), as well as during 

transportation back to a recovery cage (approximately 75–120 minutes in total). The subjects 

were placed in the scanner chamber in a supine position with their head inside the human-

head coil. The NCCC chimpanzees (n = 88) were scanned using a 1.5-Tesla scanner 

(Phillips, Model 51), whereas the YNPRC individuals (n = 54) were scanned using a 3-Tesla 

scanner (Siemens Trio, Siemens Medical Solutions USA, Inc., Malvern, Pennsylvania). For 

the NCCC chimpanzees, T1-weighted images were collected in the transverse plane using a 

gradient echo protocol (pulse repetition = 19 milliseconds, echo time = 8.5 milliseconds, 

number of signals averaged = 8, and a 256 × 256 matrix). For the YNPRC chimpanzees, T1-

weighted images were collected using a 3D gradient echo sequence (pulse repetition = 2300 

milliseconds, echo time = 4.4 milliseconds, number of signals averaged = 3, matrix size = 

320 × 320). After completing the MRI scan collection, the subjects were temporarily housed 
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in a single cage for 6–12 hours to allow them to recover from the anesthesia, after which 

they were returned to their home group.

2.4 | Postimage processing and analyses

Following acquisition, the MRI data were processed using a Macintosh computer. The 

procedures, detailed below, were completed twice: once for the images acquired from the 

1.5-Tesla scanner and again for those acquired from the 3.0-Tesla scanner. First, we 

imported the raw DICOM files into 3D Slicer 4 (www.3Dslicer.org) and converted each into 

NIfTI format.50,51 Next we used the brain extraction tool (BET) function in FMRIB 

software library (FSL) (Analysis Group, FMRIB, Oxford, UK) for skull-stripping, using 

fractional intensity thresholds ranging between 0.35 and 0.80.52,53 The skull-stripped brains 

were then imported into 3D Slicer for N4ITK bias correction (spline distance = 50, bias field 

= 0.15, convergent threshold = 0.00154–58). Using the DWI Denoising Package for 

MATLAB (R2015b; Mathworks, Natick, Massachusetts), the scans were then denoised 

using an optimized nonlocal means denoising filter.59 The scans were then resampled at 

0.625 isotropic voxels and aligned in radiological space in Analyze 11.0 (AnalyzeDirect, 

Overland Park, Kansas), using a capsule placed during the imaging process as a left-right 

orientation marker. Finally, we used FLIRT in FSL to perform a 12-parameter affine linear 

registration60,61 of the processed scan to a chimpanzee template brain.62

We used the FSL-VBM pipeline (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM) to process 

each preprocessed scan. The FSL-VBM pipeline included (a) segmentation of each scan into 

gray and white matter, (b) linear registration of each scan to a standard chimpanzee 

template,62 (c) creation of a study-specific gray matter template,63–65 (d) nonlinear 

registration of each subject’s gray matter images to the study-specific template, (e) 

modulation of the gray matter volume by use of a Jacobian warp to correct for local 

expansion or contraction of gray matter within each voxel, and (f) smoothing with an 

isotropic Gaussian kernel with a sigma of 2 mm.

2.5 | SBM and statistical analyses

SBM analysis was performed using the software GIFT (http://icatb.sourceforge.net).45 See 

Xu et al45 for a detailed description of the computational methods used to develop the SBM 

analysis. We imported the smoothed gray matter volumes for each subject and allowed the 

software to estimate the number of components based on the independent components 

analysis using a neural network algorithm. This initial SBM analysis revealed a total of 13 

components (see below). At the individual level, SBM produces a weighted score that 

reflects each subject’s relative contribution to the creation of each spatial component. These 

individual weighted scores for each component were analyzed using a multivariate analysis 

of covariance (MANCOVA), with weighted scores as the dependent variables and AVPR1A 
genotype as the independent variable. Many of the chimpanzees within each population 

(YNPRC and NCCC) were related to one another; therefore, we used relatedness as a 

covariate in the analysis. Relatedness coefficients were based on the entire pedigree66 and 

calculated using ENDOG v4.8.67 This program uses the dam and sire information from the 

entire pedigree to calculate average relatedness (or the probability that a randomly chosen 

allele belongs to a particular individual in the population). After identifying which SBM 
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components differed between the AVPR1A genotypes, we visualized and identified 

significant regions within each component. To do so, we registered the component maps 

(scaled to SD units and z scores) to the standard chimpanzee template brain, and set the z-

score threshold at |z| ≥ 3.00 as in previous studies in humans and chimpanzees.42,45 All brain 

regions reaching this threshold were considered significant. The volume of each region was 

then measured using the region-of-interest tool in Analyze 11.0.

3 | RESULTS

The SBM analysis identified 13 independent components and calculated an individual 

weighted score reflecting each subject’s contribution to each component. The mean 

weighted score for the DupB +/− and DupB−/− chimpanzees for each component are shown 

in Table 1 (calculated by averaging each subject’s relative contribution to the creation of the 

components). The overall MANCOVA, examining the differences in these weighted scores 

between AVPR1A genotypes while controlling for relatedness, revealed a significant effect 

of genotype (F13,127 = 2.44, P = .006). The subsequent univariate F tests revealed significant 

differences between the DupB+/− and DupB−/− chimpanzees on component 4 (F1,139 = 

5.80, P = .017), component 5 (F1,139 = 5.78, P = .018) and component 6 (F1,139 = 11.02, P 
= .001). For components 4 and 5, DupB+/− chimpanzees had higher gray matter covariation 

values than DupB−/− apes, whereas the opposite pattern was found for component 6. Higher 

covariation values imply that the regions within a single component are strongly correlated 

and, within the component, gray matter volume in one region can predict gray matter 

volume in other regions.

The specific brain regions comprising components 4–6 are shown in Figure 1, and the 

volumes corresponding to each brain region are provided in Table 2. Component 4 was 

comprised of eight regions, largely in the premotor and prefrontal cortex, including dorsal 

prefrontal cortex (bilateral), superior medial prefrontal cortex (bilateral), precentral inferior 

sulcus (bilateral), middle central sulcus and precentral gyrus (both left), anterior insula (left), 

superior parietal sulcus (bilateral) and the inferior frontal sulcus (right). Component 5 was 

comprised of 14 brain regions including basal forebrain (bilateral), lunate sulcus (bilateral), 

motor hand area of the precentral gyrus (bilateral), cingulate gyrus (bilateral), ventral portion 

of the inferior frontal sulcus (bilateral), postcentral sulcus (bilateral), lateral occipital sulcus 

(bilateral), superior frontal gyrus, primary visual cortex (right), superior frontal orbital 

sulcus (left), inferior precentral gyrus (left) and hippocampus (left). Component 6 was 

comprised of 12 brain regions including superior temporal sulcus (bilateral), postcentral 

sulcus (bilateral), inferior portion of the lunate sulcus (bilateral), inferior frontal gyrus 

(bilateral), posterior cingulate gyrus (bilateral), lateral occipital sulcus (left), angular gyrus 

(left), anterior portion of the inferior temporal sulcus (left), inferior and middle temporal 

sulcus (right), intraparietal sulcus (right), medial parietal lobe (right), inferior occipital lobe 

(right) and Heschl’s gyrus (left).

4 | DISCUSSION

The findings of this study are straightforward; chimpanzees with indel polymorphisms in the 

5′ flanking region of the AVPR1A promoter exhibit significant differences in covariation in 

Mulholland et al. Page 6

Genes Brain Behav. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gray matter. Chimpanzees that had both RS3 alleles (DupB+/−) showed greater covariation 

in gray matter in brain regions within components 4 and 5, which included the premotor and 

prefrontal cortex, basal forebrain, lunate and the cingulate cortex, compared with those that 

lack DupB positive allele of RS3 (DupB−/−). In contrast, the DupB+/− chimpanzees show 

lesser gray matter covariation than DupB−/− chimpanzees in regions comprising component 

6, including the superior temporal sulcus and the postcentral sulcus. These regional 

differences overlap with brain regions previously found to differ in vasopressin and oxytocin 

neural fibers between nonhuman primates, and in AVPR1A gene expression in humans with 

different RS3 alleles (cingulate, insula and the hippocampus).28,38,68 Moreover, several of 

the larger regions identified in components 4–6 overlap with those that comprise the social 

brain network (prefrontal cortex, insula, cingulate and superior temporal sulcus),46–48 which 

is consistent with our hypothesis that these polymorphisms affect brain structures inolved in 

regulation of social cognition and behavior.

Several of the brain regions that differed between DupB+/− and DupB−/− chimpanzees have 

also been implicated in various forms of social cognition in humans and chimpanzees, in 

particular, the anterior cingulate cortex and superior temporal gyrus/sulcus.69 For instance, 

Mundy and Newell70 have proposed that the initiation of joint attention is mediated in brain 

regions in the anterior portion of the cortex, including area 9, the anterior cingulate and 

orbital frontal cortex. In contrast, Mundy and Newell70 have suggested that responding to 

joint attention cues is mediated by posterior brain regions, including the superior temporal 

gyrus, supramarginal gyrus and superior parietal cortex. Previous studies have shown that, in 

chimpanzees, poor receptive joint attention skills are linked to reversed asymmetries in the 

superior temporal gyrus and that DupB−/− males perform significantly worse than DupB+/− 

males on receptive joint attention.22 Furthermore, chimpanzees that are poor at initiating 

joint attention (or making a behavioral request) have also been shown to differ in gray matter 

volume within the anterior cingulate cortex compared with chimpanzees who reliably 

initiate joint attention.71 In short, some of the brain regions from components 4–6 that differ 

between DupB +/− and DupB−/− chimpanzees are associated with measures of joint 

attention in chimpanzees.

In summary, this is the first report of an association between the V1a vasopressin receptor 

(AVPR1A) and gray matter covariation in primates, including humans. The results suggest 

that AVPR1A polymorphisms are related to structural changes within the social brain 

network which may have implications for social behavior and cognition. Clearly, additional 

studies are needed to evaluate the role of polymorphisms in AVPR1A on gray matter 

covariation in other species of primates as a means of understanding the evolution of the 

vasopressin system and its effect on brain and behavior. In addition, given the role of 

different polymorphisms in AVPR1A on social cognition in chimpanzees, further studies on 

its expression in brain tissue would be important for understanding how its effect on the 

brain may mediate behavioral variability. Lastly, because AVPR1A has been suggested to be 

a candidate gene for ASD, we believe the results reported here further affirm the value of 

chimpanzees as a model species for understanding neurogenetic processes relevant to 

psychiatric disorders such as ASD in humans. Indeed, as we have shown, many behavioral 

phenotypes linked to ASD can be readily and uniquely studied in chimpanzees, including 

joint attention, theory-of-mind, or empathy, just to name a few. Future research should 
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expand the behavioral ASD-related phenotypes to include measures of mutual eye gaze and 

social motivation, as well as scores on nonhuman primate equivalents of autism diagnostic 

measures (eg, Autism Diagnostic Observation Scale, Autism Quotient, etc.). Future studies 

should also examine other peptide systems involved in social cognition, such as the oxytocin 

system.
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FIGURE 1. 
A 3D rendering of the surface area for components 4 (yellow), 5 (green) and 6 (blue). 

Yellow and green (top and middle) indicate regions where chimpanzees with the DupB+/− 

AVPR1A genotype had greater gray matter covariation values than DupB−/− chimpanzees, 

while blue (bottom) indicates regions where chimpanzees with the DupB−/− genotype had 

greater gray matter covariation values
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TABLE 1

Mean (SE) weighted score for the DupB+/− and DupB −/− chimpanzees for each component (adjusted for 

relatedness)

Component

AVPR1A genotype

DupB+/− DupB−/−

1 0.011 (0.116) −0.011 (0.116)

2 −0.078 (0.095) 0.078 (0.095)

3 −0.052 (0.109) 0.052 (0.109)

4 0.179 (0.105)* −0.179 (0.105)

5 0.190 (0.112)* −0.190 (0.112)

6 −0.242 (0.103) 0.242 (0.103)*

7 0.022 (0.107) −0.022 (0.107)

8 0.005 (0.107) −0.005 (0.107)

9 0.009 (0.098) −0.009 (0.098)

10 0.024 (0.096) −0.024 (0.096)

11 0.022 (0.101) −0.022 (0.101)

12 0.038 (0.100) −0.038 (0.100)

13 −0.009 (0.113) 0.009 (0.113)

*
Significantly greater gray matter covariation (P < .05).
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TABLE 2

Regions and corresponding volumes (mm3) of the three significant components

Region Total volume L/R volume

Component 4

 Dorsal lateral prefrontal cortex 15 033.00 8437.11/6595.89

 Superior medial prefrontal cortex 747.05 313.50/433.55

 Precentral inferior 653.07 527.88/125.19

 Middle central sulcus 553.60 553.60/-

 Anterior insula 278.52 278.52/-

 Middle precentral gyms 269.60 269.60/-

 Superior parietal 161.90 95.70/66.20

 Inferior frontal sulcus 62.43 -/62.43

Component 5

 Basal forebrain 1426.88 827.32/599.56

 Lunate 1299.97 641.41/658.56

 Motor hand area of precentral gyrus 1194.32 900.37/293.95

 Posterior cingulate 1095.54 488.09/607.45

 Inferior frontal orbital sulcus 947.36 540.22/407.14

 Postcentral sulcus 644.15 315.56/328.59

 Anterior and midcingulate 570.75 219.18/351.57

 Primary visual cortex 349.52 -/349.52

 Posterior superior frontal 286.75 190.02/96.73

 Inferior frontal sulcus 284.69 284.69/-

 Inferior precentral gyrus 261.37 261.37/-

 Superior frontal orbital 113.53 113.53/-

 Lateral occipital 108.73 54.88/53.85

 Hippocampus 81.63 81.63/-

Component 6

 Superior temporal sulcus 5831.69 3235.52/2596.17

 Postcentral sulcus 652.04 140.97/511.07

 Inferior lunate 531.64 186.93/344.71

 Lateral occipital 488.77 488.77/-

 Inferior frontal gyrus 249.02 179.05/69.97

 Inferior occipital gyrus 228.44 -/228.44

 Posterior cingulate (dorsal) 139.94 85.75/54.19

 Angular gyrus 137.54 137.54/-

 Anterior inferior temporal sulcus 97.41 97.41/-

 Medial parietal 96.04 -/96.04

 Inferior temporal sulcus 74.77 -/74.77

 Heschel’s gyrus 65.86 65.86/-

 Middle temporal sulcus 53.85 -/53.85

 Intraparietal 50.76 -/50.76
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