Skip to main content
. 2020 Apr 2;8:233. doi: 10.3389/fbioe.2020.00233

TABLE 3.

Choosing the optimal amount of principal components for the squat kinetic datasets.

PC Eigenvalue Percentage Cumulative Rank of Equality
of variance variance roots of roots
1 204.85 33.80 33.80 0.001 0.001
2 85.11 14.04 47.85 0.001 0.001
3 71.98 11.88 59.73 0.001 0.001
4 58.21 9.61 69.33 0.001 0.001
5 46.81 7.73 77.06 0.001 0.001
6 31.26 5.16 82.22 0.001 0.001
7 18.13 2.99 85.21 0.001* 0.001
8 15.18 2.50 87.71 1 0.001
9 13.82 2.28 89.99 1 0.001
10 9.55 1.58 91.57 1 0.001
11 8.38 1.38 92.95 1 0.001
12 6.37 1.05 94.00 1 0.001
13 5.57 0.92 94.92 1 0.001
14 4.65 0.77 95.69 1 0.005*
15 3.97 0.66 96.35 1 0.078

Type I error probability is set to 0.05. Rank of roots measure suggests that seven principal components (PCs) are statistically significant in meaningfully describing the dataset, corresponding to 85% of data variance, whereas the equality of roots suggests that 14 PCs are to be included (representing 95.7% of data variance). *p < 0.05.